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Abstract 
 

AERMOD, the Environmental Protection Agency’s regulatory air dispersion 
model, models point, area and volume sources.  Due to the numerical integration 
involved, computation times for area sources are significantly longer than those for point 
and volume sources.  EDMS, the Emissions and Dispersion Modeling System, employs 
AERMOD in the modeling of airport dispersion.  As a means of reducing AERMOD run 
times, and therefore EDMS run times as well, the combining of vertically stacked area 
sources is considered and demonstrated in this paper.  Errors in concentrations resulting 
from such approximations are also analyzed. 
 
Introduction 

 
The Federal Aviation Administration’s required environmental airport model, the 

Emissions and Dispersion Modeling System (EDMS), models both the emissions and 
dispersion from sources typically found at an airport.  Dispersion in EDMS is modeled 
using the Environmental Protection Agency’s (EPA) AERMOD, the regulatory air 
dispersion model.  AERMOD’s dispersion algorithms are not incorporated directly into 
EDMS.  Instead, EDMS generates input files for AERMOD.  This allows updates to 
EPA’s models to be incorporated with little change, if any, to EDMS. 

Because AERMOD had previously never been used to model aviation sources, the 
AMS/EPA Regulatory Model Improvement Committee (AERMIC) was consulted.  They 
recommended modeling aircraft with a series of area sources, as opposed to a string of 
volume sources.  Modeling dispersion from area sources requires numerical integration in 
two dimensions.  Since this demands lengthier computation times than modeling with 
other source types, it is in the modeler’s interests to eliminate and combine area sources 
whenever possible.  To compound the problem, aircraft on runways accelerate.  
Consequently, area sources representing runways must be cut into short sections such that 
any aircraft’s speed differential from the beginning to the end along any section is 
minimized while keeping the total number of individual sources manageable.  For its 
solution, EDMS divides runways into sections fifty meters in length; hence, a single 
runway can require over sixty sources. 

Intuitively, a fleet of aircraft of various types using a given physical runway 
should be modeled as several vertically stacked runways, each with a release height and 
initial vertical sigma for every aircraft type.  Because area sources model only one release 
height and one initial sigma, a different area source must be used for each portion of the 
fleet that shares the same parameters.  Although this solution is accurate, the 
multiplication of area sources to represent the same runway location only exacerbates the 
run time problem.  To reduce computation time and keep the total number of sources 
manageable, stacked area sources may be combined into a single area source whose 
parameters best represent the fleet at a particular physical location.  This compromise, 
however, will sacrifice some accuracy, as discussed in the error analysis to follow. 

The initial conditions of vertical pollutant dispersion from an area source are 
modeled in AERMOD by a Gaussian distribution with mean at the release height and 
standard deviation equal to a given sigma-z0.  The effective dispersion from vertically 
stacked area sources is generally not Gaussian but rather the irregular or “lumpy” 
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weighted sums of Gaussian distributions.  See figures 1 and 2 for a graphic comparison.  
Statisticians may balk at this superposition, however the component Gaussian 
distributions from individual area sources do not represent probabilities but rather the 
distribution of physical particles in space.  Because a Gaussian distribution is completely 
defined by its mean and standard deviation, for simplicity, we assume that the best 
Gaussian approximation for an irregular distribution is one with equal mean and standard 
deviation.  In this case, the mean and standard deviation of each stacked area source is 
given, and therefore the mean and standard deviation of the sum distribution can be 
analytically computed as shown by the following derivation. 
 

Figure 1.  Plot of a Gaussian Distribution 
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Figure 2.  Plot of a Weighted Sum of Gaussian Distributions 
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Derivation 
 
 A distribution is said to be normalized if the total area under its curve (i.e. the 
integral over all real numbers) is equal to one.  All Gaussian distributions are both 
normalized and continuous.  Therefore weighted finite sums of Gaussian distributions are 
also normalized and continuous, provided the weights sum to one.  Continuity is required 
to perform integration over all real numbers upon them. 

The mean, µ, of a normalized continuous distribution, f(x), such as a Gaussian 
distribution, can be extracted via the integral 
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where the angular brackets denote expectation value.  Here, the expectation value of x is 
the mean.  The variance (i.e. the square of the standard deviation, σ) is given by 
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where µ is the known mean. 
 A composite normalized continuous distribution may be constructed by a 
weighted sum of component normalized continuous distributions.  Let 
 

),()(
1

xfwxf
N

i

ii∑
=

=     (3) 

 
where fi(x) is a normalized continuous distribution with mean µi and standard deviation 
σi, wi is a weighting coefficient such that  
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and wi > 0 for all i and N is the finite number of component distributions. 

