
Fish and Wildlife Response to Farm Bill Conservation Practices 83

Effects of Conservation 
Practices on Aquatic Habitats
and Fauna

Scott S. Knight, USDA ARS National Sedimentation Laboratory

PO Box 1157
Oxford, MS 38655
Email: sknight@ars.usda.gov

Kathryn L. Boyer, USDA NRCS West National Technology Support Center

1201 NE Lloyd Blvd, Suite 1000
Portland, OR 97232
Email: kathryn.boyer@por.usda.gov

ABSTRACT  A major goal of both state and federal agricultural and environmental agencies in the United 

States is sustainable management of watersheds where agriculture is a dominant land use. Because 

watershed processes and conditions directly and indirectly affect soil, water, air, plants, animals, and 

humans, USDA NRCS encourages a watershed approach to management of agricultural operations in the 

United States. This requires a suite of approaches or practices that address natural resource concerns 

in uplands and stream corridors. Land clearing, leveling, draining, tilling, fertilizing, and harvesting 

together create prolonged perturbations manifested in the ecological and physical conditions of streams 

and rivers. Regardless of the cause of a problem in a watershed, its effect on aquatic habitats and their 

biological communities is dramatic. Physical damage due to channelization, erosion, sedimentation, and 

altered hydrological regimes coupled with ecological damage due to excessive nutrients, pesticide con-

tamination, and riparian clearing cumulatively diminish the quality of aquatic habitats and threaten their 

biological communities. In general, the primary goals for farmers and ranchers in agricultural watersheds 

are (a) control of non-point source pollutants such as nutrients, sediments, and pesticides, (b) adequate 

water supplies for crop and animal production, and (c) stream/river channel stability. As indicators of wa-

tershed conditions, aquatic species and their habitats play a pivotal role in how we manage watersheds, 

with the ultimate goal of sustaining water quality and ecological integrity. Conservation planning identi-

fies resource concerns within watersheds and what practices should be implemented to address them. 

If such practices are applied according to USDA standards, habitats will benefit as will the species that 

inhabit them. This paper examines the effects of NRCS-defined conservation practices used as conser-

vation measures for aquatic species and their habitats.
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Rivers and streams historically have served as 
sources for human development. The Tigris, 
Euphrates, and Nile Rivers were “cradles of 

civilization” because of the resources they offered. Riv-
ers and streams provided a seemingly endless supply of 
water, first for agricultural development and later for 
industrialization. As natural sculptors of landscapes, 
rivers and streams carved away mountains and up-
lands while annually renewing the fertility of croplands 
downstream. These valuable systems were not only 
conduits for water and sediments but also human set-
tlement, trade, and transportation. Rivers were the first 
highways, capable of transporting tremendous quanti-
ties of both raw materials as well as finished products. 
However, human waste products also became a pas-
senger on the world’s rivers (Knight et al. 1994).

While rivers and streams have great capacity to 
rapidly recover from anthropomorphic influences, 
this capacity is not without limits. Degradation of lo-
tic systems worldwide is pervasive. While some rivers 
and streams of the United States are still biologically 
diverse, many species are imperiled (Williams et al. 
1989, Williams et al. 1993, Ricciardi and Rasmus-
sen 1999, Warren et al. 2000). The causes of these 
declines are numerous and cumulative, including 
habitat and water quality degradation associated with 
erosion and sedimentation, watershed development, 
deforestation and subsequent agricultural or urban 
development and other human activities (Lenat 
and Crawford 1994, Allan et al. 1997, Harding et al. 
1998). Of all the large- to medium-sized rivers in the 
lower 48 states, only the Yellowstone River remains 
unregulated by dams or channelization (Gore 1985). 
According to the 1994 National Water Quality Inven-
tory of 617,000 miles of rivers and streams, only 56 
percent fully support their designated use of sup-
plying drinking water, supporting fish and wildlife, 
providing recreation, and supporting agriculture 
(FISRWG, 1998). Simon and Rinaldi (2000) reported 
that in the loess area of the midwestern United 
States, thousands of miles of unstable stream chan-
nels are undergoing system-wide channel-adjustment 
processes as a result of 1) modifications to drainage 
basins dating back to the turn of the 20th century, 
including land-clearing and poor soil-conservation 
practices, which caused the filling of stream channels, 
and, consequently, 2) direct, human modifications 
to stream channels such as dredging and straighten-

ing to improve drainage conditions and reduce the 
frequency of out-of-bank flows. 

River and stream corridors are dynamic ecosys-
tems that function across different spatial scales over 
time. Most rivers interact at various times and loca-
tions with agricultural operations. River and stream 
ecosystems provide a number of landscape functions, 
including transport of materials such as sediments, 
large wood and storm runoff, transfer of energy, 
cycling of nutrients, and distribution or redistribu-
tion of plants and animals. Although agricultural 
watersheds are controlled and restricted by human 
manipulation, they depend on the same underlying 
processes and therefore they function in the same 
ecological framework as natural ecosystems. Agricul-
tural watersheds are superficially simple in that crops 
are typically a monoculture grown in parallel rows, 
soils are homogeneously broken and mixed through 
tillage, and landscape grade has been uniformly 
smoothed. This apparent simplicity belies the com-
plex interactions between soil, crops, beneficial and 
pest flora and fauna, agrochemicals, weather, and 
adjacent non-cultivated lands and receiving bodies of 
water. Because of the often close association of farm-
ing operations within river and stream ecosystems, 
agriculture has the opportunity to strongly influence 
whether aquatic ecosystems can effectively perform 
their myriad functions. 

