
MV++ v. 1.5a

Matrix / Vector Class

Reference Guide

March 8, 1997

Roldan Pozo

Applied and Computational Mathematics Division
National Institute of Standards and Technology



Contents

1 Overview 1

1.1 About MV++ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.2 Basic Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.3 MV++ Classes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.3.1 Templated class version : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
1.3.2 Non-templated class version : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.4 References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2 Reference Manual 5

MV Vector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5
MV VecIndex : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
MV ColMat : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

i



Chapter 1

Overview

1.1 About MV++

MV++ is a small, e�cient set of concrete vector and matrix classes speci�cally designed for high per-
formance numerical computing.

The MV++ package includes interfaces to the computational kernels found in the Basic Linear Algebra
Subprograms (BLAS), such as scalar updates, vector sums, and dot products. The idea behind MV++
is to leverage vendor-supplied or optimized BLAS routines that are �ne-tuned for particular platforms.

The various MV++ classes form the building blocks of larger user-level libraries such as SparseLib++[2]
and LAPACK++[1]. The MV++ library was built to supply simple, concrete, numerical vector and
column oriented dense matrix classes. These classes are designed to provide:

� minimal overhead in constructing, assigning, and copying vectors and matrices

� performance competitive with optimized Fortran kernels

� data structure compatibility with Fortran libraries and subroutines

� support for generic element types through templated parameters

� support for operations with contiguous subvectors and submatrices (e.g. zeroing out a section
of a vector)

� optional runtime support for array-bounds checking

1.2 Basic Features

MV++ provides two basic classes: a numerical vector (1-d array), and column (Fortran) oriented dense
matrix. Indexing is performed via the operator(), as in A(i,j).

1



MV++

Subvectors and submatrices can be accessed through MV VecIndex classes. In other words, if B is the
vector

f0:0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6g

then B(MV VecIndex(1,5)) = 9.9 sets B to

B = f0:0; 0:1; 9:9; 9:9; 9:9; 9:9; 9:9; 0:6g

and is equivalent to

for (i=1; i<=5; B[i++] = 9.9 )

Other considerations:

� Support is provided only for unit strides (for e�cient indexing).

� Indexing is as fast as native C arrays.

� \Copy-by-value" semantics are used.

� Optional \share" semantics are available, allowing vectors to be constructed as \views", or \refer-
ences" of an existing memory. To create a view of (or reference to) an existing MV++ matrix or
vector, use

MV_Vector_double A( &d[0], n, MV_Vector_::ref );

This allows one to construct vectors as views of any contiguous C array. It will not release the
memory space when the vector is destroyed or goes out of scope. Vector views can assign and
reference sections of vector, but cannot modify their size.

� Block-range indexing is supported via MV VecIndex class (e.g. A(I) = B; ). Note that for this to
work, A(I) must return a vector view.

� Optional range checking is available via a compile switch.

� Support is provided for both [] and () style indexing for vectors, and () for matrices.

� Function code for the () and [] operators has been inlined into the class declaration for compilers
that refuse to inline otherwise.

� Loop unrolling (depth=4) is used for copying and assigning vectors. Therefore, on some machines
it may be faster to execute A=scalar, rather than manually assigning a native C array using an
explicit for loop:

for (i=0; i<N; d[i++] = scalar);

Version 1.5a 2 March 8, 1997



MV++

1.3 MV++ Classes

MV++ supports both templated and non-templated vector and matrix classes. Non-templated versions
of the classes are useful when using C++ compilers that do not provide full support for template
instantiations (several compilers have problems using templates in applications linked with multiple .o
�les), or when large template header �les begin to seriously a�ect compilation.

1.3.1 Templated class version

Templated MV++ vectors are denoted as MV Vector<type> in ./include/mvvtp.h. Matrices are de-
noted as MV ColMat<type> in ./include/mvmtp.h.

Typical use is illustrated by an example:

#include "mvmtp.h"

class MyObject { /* ... */ };

MV_ColMat<MyObject> A(m, n);

MV_Vector<MyObject> B(n), C(n);

The class MyObject should have a null constructor, operator=, and MyObject objects should have
operations +, *, /, and - de�ned.

1.3.2 Non-templated class version

Non-templated classes in MV++ have names such as MV Vector double and MV MatCol int. By default,
the initial installation supports

� MV Vector double

� MV Vector float

� MV Vector int

� MV Vector complex

� MV ColMat double

� MV ColMat float

� MV ColMat int

� MV ColMat complex

Version 1.5a 3 March 8, 1997



MV++

In general, the class corresponding to the templated equivalent of XX<t> is denoted as XX t.

Type speci�c versions the MV++ classes are generated from the same \base" �le via an editor or simple
preprocessor, such as sed. For example, mvvt.h de�nes a class of

class MV_Vector_$TYPE

{

protected:

$TYPE *p_;

...

}

By creating a copy of this �le in which every occurrence of \$TYPE" is changed to the name of a
user-speci�c class, one can create MV++ vectors out of any numerical object which forms an algebraic
�eld. The simple command,

sed '1,$s/\$TYPE/MyObject/g' mvv.h > mvv_MyObject.h

will create an MV++ vector of MyObjects. Similarly, one can create the accompanying mvv MyObject.cc

�le from the mvv.cc base in the /src directory. 1

1.4 References

[1] J. J. Dongarra, R. Pozo, D. Walker, \LAPACK++: A Design Overview of Object-Oriented Exten-
sions for High Performance Linear Algebra," Proceedings of Supercomputing '93, IEEE Press, 1993,
pp. 162-171.