The mean, µ, of f(x) is computed by 
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Therefore, the mean of the composite distribution is equal to the weighted sum of the 
component means.  Similarly, the variance, σ2, of f(x) is 
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To complete this derivation, the expectation value of (x-µ)2 for each component 
distribution should be rewritten in terms of the component variance and mean as 
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By substituting equation 7 back into equation 6, 
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By equations 5 and 8 above, the mean and standard deviation of the 

approximating Gaussian distribution can be computed given the weights, wi.  However, 
theses weighting coefficients could be determined by a number of methods. 

A simple scheme, which was implemented in EDMS 4.0, is to set each weight 
equal to the fraction of total airport LTOs that the respective aircraft contributes and use 
this to determine the dispersion parameters for all runway, queue and taxiway area 
sources.  This calculation is shown below in equation 9. 
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where LTOi is the annual number landing-takeoff operation cycles for aircraft i.  Because 
emission rates vary for each aircraft, operating mode and pollutant, more sophisticated 
schemes could increase accuracy. 

For each aircraft operation (takeoff, taxi, or landing) in a given area source, 
consider the product of annual time spent within the source boundaries and the aircraft 
emission rate in such an operating mode.  The sum of each of these products for a given 

 5  



 

aircraft is the total emissions that the aircraft contributes to the area source.  Setting each 
aircraft’s weighting factor equal to the fraction of the fleet emissions that it contributes is 
a more accurate schema.  If only a specific pollutant is to be modeled, then only the 
emission rates for the specific pollutant should be used.  Otherwise if any pollutant is 
equally likely to be modeled, then the aircraft emission rates for all pollutants may be 
summed together into an unspeciated emission rate.  For runways, wi is given by 
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where Li and TOi are the annual number of landings and takeoffs, respectively, for aircraft 
i, ti,action is the time aircraft i spends in the runway source performing operation action, 
and ri,mode is the total aircraft emission rate for aircraft i under mode mode. 
 
Implementation 
 

Consider a fleet of three aircraft types: an Airbus 320-200 using two CFM56-5A1 
engines, a Boeing 737-300 with two CFM56-3-B1 engines and a Cessna 172 Skyhawk 
employing a single Textron Lycoming O-320.  Assume the Airbus makes 1000 LTOs, the 
Boeing 500 LTOs and the Cessna 100 LTOs annually on the first 50-meter length of 
runway to be modeled.  The times-in-mode are derived from the associated default flight 
profiles in EDMS, which are based on the methodology presented in the Society of 
Automotive Engineers (SAE) Aerospace Information Report (AIR) 1845.  The emission 
rates are derived from the ICAO databank and AP-42. 

 
Compute the total Airbus emissions using the numerator in equation 10. 
(1000 takeoffs/year)*(2 engines)*(2.459 secs/takeoff)* 
(0.9459 g of CO/s + 0.24172 g of HC/s + 25.8546 g of NOx/s + 1.051 g of SOx/s) 
+ (1000 landings/year)*(2 engines)*(0.712 secs/landing)* 
(1.7794 g of CO/s + 0.14154 g of HC/s + 0.4044 g of NOx/s + 0.1011 g of SOx/s) 
= 141.6 Kg/year 
 
Similarly, compute the total Boeing emissions. 
(500 takeoffs/year)*(2 engines)*(2.409 secs/takeoff)* 
(0.8514 g of CO/s + 0.03784 g of HC/s + 16.7442 g of NOx/s + 0.946 g of SOx/s) 
+ (500 landings/year)*(2 engines)*(0.709 secs/landing)* 
(3.9216 g of CO/s + 0.25992 g of HC/s + 0.4446 g of NOx/s + 0.114 g of SOx/s) 
= 48.12 Kg/year 

 
Compute the total Cessna emissions. 
(100 takeoffs/year)*(2.509 secs/takeoff)* 
(12.096 g of CO/s + 0.1322 g of HC/s + 0.02453 g of NOx/s + 0.0012 g of SOx/s) 
+ (100 landings/year)*(1.799 secs/landing)* 
(1.285 g of CO/s + 0.0439 g of HC/s + 0.00062 g of NOx/s + 0.00013 g of SOx/s) 
= 33.13 Kg/year 
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Sum the total emissions for all aircraft.  This is the denominator in equation 10. 
141.6 Kg/year + 48.12 Kg/year + 33.13 Kg/year = 222.88 Kg/year 
 
By equation 10, determine the weight for each aircraft type. 
For the Airbuses, 141.6 / 222.88 = 0.6354. 
For the Boeings, 48.12 / 222.88 = 0.2159. 
For the Cessnas, 33.13 / 222.88 = 0.1487. 
 