Conservation practices may improve or protect the 
ability of rivers and streams to function in a number 
of ways. Conservation practices, which may be either 
agronomic or physical measures, may prevent an 
agricultural operation from interfering with stream 
ecosystem function (such as reducing sediments in 
runoff or protecting stream banks from failing) or 
directly restore that function (such as improving 
stream habitat). Ecological response to watershed 
management practices may be detected in three 
major areasstream and riparian/floodplain habi-
tat, water quality and quantity, and biota. Due to 
the complexity of aquatic ecosystems, no single area 
will provide a true measure of ecological changes in 
a watershed. For example, changes in habitat may 
be immediately detectable, while biological response 
to perturbations may take longer to become evident. 
Although quicker to detect, habitat changes may or 
may not indicate an ecological problem. Moderately 
disturbed habitats are often the most productive and 
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have higher species diversities, which may or may not 
indicate good ecological conditions. In general, water 
quality is useful in detecting acute problems. Water 
quality monitoring can easily detect dissolved oxygen 
concentrations that fall below the threshold to sup-
port aquatic life; however, many species of aquatic 
life are adapted to survive short-term declines in 
water quality (Cooper and Knight 1990b). 

Effects of Conservation Practices on  
River and Stream Biota

This paper compiles available literature that describes 
fish and wildlife response to USDA conservation 
practices applied directly or indirectly to river and 
stream systems. While USDA Farm Bill programs 
offer increasingly attractive financial incentives to 
farmers and ranchers for conservation of aquatic 
resources, the degree to which aquatic 
habitat restorative actions are implemented 
and monitored for effectiveness at local 
scales is challenging to report and evaluate. 
This is apparent by the poor rate at which 
completed restoration projects have been 
evaluated (Bernhardt et al. 2005). This lack 
of evaluation is a result of limited dollars al-
located for such efforts. Monitoring designs 
are necessarily intricate and expensive to 
implement due to the ecologically complex 
nature of stream, river, floodplain, and up-
land processes. Stream project evaluations 
are more prevalent in the “gray literature” 
and case files of USDA field offices, some of 
which are referenced in this document. 

The success of restoration actions target-
ed to improve habitats for aquatic species 
is also difficult to evaluate because effects 
can be manifested by physical, biological, 
and chemical responses at multiple scales 
and time periods of catchments and their 
biological communities (Minns et al. 1996, 
Lammert and Allan 1999, Fitzpatrick et al. 
2001, Vondracek et al. 2005). Moreover, 
suites of practices installed either sporadi-
cally or strategically in a watershed will dif-
ferentially influence the breadth and timing 
of response of stream or wetland species 

and their physical habitats. Thus correlations be-
tween a specific practice and the ecological response 
of an organism or its habitat are not easily discerned. 
These limitations aside, recent studies that focus on 
the effects of agricultural practices on conservation 
of aquatic species and their habitats are beginning to 
be reported and offer insights into which of these are 
effective at arresting the decline in aquatic species in 
North America. In most cases, management practices 
that retain or improve connections among ecological 
processes and/or different aquatic habitats contrib-
ute to the quality of those habitats and the well-being 
of the aquatic species that inhabit them. 

Management actions to address aquatic habitats 
and their species vary according to the overall condi-
tions of the sites where they are employed. While 
site-specific actions may improve bank stability 
along a reach of stream, a suite of practices designed 
to minimize soil erosion, conserve vegetation along 

Table 1. National Conservation Practice Standards Relevant to 
Aquatic Species and their Habitats

Practice Name Practice Code

Channel Bank Vegetation 322

Clearing & Snagging 326

Dam, Diversion Dam 402/348

Fence/Use Exlusion 382/472

Filter Strip 393

Fish Passage 396

Fish Pond Management 399

Forest Stand Improvement 666

Grade Stabilization Structure 410

Grassed Waterway 412

Irrigation Water Management/Structure for Water Control 449/587

Nutrient Management 590

Pond 378

Prescribed Forestry 409

Prescribed Grazing 528

No-till Residue Management 329

Riparian Herbaceous Cover 390

Shallow Water Management for Wildlife 646

Streambank and Shoreline Protection 580

Stream Crossing 578

Stream Habitat Improvement and Management 395

Wetland Enhancement 659
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streams, and maintain ecological processes over a 
broader landscape are likely to improve water qual-
ity and aquatic habitats not only at a site but also 
throughout a larger portion of the watershed.

While not all-inclusive, this work is an attempt to 
provide pertinent information currently available. 
Documented effects are grouped by NRCS defined 
conservation practices listed in Table 1. Many con-
servation practices either serve multiple purposes, 
or due to their design and location on the landscape, 
have benefits beyond their original design consid-
erations. Use Exclusion, for example, may be rec-
ommended to prevent bank erosion resulting from 
animal trampling; however, water quality may also be 
improved when animal waste is prevented from en-
tering a stream, thus providing a secondary benefit. 
Furthermore, the distinction between one practice 
and another may be subtle; for example, diversions, 
grade control structures and dams all incorporate 
structures to impound water to some degree, with 
consequent responses by aquatic species.

The following paragraphs summarize major 
findings in the literature regarding the documented 
effects of the major conservation practices affecting 
stream habitats and associated aquatic biota.

Channel Bank Vegetation

There are a number of conservation practices devel-
oped to improve streambank condition and function 
(i.e., stability, habitat for wildlife, filtering capacity, 
shading of stream), including riparian buffer prac-
tices (see below). When implemented in concert 
with stabilization measures and considerations for 
aquatic species, this practice indirectly benefits 
aquatic habitat conditions (Sedell and Beschta 1991, 
Sweeney 1993, Washington Department of Fish and 
Wildlife 2003). Bank vegetation provides additional 
roughness to dissipate energy along streambanks 
or lakeshores while improving habitat and water 
quality by providing shade and plant material to the 
stream. A study by Shields and Gray (1992) of the 
Sacramento River near Elkhorn, California, sug-
gests that allowing woody shrubs and small trees to 
be planted on levees would provide environmental 
benefits and would enhance structural integrity 
without the hazards such as wind throwing associ-
ated with large trees. 

Clearing and Snagging

Clearing river and stream channels of wood and wood 
debris reduces hydraulic resistance and thus contrib-
utes to lowering the risks of flood flows. Logs, limbs, 
branches, leaves, and other debris transported during 
flooding often become lodged against bridges, hy-
draulic structures, and vegetation, particularly in and 
near overbank areas (Dudley et al. 1998). This prac-
tice helps prevent accumulations of in-channel wood 
that can deflect flows toward streambanks, resulting 
in bank erosion. While these objectives are beneficial 
for maintaining stable banks and minimizing flood-
ing, they also result in a homogeneous channel that 
lacks habitat complexity important to aquatic species. 
Large wood, woody debris, and leaf litter are essential 
sources of carbon for stream ecosystems (Malanson 
and Kupfer 1993). While wood and debris removal may 
reduce channel and bank erosion by reducing debris-
induced scour, experimental removal of wood from a 
small, gravel-bed stream in a forested basin resulted in 
dramatic redistribution of bed sediment and changes in 
bed topography (Bilby 1984, Shields and Smith 1992, 
Smith et al. 1993, USDA Natural Resources Conserva-
tion Service 2001). Removal of woody debris changed 
the primary flow path, thereby altering the size and 
location of bars and pools and causing local bank 
erosion and channel widening (Shields and Nunnally 
1984, Smith et al. 1993). In a study of coarse woody 
debris removal on streams damaged by the eruption of 
Mount St. Helens, Lisle (1995) found total debris re-
moval from selected stream reaches caused additional 
scour and coarsening of the bed surface compared with 
segments with no or partial debris removal. Total wood 
debris removal caused pools to become shallower, and 
in segments of low sinuosity, decreased the frequency 
of major pools. Habitat complexity decreased after total 
debris removal, as indicated by a decrease in the stan-
dard deviation of residual depth and an increase in the 
size of substrate patches. Myers and Swanson (1996) 
also found that pool quantity and quality decreased on 
streams subjected to coarse woody debris removal. 

The importance of in-stream large wood as a 
component of stream habitat in forested ecosystems 
is well-documented (Gregory et al. 2003). As such, 
the practice of clearing and snagging is not without 
controversy and should be used with serious consid-
eration for aquatic species of concern.



Fish and Wildlife Response to Farm Bill Conservation Practices 87

Dam/Diversion Dam

It is estimated that more than 60 percent of the fresh-
water flowing to the world’s oceans is blocked by some 
40,000 large dams (>15 meters high), and more than 
800,000 smaller ones (Petts 1984). Negative effects 
of large and small dams on aquatic fauna relate to 
creating barriers to migration (Bramblett and White 
2001 Morrow et al. 1998, Helfrich et al. 1999, Neraas 
and Spruell 2001, Zigler et al. 2004), which disrupt 
spawning and rearing of fish, modify population 
structure, and create slow water habitat unsuitable for 
many native stream/river species (Ligon et al. 1995, 
Brouder 2001, Marchetti and Moyle 2001, Dean et al. 
2002, Schrank and Rahel 2004, Tiemann et al. 2004). 
Impoundment of rivers by dams has been implicated 
as one of the leading causes of native mussel declines 
(Williams et al. 1993). Small impoundments gener-
ated by dams are implicated in the demise of some 
native prairie fishes (Mammoliti 2002).

Of broader significance, dam construction and 
maintenance dramatically alter the hydrological re-
gime of streams and rivers, which in turn affects ripar-
ian-floodplain processes, aquatic community dynamics 
and structure, flood-pulse regimes important to many 
native aquatic species, and geomorphic conditions of 
stream/river channels that contribute to the dynamic 
complexity of stream and riparian habitats (Rood and 
Mahoney 1990, Bergstedt and Bergersen 1997). As 
such, use of this conservation practice should take into 
account the effects of dams on watersheds as a whole, 
and more specifically the migratory needs of aquatic 
species. Solutions to the problems dams present to 
aquatic species include the construction of fish ladders 
or elevators, trapping and transporting fish around 
the dam, or removal of the dam (see section on Fish 
Passage). These features do not, however, mitigate the 
effects of dam construction on riverine processes.

Positive effects of dams on aquatic species include 
creation of lake habitats suitable for recreational angling, 
increased processing of nutrients and agrichemicals such 
as pesticides and trapping of sediments (Dendy 1974, 
Griffin 1979, Dendy and Cooper 1984, Dendy et al. 1984, 
Bowie and Mutchler 1986, Cooper and Knight 1990a, 
Cooper and Knight 1991). Additionally, dams constructed 
with low flow releases that may sustain instream flows 
in first-order tributary streams during dry periods of the 
year (Cullum and Cooper 2001).

As dams age, consideration must be given to the 
consequences of decommissioning dams to water 
quality and downstream ecology (Smith et al. 2000, 
Bednarek 2001, Doyle et al. 2003).