Hypothetically, suppose the Airbus 320-200 has a release height of 3 meters and 

an initial vertical sigma of 4 meters, the Boeing 737-300 a release height of 2 meters with 
an initial vertical sigma of 2.5 meters, and the Cessna 172 a release height and initial 
vertical sigma both equal to 1 meter. 
 

By equation 5, compute the mean release height. 
(0.6354)(3 m) + (0.2159)(2 m) + (0.1487)(1 m) = 2.4867 meters 
 
By equation 8, compute the composite variance. 
(.6354)[(4m)2 + (3m) 2]  
+ (0.2159)[(2.5m) 2+(2m)2]  
+ (0.1487)[(1m)2+(1m)2] 
- (2.4867m)2 
≅  12.2117 m2. 
 

The composite standard deviation is the positive square root of the variance and is 
therefore about 3.49 meters.  Figure 1 is a plot of the composite distribution with its 
Gaussian approximation superimposed with a dashed line. 
 

Figure 3.  Plot of a Distribution and its Gaussian Approximation 
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To implement this approximation in EDMS 4.0, the main AREMOD input file 
(.INP file) must be manually edited.  AERMOD input files generated by EDMS contain a 
key that matches the user-supplied names of sources to the eight-character names used by 
AERMOD.  If this example is applicable to the first section of runway 9, use the key to 
find the AERMOD name, RW09X001.  Each AERMOD source has a corresponding 
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SRCPARAM line for the source parameters.  The SRCPARAM line for RW09X001 might 
originally look something like this: 
 
SRCPARAM RW09X001 0.0     1.83     20.00     50.00     90.00     3.00 
 
The second number is the above ground release height in meters.  The last number is the 
vertical plume size or sigma-z0 in meters.  After altering this line for this example, it 
should look like the following line.  The values have been rounded to the nearest 
centimeter. 
 
SRCPARAM RW09X001 0.0     2.49     20.00     50.00     90.00     3.49 
 
For runways, this process is usually repeated for each runway section.  Because each 
aircraft is accelerating and thus spends a different amount of time in each of the fifty-
meter sections of a runway, and because the weighting scheme depends upon these times, 
the aircraft weights generally change for each section.  If the weights change, the 
composite distribution and its Gaussian approximation also change.  The release height 
and initial sigma of each runway section will vary. 
 
Error Analysis 
 
 To discover the worst possible impacts to concentrations by performing this 
approximation, an error analysis was performed on concentrations from area sources in 
AERMOD using the full year of 1996 weather at Corpus Christi International Airport 
(CRP).  Concentrations were measured with a polar receptor network centered on and 
completely encircling the sources with a vector every 10 degrees and distances ranging 
from 100 to 10,000 meters.  For each weather hour and radial distance, only the peak 
concentration was recorded, as it would clearly be significant and would exclude most of 
the insignificant zero or trace receptor readings from the analysis.  The receptors were 
placed at a flagpole height of 1.8 meters.  The area sources were 10 meter by 10 meter 
squares. 
 The overall error, E, between two continuous distributions, f and g, was measured 
by the integral 
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Through exhaustive search, it was determined that the greatest error between a single 
approximating Gaussian and the weighted sum of Gaussians it approximates occurs when 
there are only two Gaussians in the weighted sum.  This can be explained intuitively as 
when more Gaussians are added to a weighted sum, the more the sum resembles a single 
Gaussian. 
 The release heights and initial vertical sigmas of the component Gaussians were 
limited to the real world value range of one to six meters.  No widely used aircraft is 
known to have an effective release height greater than six meters or less than 1 meter.  
Preliminary information on the scale of the sigmas was unavailable at the time of the 
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analysis and was believed to also be within the same range as the release height.  The 
exhaustive search also revealed that the greatest error between a weighted sum of two 
Gaussians and its approximating Gaussian occurs when differences between the means, 
µ1 and µ2, and standard deviations, σ1 and σ2, of the Gaussians in the sum are maximized 
and a large majority of the weight is applied to the component with the smaller standard 
deviation.  This method was used to develop test cases I and II. 