Restored stream channel in Montana. (Photo by K. Boyer, USDA NRCS)

Streambank stabilization with stream barbs and riparian re-vegetation in 
Oregon. (Photo by K. Boyer, USDA NRCS)

Example of streambank erosion in Missouri. (Photo courtesy of 
USDA NRCS)
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Fence/Use Exclusion

Use exclusion is most often employed to prevent 
livestock use from causing bank and channel erosion 
as they cross a stream or enter to drink. Myers and 
Swanson (1996) found that bank stability, defined 
as the lack of apparent bank erosion or deposition, 
decreased on steams where banks were grazed by 
livestock. Overhanging banks are important fish habi-
tat, and grazing of banks was implicated in loss of fish 
habitat in western U.S. streams (Duff 1977, Marcuson 
1977). Use exclusion has also been shown to improve 
water quality by preventing livestock wastes from 
contaminating steams (Line et al. 2000). Few studies 
have addressed direct effects of use exclusion meth-
ods on aquatic flora and fauna. Trout abundance was 
found to be higher in Sheep Creek, Colorado, after 
cattle were excluded (Stuber 1985). Benthic macro-
invertebrates less tolerant of poor water quality were 
more abundant in streams with exclosures, although 
the study design did not rule out other factors that 
may have led to the same result (Rinne 1988). In New 
Zealand, the types of aquatic insects in small streams 
with exclosures were different from those without ex-
closures, where riparian vegetation damage resulted 
in decreased shading and increased bank erosion 
(Quinn et al. 1992). In other studies, riparian vegeta-
tion condition improved subsequent to fencing cattle 
out of previously damaged areas (Schulz and Leini-
nger 1990, Kauffman et al. 2004). 

Filter Strips

Filter strips are installed on cropland and pastures to 
minimize the amount of chemicals, nutrients, or sedi-
ments in runoff to surface waters such as streams. 
Studies have validated the effectiveness of filter strips 
in improving the quality of surface waters (Lenat 
1984, Dillaha et al. 1989, Lim et al. 1998, Krutz et al. 
2005). Care must be taken to design filter strips in 
concert with riparian areas to avoid development of 
concentrated flows (Schultz et al. 1995a). 

Fish Passage 

Dams, culverts, and other barriers present fish and 
other aquatic species with a wide range of challenges 
including blocking dispersal or migration, as well as 

changes in flow rates, water velocity, depth of spawn-
ing habitat, water temperature, predator-prey rela-
tionships, and food supplies. Fish passage facilities 
have been used in the United States since the 1930s; 
however, extensive research on fish passage did not 
begin until the 1950s (Ebel 1985). Literature on fish 
passage structures ranges from studies of design 
criteria (Eicher 1982, Moffitt et al. 1982, White 1982, 
Bunt et al. 1999) to usage and efficiency (Downing et 
al. 2001). Successful designs take into consideration 
optimal velocities to accommodate fish swimming 
abilities, light conditions, placements of entrances 
and exits, and use of air jet sounds and lights to guide 
fish through the structures (Ebel 1985). 

Additional passage research has examined the 
ability of riverine fishes to migrate through large 
impoundments (Trefethen and Sutherland 1968). 
Raleigh and Ebel (1968) found that mortality of 
juvenile salmonids significantly increased for fish 
passing through impounded rivers. While early fish 
passage research focused primarily on large riverine 
systems, Anderson and Bryant (1980) provide an 
annotated bibliography of fish passage associated 
with road crossings. In agricultural systems, instal-
lation of fish passage structures such as fish ladders 
or culverts, which simulate stream substrates and 
velocities, is important for reconnecting different 
types of habitats used by fish during their life history 
stages. Studies in the Pacific Northwest demonstrate 
the value of reconnecting migratory routes and their 
habitats for anadromous salmonids (Scully et al. 
1990, Beamer et al. 1998, Pess et al. 1998). Simply 
maintaining physical connectivity between intermit-
tent stream channels used as drainage ditches and 
main-stem rivers has been shown to increase the 
amount of winter habitat for native fish, benthic in-
vertebrates, and amphibian species in the grass seed 
farms of the Willamette Valley of Oregon (Colvin 
2006). Similarly, maintaining open drains on agri-
cultural lands in Ontario provides fish habitat for fish 
assemblages identical to nearby streams (Stammler 
et al. in press). 

Dam removal is a viable option, albeit not with-
out controversy, for restoring riverine habitats and 
reconnecting different habitat types. In the Pacific 
Northwest and New England, where anadromous 
salmon, steelhead, lamprey, shad, and herring utilize 
all or part of entire river systems to complete their 



Fish and Wildlife Response to Farm Bill Conservation Practices 89

life cycles, dam removal is often the focus of stream 
restoration projects. Inland fish communities also 
require well-connected habitats to pass between habi-
tats that change seasonally or provide elements for 
specific life-history stages. Dam removal is a relative-
ly new practice and thus the effects on downstream 
habitats have not yet been widely addressed. Poten-
tial problems with sediment transport, contaminated 
deposits, and interim water quality are of concern, as 
are the economic impacts. Sethi et al. (2004) found 
that while benefits of dam removal included fish 
passage and restoration of lotic habitats in a former 
millpond, the mussel community downstream of the 
project was impacted by sediments freed when the 
dam was breached. Kanehl et al. (1997) evaluated 
the removal of a low-head dam and determined that 
both stream habitat and desired fish assemblage were 
improved by the action. Stanley et al. (2002) detected 
no negative effect on aquatic macroinvertebrates as a 
result of dam removal.

Fish Pond Management

Ponds managed to raise fish for non-commercial uses 
provide aquatic habitat for aquatic insects, waterfowl, 
and possibly amphibians. The location of the pond dic-
tates the precautions managers should take to protect 
receiving waters in the catchment from a potential in-
troduction of an exotic species or fish disease, should 
the pond overflow or breach. Introductions of non- 
native fish species are a significant threat to the native 
aquatic biodiversity of watersheds (Fuller et al. 1999).

Forest Stand Improvement

This practice has applications in the management of 
riparian forest buffers. When the forestry objectives 
are to improve or maintain the number of trees avail-
able for recruitment to the stream channel for stream 
habitat, models and prescriptions are available to 
meet this objective (Berg 1995). For a review of specif-
ic riparian forest stand improvement considerations 
relevant to stream habitats, see Boyer et al. (2003).

Grade Stabilization Structure

This practice has been used for several decades to 
control the grade and head cutting in natural or artifi-

cial channels. Grade control structures may be de-
signed to stop or minimize head cutting both within 
river and stream channels as well as at the edge of 
fields where gully formation is a concern. Grade 
stabilization structures typically consist of a low 
dam, weir or berm constructed of earth, stone riprap, 
corrugated metal, concrete, or treated lumber (Abt 
et al. 1991, Jones 1992, Becker and Foster 1993, Rice 
and Kadavy 1998). Additionally, rock chute channels 
are occasionally used as grade control, embankment 
overtopping, and energy flow dissipation structures 
(Ferro 2000). Water either passes over the structure 
and into an armored basin typically with an energy 
dissipation structure or into a pipe in front of the 
dam where it is discharged downstream. Grade sta-
bilization structures modify in-channel flow regimes 
and thus the effects of these structures on stream 
species can be similar to those documented for low-
grade dams (see above section on dams). 

In degraded systems, pools associated with these 
structures have been compared with naturally occur-
ring scour holes. Cooper and Knight (1987a) found 
that grade control pools supported a higher percent-
age of lentic game species than did natural scours. 
This was attributed to the more stable, self-cleaning 
nature of grade control pools. In habitat-limited 
streams such as those affected by channel incision 
and bank failure where depths are limited, grade 
control structures can provide stable pool habitat 
(Cooper and Knight 1987b, Knight and Cooper 1991). 
Shields et al. (2002) established minimum size crite-
ria for habitat benefits.

Smiley et al. (1998b) documented fish use of 
habitat created both above and below field level 
grade control structures. These structures are de-
signed to control gully formation where fields drain 
into deeply incised stream channels. Low dams and 
L-shaped pipes are constructed and installed along 
the top of the stream bank to divert water from 
field runoff through the pipe to the stream channel 
rather than over the bank. Depending upon their 
design and local conditions, field level grade control 
structures may be constructed either with or without 
small impoundments. These temporary or shallow 
pools of field level grade control structures have 
been shown to provide important transient aquatic 
habitats, particularly in stream reaches that have 
lost stream channel flood plain interactions due to 
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channel incision (Cooper et al. 1996a, Smiley et al. 
1997, Smiley et al. 1998a). Knight and Cooper (1995) 
and Knight et al. (1997a) documented water quality 
improvements in larger field level control structure 
pools where water residence time was sufficient to 
allow sediment to deposit and nutrients and pesti-
cides to be processed.

Grassed Waterway

As is the case with filter strips, grassed waterways are 
used to minimize the amount of sediments, chemicals, 
and nutrients from cropland and pastureland. Recent 
studies validate their efficacy (Fiener and Auerswald 
2003), and indirect benefits to aquatic habitats and 
their species are likely. These include minimizing sed-
iment delivery from surface water run-off to stream 
habitats and protecting water quality. 

Pond

Farm ponds are usually constructed to provide water 
for livestock or for aquatic habitats. Livestock ponds 
in some areas of the country are referred to as dug-
outs and they are often constructed in the floodplain 
of stream channels or in the stream channels them-
selves. Recent studies evaluated the effects of these 
ponds or dugouts on native prairie fishes in South 
Dakota. Researchers determined that if dugouts were 
constructed out of the stream channel, but within 
the floodplain, they provided important off-channel 
refuge habitat for Topeka shiners (Notropis topeka) 
(Thomson et al. 2005). 

Other studies in the Midwest have indicated that 
with proper management, farm ponds help sustain 
amphibian populations in landscapes where natural 
wetland habitat is rare and where livestock access 
to the pond is limited and no fish are planted in the 
pond (Knutson et al. 2003). 

Prescribed Grazing

Grazing management regimes influence both upland 
and aquatic habitats. Recent studies demonstrate 
how grazing management can contribute to the 
ecological connections between riparian and aquatic 
habitats. Riparian vegetation structure influences 
the terrestrial insect community. By altering graz-

ing management regimes to favor vegetation where 
terrestrial insects thrive, fish benefit from seasonally 
important food sources derived from riparian zones. 
Grazing regimes that allow cattle to graze for only 
short durations increase terrestrial insect production. 
This has recently been shown to be strongly correlat-
ed to fish condition and survival on Wyoming ranch-
lands (Saunders 2006, Saunders and Fausch 2006). 