Case I attempts to maximizes error with µ1 = 1m, σ1 = 6m, µ2 = 6m, σ2 = 1m, w1 
= 0.167 and w2 = 0.833.  The approximating Gaussian has a mean, µ, equal to 
(0.167)(1m) + (0.833)(6m) = 5.165m, and a standard deviation, σ, equal to  

.21.3)165.5(37)165.5(])1()6)[(833.0(])6()1)[(167.0( 2222222 mmmmmmmm ≅−=−+++
Case II is identical to case I except that the values of µ1 and µ2 were swapped.  The 
approximating Gaussian of case II is also the same except for having a mean of 1.835m. 

One might think that the differences between the concentrations from such a 
weighted sum and its Gaussian approximation would be maximized, but the relationship 
is not linear.  Intuitively, the weighted sum of Gaussians most incongruous to its 
approximating Gaussian should be the sum of two equally weighted Gaussians with 
maximally separated means and minimal standard deviations.  This was also tested as 
case III; although, its error value from equation 11 was less than that obtained at the 
maxima found by exhaustion. 

In case III, µ1 = 1m, σ1 = 1m, µ2 = 6m, σ2 = 1m, and w1 = w2 = 0.5.  Therefore, 
µ = 3.5m and σ = mmmmmm 69.2)5.3(])1()6)[(5.0(])1()1)[(5.0( 22222 ≅−+++  in the 
approximating Gaussian.  Table 1 summarizes the three cases. 
 
 

Table 1.  Values of the statistical variables in each case. 
Variable Case I Case II Case III 

w1 0.167 0.167 0.5 
µ1 1 m 6 m 1 m 
σ1 6 m 6 m 1 m 
w2 0.833 0.833 0.5 
µ2 6 m 1 m 6 m 
σ2 1 m 1 m 1 m 
µ 5.17 m 1.84 m 3.5 m 
σ 3.21 m 3.21 m 2.69 m 

 
Relative error between the peak concentrations from the approximating and 

approximated area sources was categorized into the following bins:  “less than -50%” 
(more than a factor of 2 underprediction), “-10% to 10%” (on target prediction), “greater 
than 100%” (more than a factor of 2 overprediction) and bins for every interval of 10% in 
between.  Tables 2, 3 and 4 show the bin totals out of 8,784 hours (the number of hours in 
a leap year) at each measured distance in the polar network for cases I, II and III, 
respectively. 

In addition to the 1996 weather at CRP, Case III was also conducted with 1992 
weather at Washington National Airport (DCA).  However, this did not cause any error  
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Table 2.  Case I error bin counts at each measured distance. 

 
Distance 
(meters) 

<-50 
% 

[-50%, 
-40%) 

[-40%, 
-30%) 

[-30%, 
-20%) 

[-20%, 
-10%) 

[-10%, 
10%] 

(10%, 
20%] 

(20%, 
30%] 

(30%, 
40%] 

(40%, 
50%] 

(50%, 
60%] 

(60%, 
70%] 

(70%, 
80%] 

(80%, 
90%] 

(90%, 
100%] 

>100
% 

100                0 0 0 0 0 7701 684 59 170 47 1 0 1 0 3 118
200                0 0 0 0 0 8508 147 9 2 6 9 20 32 13 14 24
300                0 0 0 0 0 8583 83 11 31 31 19 12 13 1 0 0
400                0 0 0 0 0 8617 61 44 25 23 14 0 0 0 0 0
500                0 0 0 0 0 8647 64 34 36 3 0 0 0 0 0 0
600                0 0 0 0 0 8691 41 47 5 0 0 0 0 0 0 0
700                0 0 0 0 0 8681 72 31 0 0 0 0 0 0 0 0
800                0 0 0 0 0 8667 116 1 0 0 0 0 0 0 0 0
900                0 0 0 0 0 8681 103 0 0 0 0 0 0 0 0 0
1000                0 0 0 0 0 8697 87 0 0 0 0 0 0 0 0 0
2000                0 0 0 0 4 8710 70 0 0 0 0 0 0 0 0 0
3000                0 0 0 1 1 8659 123 0 0 0 0 0 0 0 0 0
4000                2 0 3 0 1 8497 274 0 0 0 0 1 0 0 0 6
5000                3 0 5 2 7 8420 338 0 1 0 2 0 0 0 1 5
6000                11 0 6 0 9 8380 374 2 0 0 0 0 0 0 0 2
7000                1 2 11 0 2 8197 563 6 0 0 0 0 0 0 0 2
8000                15 1 8 1 13 8191 547 7 1 0 0 0 0 0 0 0
9000                9 0 5 1 3 7871 863 22 0 0 0 0 0 0 0 10
10000                11 2 17 3 6 8078 629 28 0 2 0 0 0 0 0 8
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Table 3.  Case II error bin counts at each measured distance. 