Riparian Forest Buffer

Riparian areas play an important role in all land-
scapes, serving as ecotones or transitional habitats. 
Ecotones support a greater diversity of plants and an-
imals because they bridge two different ecosystems. 
Hald (2002) assessed the impact of agricultural land 
use of the bordering neighbor fields on the botanical 
quality of the vegetation of stream border ecotones. 
While the importance of ecotones has been well docu-
mented in ecological research, little work has focused 
on the effects of field borders on riparian habitats 
and stream ecosystems, particularly in the United 
States. Riparian and floodplain forests are important 
components of stream corridor systems and their 
watersheds. Riparian forests are major sources of 
in-stream wood that is an important structural com-
ponent of habitat for fish and other aquatic species 
(Bilby and Likens 1980, Angermeier and Karr 1984, 
Benke et al. 1985, Bilby and Ward 1991, Flebbe and 
Dolloff 1995, Beechie and Sibley 1997, Cederholm et 
al. 1997reviewed in Boyer et al. 2003, Vesely and 
McComb 2002, Dolloff and Warren 2003, Zalewski 
et al. 2003, Shirley 2004). Effects of riparian forest 
buffers on water quality are well documented (Low-
rance et al. 2000). Riparian forests protect stream 
banks from erosion, thereby reducing sediment loads 
(Neary et al. 1993, Sheridan et al. 1999), and help 
process nutrients (Lowrance et al. 1995, Hubbard and 
Lowrance 1997, Hubbard et al. 1998, Snyder et al. 
1998, Meding et al. 2001) and pesticides (Hubbard 
and Lowrance 1994, Lowrance et al. 1997). Schultz 
et al. (1995b) and Schultz (1996) demonstrated how 
riparian buffer systems may be incorporated or 
integrated into cropping systems in such a way as to 
improve runoff water quality and improve fish and 
wildlife habitat concurrently. 

Because of the complexity of the interactions 
between riparian forests and streams and rivers, 
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it is difficult at best to identify direct relationships 
between riparian forests and aquatic species. It is 
well documented that riparian ecotones are among 
the most biologically diverse habitats known. As dis-
cussed in other sections of this manuscript, riparian 
forest buffers affect river and stream ecosystems by 
providing shade, cover, bank stability, and alloch-
thonous materials essential to system productivity 
(Wallace et al. 1997). Curry et al. (2002) showed that 
the thermal regimes in streambed substrates used 
by brook trout (Salvelinus fontinalis) were signifi-
cantly impacted by harvest of riparian forest buf-
fers. Oelbermann and Gordon (2000) documented 
the quantity and quality of autumnal litterfall into 
an agricultural stream that had undergone riparian 
forest restoration. Wider buffers provided litterfall 
with higher levels of essential nutrients. Kiffney et 
al. (2003) demonstrated the importance of riparian 
buffers in forest streams to periphyton and aquatic 
macroinvertebrate production. Kondolf and Curry 
(1984) and Robertson and Augspurger (1999) also 
demonstrated that geomorphic processes related to 
river planform promote spatially complex but pre-
dictable patterns of primary riparian forest succes-
sion. Studies in Minnesota further support the impor-
tance of riparian corridor conservation/restoration 
to aquatic species because it contributes to in-stream 
habitat and geomorphic features at multiple scales of 
catchments (Stauffer et al. 2000, Blann et al. 2002, 
Talmage et al. 2002). 

Riparian Herbaceous Cover

Effects of riparian herbaceous cover on terrestrial 
wildlife and birds are well documented and covered 
in depth elsewhere (Anderson, et al. 1979, Rubino 
et al. 2002, Blank et al. 2003, and Crawford et al. 
2004). Riparian herbaceous buffers tend to have 
indirect effects on aquatic organisms by affecting 
channel morphology and erosion control, and as a 
source of organic materials. Forestation of ripar-
ian areas has long been promoted to restore stream 
ecosystems degraded by agriculture in central North 
America. Although trees and shrubs in the riparian 
zone can provide many benefits to streams, grassy or 
herbaceous riparian vegetation can also provide ben-
efits and may be more appropriate in some situations. 
Lyons et al. (2000) reviewed some of the positive and 

negative implications of grassy versus wooded ripar-
ian zones and discussed potential management out-
comes. When compared with wooded areas, grassy 
riparian areas result in stream reaches with different 
patterns of bank stability, erosion, channel morphol-
ogy, cover for fish, terrestrial runoff, hydrology, water 
temperature, organic matter inputs, primary produc-
tion, aquatic macroinvertebrates, and fish. 

Shallow Water Management for Wildlife

Shallow water management for wildlife primar-
ily affects upland game and waterfowl (Maul et al. 
1997, Maul and Cooper 1998, 2000, Elphick and 
Oring 2003). Shallow water management such as 
that created by flash board risers may affect stream 
or river fauna indirectly by improving water quality 
(Verry 1985, Knight et al. 1997b) or providing refuge 
for riverine species during seasonally high flows (see 
Wetland Enhancement).

Streambank and Shoreline Protection

 Stream banks and shorelines are valuable habitat 
features to fish and invertebrates (Newman 1956, 
Wickham 1967, Butler and Hawthorne 1968, Blades 
and Vincent 1969, Chapman and Bjornn 1969, Lewis 
1969). For example, Hunt (1971) found a direct rela-
tionship between bank cover and the trout-carrying 
capacity of streams. Giger (1973) demonstrated that 
stream banks form shallow water refugia, allowing 
fish to rest in areas of lower water velocity. 

In some regions of the United States, streambank 
erosion is the number one source of sediments in 
rivers and streams (Grissinger et al. 1981). Stream-
banks and shorelines may be protected by a number 
of methods including bank shaping, board fences, 
bank revetments, stone toe, bank paving, spur dikes 
or groins, and bendway weirs (Galeone 1977, David-
son-Arnott and Keizer 1982, Pennington et al. 1985, 
and Johnson 2003). Some methods employing living 
materials include the planting of dormant willow 
posts, branch packing, brush mattresses, coconut 
fiber roll, joint plantings, live cribwalls, live stake, 
live fascines or gabions, and stiff grasses while other 
methods use dead or dormant plant material such as 
root wads and tree revetments (Sherman 1989, Evans 
et al. 1992, Siefken 1992, Geyer et al. 2000, Shields et 
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al. 1995a, Shields et al. 2000b). An appendix of bank 
protection methods may be found in FISRWG (1998). 
Modest changes in design can turn bank erosion 
control measures into habitat improvement. Modifi-
cation of existing structures with additional stone or 
wood structure may improve habitat or contribute to 
rehabilitation or restoration of habitat (Shields et al. 
1992, Shields et al. 1993, Shields et al. 1995a, Shields 
et al. 1997, Shields et al. 2000a). 

Effects of stream bank protection on fish and mac-
roinvertebrates have been documented for some spe-
cific practices such as lateral stone paving, spur dikes, 
bendway weirs, and chevron weirs (Knight and Coo-
per 1991, Knight et al. 1997a, Shields et al. 2000b). 
Knight and Cooper (1991) reported that stone spur 
dikes provided better habitat as indicated by large 
and more species-diverse catches when compared 
with unprotected banks and banks armored with 
stone toe and stone paving. Often, a combination of 
hard structures such as stream barbs with revegeta-
tion of the streambanks provides protection while 
enhancing riparian processes. Loss of cropland due to 
streambank erosion has encouraged new interest in 
riparian management that includes replanting of her-
baceous and woody riparian buffers, often coupled 
with in-stream rock or rock/wood barbs to deflect the 
flow away from raw banks. Preliminary investigations 
in western Oregon indicate this streambank stabiliza-
tion practice encourages in-stream processes impor-
tant to aquatic species, such as retention of detritus 
and large wood for fish cover and macroinvertebrate 
food sources (S. Gregory, Oregon State University, 
unpublished data). 

Stream Crossings 

Stream crossings can be designed to serve as grade 
control structures to prevent head cutting and reduce 
suspended bed sediments resulting from traffic. 
Logging operations are particularly damaging to 
stream channels without some consideration for 
specifically designed stream crossings. Most research 
on stream crossings addresses effects on water 
quality (Milauskas 1988, Grayson et al. 1993, Blinn 
et al. 1998, Aust et al. 2003). However, like dams or 
diversions, steam crossings may form barriers to fish 
movement. Gibson et al. (2005) found 53 percent of 
culverts posed problems to fish passage, due to poor 

design or poor installation. Additionally, Miller et 
al. (1997) found that stream bed fine sediment levels 
were higher, basal area lower, and herbaceous cover 
higher in the immediate vicinity of some crossings 
simply due to the presence of the road and fill banks 
associated with crossings using gravel culverts. Myers 
and Swanson (1996) studied two Nevada streams and 
found that road crossings increased sedimentation.

Stream Habitat Improvement and Management 

Modifying streams to improve habitat has been 
ongoing for decades (Alabaster 1985), albeit with 
numerous changes in philosophy. The U.S. Bureau 
of Fisheries (1935) reported the effects of adding 
rock-boulder deflectors to improve fish habitats as 
early as the mid 1930s. Effects of stream habitat 
improvements including effects on food-producing 
areas, velocity, substrate, depth, drift, spawning area, 
and cover are extensively reviewed by Wesche (1985). 
Methodologies may be found in Seehorn (1985, 
1992), Hunter (1991) and Cowx and Welcomme 
(1998). While most research on stream habitat modi-
fication has focused on salmonids (Roni et al. 2002), 
Shields et al. (1995b), Shields et al. (1995c) and 
Cooper et al. (1996b) documented the effects of vari-
ous in-stream modifications on fish and macroinver-
tebrates in unstable warmwater streams. In-stream 
structural improvements have met with some success 
in improving local fish habitats. In-stream structures 
placed in western Washington and Oregon streams 
revealed significantly higher densities of juvenile 
Coho salmon, (Oncorhynchus kisutch), steelhead, 
(Oncorhynchus mykiss) and cutthroat trout, (On-
corhynchus clarki) (Roni and Quinn 2001). While 
placement of in-stream log structures has shown to 
be successful in the Northwest (Abbe and Montgom-
ery 1996, Thom 1997, Roper et al. 1998), reported 
failures in the southeastern United States indicate the 
re-introduction of large wood to drastically altered 
systems is often unsuccessful when placed in stream 
reaches unable to retain them (Shields et al. 2006). 

River and stream food webs are dependent upon 
the interactions between aquatic, riparian, and ter-
restrial environments (Goulding 1980, Insaurralde 
1992). Organic materials such as leaf litter and large 
wood (Benke et al. 1985, Junk et al. 1989) are most 
often deposited in channels during floods; flood-
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ing stimulates both detrital processing and primary 
production within inundated terrestrial components 
of the ecosystem (Bayley 1989, 1991). These dynam-
ics in turn establish the energetic foundation sup-
porting secondary production and ultimately the fish 
production potentials associated with the ecosystem. 
The extent and duration of flooding strongly influ-
ence fish production (Welcomme 1976, 1979, 1985, 
1986, Goulding 1980) because fish utilize floodplains 
as spawning grounds, food sources, and refuges 
(Robinette and Knight 1981, Knight 1981, Risotto and 
Turner 1985). Thus habitat improvement designs that 
enable streams to re-connect with their floodplains 
are warranted. 

Stream habitat improvement is at its pinnacle when 
it crosses into stream restoration. Restoration is a com-
plex endeavor that in one sense turns ecological theory 
into an applied science (Culotta 1995, Wagner and 
Pluhar 1996, Dobson et al. 1997, Purkey and Wallender 
2001). Because it can be defined rather broadly, it may 
include other practices such as bank protection, stream 
habitat improvement, and riparian zone practices. The 
National Research Council (1992) defined restoration 
as the re-establishment of the structure and function of 
ecosystems. Thus ecological restoration is the process 
of returning an ecosystem as closely as possible to pre-
disturbance conditions and functions. Rehabilitation, 
which is related to restoration, is usually understood as 
returning some level of ecological function but not nec-
essarily to some pre-disturbance condition (FISRWG 
1998). River and stream restoration has been exten-
sively researched and several definitive works are avail-
able (Gore 1985, Anderson 1995, Brooks and Shields 
1996, FISRWG 1998). 