 
Distance 
(meters) 

<-50 
% 

[-50%, 
-40%) 

[-40%, 
-30%) 

[-30%, 
-20%) 

[-20%, 
-10%) 

[-10%, 
10%] 

(10%, 
20%] 

(20%, 
30%] 

(30%, 
40%] 

(40%, 
50%] 

(50%, 
60%] 

(60%, 
70%] 

(70%, 
80%] 

(80%, 
90%] 

(90%, 
100%] 

>100
% 

100                0 0 0 0 2038 6494 97 29 4 0 0 0 0 0 0 122
200                0 0 0 0 467 8120 46 24 5 0 1 1 1 1 1 117
300                0 0 0 0 165 8393 38 39 18 9 4 0 0 3 4 111
400                0 0 0 0 142 8417 60 32 9 6 1 4 2 8 11 92
500                0 0 0 0 90 8423 95 35 19 8 5 8 6 20 42 33
600                0 0 0 0 67 8433 86 51 31 13 4 12 29 29 29 0
700                0 0 0 0 64 8413 109 54 29 24 25 24 25 17 0 0
800                0 0 0 0 71 8359 132 71 72 40 31 8 0 0 0 0
900                0 0 4 6 79 8290 187 96 77 45 0 0 0 0 0 0
1000                0 6 4 0 83 8277 211 94 84 25 0 0 0 0 0 0
2000                1 8 3 3 160 7921 331 185 142 30 0 0 0 0 0 0
3000                16 3 5 6 245 7498 539 229 230 13 0 0 0 0 0 0
4000                26 5 13 8 308 7149 577 424 252 22 0 0 0 0 0 0
5000                41 4 5 25 339 6786 691 605 249 39 0 0 0 0 0 0
6000                42 6 11 22 432 6411 635 903 245 77 0 0 0 0 0 0
7000                57 7 17 11 492 6107 711 948 342 92 0 0 0 0 0 0
8000                69 19 25 17 522 5845 720 1090 343 133 1 0 0 0 0 0
9000                78 12 25 22 585 5537 675 1283 431 133 3 0 0 0 0 0
10000                95 29 21 6 607 5361 646 1362 471 183 3 0 0 0 0 0
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Table 4.  Case III error bin counts at each measured distance. 

 
Distance 
(meters) 

<-50 
% 

[-50%, 
-40%) 

[-40%, 
-30%) 

[-30%, 
-20%) 

[-20%, 
-10%) 

[-10%, 
10%] 

(10%, 
20%] 

(20%, 
30%] 

(30%, 
40%] 

(40%, 
50%] 

(50%, 
60%] 

(60%, 
70%] 

(70%, 
80%] 

(80%, 
90%] 

(90%, 
100%] 

>100
% 

100                0 0 0 0 2 8414 47 88 73 29 7 2 0 0 0 122
200                0 0 0 0 203 8337 65 41 12 4 1 1 1 1 1 117
300                0 0 0 0 196 8341 49 38 28 10 4 0 2 5 5 106
400                0 0 0 0 355 8157 80 37 29 9 5 5 6 15 51 35
500                0 0 0 0 634 7869 89 51 28 2 7 34 43 27 0 0
600                0 0 0 0 874 7628 86 64 22 18 35 49 8 0 0 0
700                0 0 0 0 1039 7429 114 64 52 27 49 10 0 0 0 0
800                0 0 0 0 1189 7265 137 75 59 47 12 0 0 0 0 0
900                0 0 0 0 1282 7125 194 66 91 26 0 0 0 0 0 0
1000                0 0 0 0 1391 6994 196 110 93 0 0 0 0 0 0 0
2000                0 0 0 10 1945 6192 342 218 77 0 0 0 0 0 0 0
3000                2 1 4 9 2294 5596 438 403 37 0 0 0 0 0 0 0
4000                11 0 0 16 2360 5288 588 440 81 0 0 0 0 0 0 0
5000                14 0 4 23 2238 5048 802 507 147 0 1 0 0 0 0 0
6000                25 0 9 19 2078 4899 970 641 143 0 0 0 0 0 0 0
7000                16 2 12 18 1961 4788 1111 699 177 0 0 0 0 0 0 0
8000                25 4 10 23 1938 4642 1084 830 225 0 2 0 0 1 0 0
9000                28 9 27 21 1778 4463 1274 903 278 3 0 0 0 0 0 0
10000                27 4 16 53 1747 4279 1381 1011 258 6 1 0 1 0 0 0
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bin total at any receptor distance to differ by more than 456 or 5.2% of 8,784.  Hence, the 
data presented in the following tables are likely to slightly vary for different airports. 
 Tables 2, 3 and 4 indicate that error tends to increase with distance.  This may 
seem counterintuitive, because with distance the initial dispersion conditions at the source 
should have a smaller impact on the concentrations at the receptors.  However, recall that 
this examines only the peak concentration at a distance, the one nearest the plume 
centerline.  Since the receptors at greater distances have greater spatial separation, they 
are more apt to not catch a reading near the plume centerline and more apt to measure the 
less significant concentrations. 
 

Table 5. Error bin totals as a percentage out of 8,784 for each of the three cases 
broken out into two distance ranges. 

 Case I Case II Case III 
Error Bin 100-1000m 1000-10000m 100-1000m 1000-10000m 100-1000m 1000-10000m 

< -50% 0.0% 0.1% 0.0% 0.5% 0.0% 0.2% 
[-50%, -40%) 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 
[-40%, -30%) 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 
[-30%, -20%) 0.0% 0.0% 0.0% 0.1% 0.0% 0.2% 
[-20%, -10%) 0.0% 0.1% 3.7% 4.3% 8.2% 22.5% 
[-10%, 10%] 97.3% 95.3% 92.9% 76.2% 88.3% 59.4% 
(10%, 20%] 1.7% 4.4% 1.2% 6.5% 1.2% 9.3% 
(20%, 30%] 0.3% 0.1% 0.6% 8.1% 0.7% 6.6% 
(30%, 40%] 0.3% 0.0% 0.4% 3.2% 0.6% 1.7% 
(40%, 50%] 0.1% 0.0% 0.2% 0.9% 0.2% 0.0% 
(50%, 60%] 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 
(60%, 70%] 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 
(70%, 80%] 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 
(80%, 90%] 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 
(90%, 100%] 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 

>100% 0.2% 0.0% 0.5% 0.0% 0.4% 0.0% 
 

Table 5 shows the error bin counts as a percentage out of the 8,784 weather hours 
in all three cases, averaged over two source-receptor distance ranges, 100 to 1,000 meters 
and 1,000 to 10,000 meters. 

The error for case I is minimal.  At distances of 1000 meters and less, 97.3% of 
the concentrations from the approximation were within 10% of the concentrations from 
the approximated sources.  This value dips to 95.3% for measurements at 1000 meters 
and greater. 

In case II, this statistic falls to 92.9% for the nearer distances and drops to 76.2% 
for the farther distances.  Therefore, the approximation worked better in case I than in II.  
The effective release height in case I is 3.33 meters higher than it is in case II.  The 
higher release height apparently allows greater concentrations of pollutant to travel 
farther and reduce the error at greater distances. 

Case III, in which the plume masses were concentrated at and evenly split 
between the high and low extremes, fares even worse than case II, especially at distances 
greater than 1000 meters where only 59.4% of the errors fell between –10 and 10%.  The 
smaller initial sigmas in case III evidently keep the plumes sufficiently concentrated such 
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that the more distant receptors are even less likely to measure the more significant 
concentrations. 

In all three cases, overprediction or underprediction by a factor of two or more at 
any given distance was insignificant. 

 
Conclusion 

 
The accuracy of the concentrations produced by AERMOD is generally accepted 

to be within a factor of two.1  The results presented here show that the proposed 
approximation method maintains this level of acceptability. 

The fraction of the total airport emissions inventory is attributable to aircraft 
might necessitate the use of stacked sources to represent an aircraft fleet.  If aircraft 
actually contribute little to an airport’s total emissions, then the modeling of aircraft 
sources need not be as accurate as possible and an approximation would suffice.  When 
measured initial sigmas from aircraft become publicly available, they may lie in a more 
constrictive range than what is assumed here.  If so, this should reduce the greatest 
amount of error from any approximation. 

This paper’s derivation may be generalized to apply to other types of coinciding 
sources to further reduce AERMOD run times. 

 
1 Seventh Conference on Air Quality Modeling, Volume I, EPA Auditorium, 401 M 
Street, S.W., Washington, DC, June 28, 2000 
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