Several case studies of stream restoration cover all 
aspects of the subject including planning, implemen-
tation, and evaluation (Bassett 1988, Anderson et al. 
1993, Rinne 1994, Myers and Swanson 1996). While 
most research covers specific restoration practices 
or target organisms, Amoros (2001) and Ebersole et 
al. (1997) examined habitat and capacity diversity. 
Nunnally (1979) explored habitat restoration from a 
landscape perspective. 

Structure for Water Control

Water control structures such as irrigation diversions 
can entrain or entrap fish and other aquatic species. 

Keeping fish and water in streams is an objective of 
an increasing number of ranchers and farmers in the 
arid West and has triggered development of sophisti-
cated fish screens for irrigation diversions (Zydlewski 
and Johnson 2002, McMichael et al. 2004). 
 

Wetland Restoration and Enhancement

Floodplain wetlands play an important role in the life 
histories of many riverine fishes (Killgore and Baker 
1996). As such, the practice of floodplain wetland res-
toration has great potential for improving habitats for 
aquatic species and the survival of declining species. 
The connections between floodplain wetlands and 
stream systems and other permanent water bodies 
has been shown to be a dominant factor influenc-
ing fish assemblages inhabiting floodplain wetlands 
(Baber et al. 2002). Floodplain inundation during 
high water flows provides riverine species access to 
floodplain wetlands and other off-channel habitats 
for spawning, nursery areas, and other life-history 
functions (Junk et al. 1989). Individual species’ life-
history adaptations to hydrologic regimes such as 
duration and timing of flooding and the geographic 
position of floodplain wetlands in relation to the 
channel typically dictate the response of river fish 
fauna to flooding (Pearsons et al. 1992, Snodgrass et 
al. 1996, King et al. 2003).

Lateral movement between river channels and 
floodplain habitats is an important component of 
many species’ life history, particularly for juveniles, 
and these species are adapted to seek backwater 
and other habitats attached to stream channels 
as flood flows recede (Kwak 1988). Restored and 
created off-channel wetlands and ponds have been 
shown to provide habitat values for juvenile fishes 
similar to natural high-flow floodplain habitat 
(Richards et al. 1992).

Entrapment of individuals in off-channel habitats 
and irrigation ditches has been documented, and a 
variety of fish screens have been designed to mini-
mize negative effects of irrigation water withdrawals 
(McMichael et al. 2004). Installation and active man-
agement of water control structures in constructed or 
restored wetlands have been shown to be effective in 
preventing entrapment, allowing fish to migrate out 
of floodplain wetlands entered during seasonal high 
flows (Swales and Levings 1989, Henning 2005). 
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Knowledge Gaps

A number of studies, discussed in this chapter, 
have addressed the conservation effects on fish and 
aquatic fauna of fish passage around dams and road 
crossings (culverts), and stream habitat improve-
ment and management. In addition, there has been 
considerable research on the effects of riparian for-
est buffers and herbaceous cover on water quality. 
For all of these topics, however, the complexities of 
effects on fish and macroinvertebrates leave many 
questions unanswered and requiring additional 
research. Snagging and clearing is generally con-
sidered detrimental to aquatic fauna because of the 
important role large wood plays in providing habitat 
and carbon. However, removal of some material 
may prevent bank erosion and failure, thus reduc-
ing suspended sediment loads. Field borders are 
often too far removed to have a significant impact on 
aquatic fauna; however, additional research may be 
necessary to explore off-site impacts of these prac-
tices. Stream crossing, bank protection, and exclu-
sions improve water quality and intuitively should 
have a positive impact on aquatic fauna; however, 
documentation remains a significant gap. Effects of 
bank or shoreline protection have focused primarily 
on cool water species. Shallow habitats such as those 
created with flash board risers provide valuable 
habitat for waterfowl, however, like field boarders, 
they may be too far removed from the stream chan-
nel to significantly impact aquatic fauna other than 
through improvements in water quality. Cumulative 
effects of multiple practices, and the time scale at 
which effects of practices on aquatic communities 
can be demonstrated, have not been reported. The 
degrees to which aquatic habitat restorative actions 
are implemented and monitored for effectiveness at 
local scales are challenging to report and evaluate. 
This is apparent by the poor rate at which completed 
restoration projects have been evaluated (Bernhardt 
et al. 2005). This lack of evaluation is likely a result 
of limited dollars allocated for such efforts. Monitor-
ing designs are necessarily intricate and expensive 
to implement due to the ecologically complex nature 
of stream, river, floodplain, and upland processes. 
Determining key indicators relevant to the appro-
priate time scale in the continuum of restorative 
actions is critical. 

Conclusion

A considerable body of work exists on the effects of 
anthropogenic activities on river and stream ecosys-
tems and much of this research may be linked to spe-
cific management practices. Historically, it appears 
that management practices were designed to affect a 
specific target such as sediment, pesticide or nutrient 
reduction, and which secondary ecological impacts 
or improvements were intuitively assumed to occur. 
Few research projects have been specifically designed 
and conducted to definitively relate practices to 
ecological effects. This review highlights some of the 
ancillary research that relates to specific practices; 
however, it also demonstrates the need for research 
that specifically documents the ecological impacts of 
management practices. 
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