[2] J. J. Dongarra, A. Lumsdaine, R. Pozo, K. A. Remington, \A Sparse Matrix Library in C++ for
High Performance Architectures," Proceedings of the Object Oriented Numerics Conference, 1994,
pp. 214-218.

1
Use a preprocessor that can also change substring expressions, since the $TYPE expression occurs as part of the class

name.

Version 1.5a 4 March 8, 1997



Chapter 2

Reference Manual

5



MV Vector MV++ Matrix/MV Vector Library MV Vector

Name MV Vector

Description One-dimensional vector storage class with minimal overhead. It is one step above
a C array; it utilizes copy-by-value semantics, provides for unit-stride referencing
and indexing using (start, end) pairs.

� deep-copy (optimized)

� only a container class, no mathematical operations de�ned yet.

� unit stride (elements are in contiguous memory locations)

� �xed 0-based o�set

� A(i) declared inline for e�ciency

Major di�erences between original LAPACK++ vector class and MV++

� templated

� copy-by-value, rather than share-semantics

� much faster A(i) indexing, since indices always have unit stride.

� only one owner of data, but maybe various references, so no reference-counting
scheme is used.

Declaration #include < mvvtp.h >

MV Vector<TYPE>()

Construct a null vector of zero length.

MV Vector<TYPE>(int n = 0)

Construct a vector of length n, (n � 0). A vector of length zero is perfectly legal
and usually termed a null vector. MV Vector elements are UNINITIALIZED.

MV Vector<TYPE>(int n, const TYPE &s)

Construct a vector of length n and initialize all elements to the scalar value s.

MV Vector<TYPE>(TYPE * x, int n)

Construct a n-length vector as a new copy of an existing C/C++ array.

Version 1.5a 6 March 8, 1997



MV Vector MV++ Matrix/MV Vector Library MV Vector

MV Vector<TYPE>(TYPE * d, int n, MV Vector ::ref)

Construct a n-length vector as a view (share semantics) of an existing C/C++
array. Further changes to elments of d will be re
ected in MV Vector<TYPE>.
Data space d will not be destroyed when calling MV Vector<TYPE>.

MV Vector<TYPE>(const MV Vector<TYPE>& V)

Create a new n-length vector as a copy of an existing MV Vector<TYPE>.

�MV Vector<TYPE>()

Reclaim vector memory space if this the only structure using it.

Assignments

MV Vector<TYPE>& operator=(const MV Vector<TYPE>& V)

If *this is a reference then inject() left-hand side (V) into existing memory (both
sides must conform). Otherwise, *this owns its data space, so delete it and create
a new copy of V. (If conformant with V, then just copy in place.) Return reference
to *this view.

MV Vector<TYPE>& operator=(const TYPE& s)

Set elements of left-hand size to the scalar value s.

MV Vector<TYPE>& inject(const MV Vector<TYPE>& V)

Copy elements of V into the memory space referenced by the left-hand side, without
�rst releasing it. The e�ect is that if other vectors share memory with left-hand
side, they too will be a�ected. Note that the length of V must be same be the same
as that of the left-hand side vector.

MV Vector<TYPE>& copy(MV Vector<TYPE>& V)

Release left-hand side and copy elements of V. Unlike MV Vector<TYPE>::inject()

it does not require conformity, and previous references of left-hand side are unaf-
fected.

Version 1.5a 7 March 8, 1997



MV Vector MV++ Matrix/MV Vector Library MV Vector

int newsize(int n)

Resize to a new vector of length n. The element values are UNINITIALIZED, even
if n is less than the current vector length.

Access Functions

TYPE& operator ()(int i)

Return ith element of vector, with zero-based o�set. Optional runtime bounds
checking (0 � i � n) set by compile time macro MV VECTOR BOUNDS CHECK.

TYPE& operator [ ](int i)

Identical to MV Vector<TYPE>::operator() above. Included mainly for compat-
ibility to C/C++ [] syntax.

TYPE& operator ( )(const MV VecIndex &I)

Returns a reference (view) of this vector speci�ed by the ranges in MV VecIndex.

For example, the following statements

MV_Vector<int> A(20), B(30);

MV_VecIndex I(0,3), J(7,10);

A(I) = B(J);

assign the �rst four elements of A to the values of B(7) through B(10).

Information

Functions
int size()

Return the length, n, of the vector.

int null()

Shorthand to test if zero-length vector. Identical to (size()==0).

Version 1.5a 8 March 8, 1997



MV Vector MV++ Matrix/MV Vector Library MV Vector

int ref()

return 1 if vector is a view (reference) to another vector or C array, zero otherwise.

Macros

MV VECTOR BOUNDS CHECK

Optional compile time macro, to perform bounds checking (0 � i � n) in a n-length
vector. The default is NOT to perform this check (this is consistent with C/C++);
however, it is highly recommended, particularly during initial phases of develop-
ment, testing, and debugging. There is a performance penalty for this, (essentially
a boolean test at each element reference) so it can turned o� for production runs,
where performance may be critical.

This can speci�ed at the compile line, e.g. c++ -DMV VECTOR BOUNDS CHECK ... .

I/O Functions

ostream& operator �(ostream& s, const MV Vector<TYPE>& V)

Print vector, one element per line.

See also MV ColMat

Version 1.5a 9 March 8, 1997



MV VecIndex MV++ Matrix/Vector Library MV VecIndex

Name MV VecIndex : a contiguous subrange of MV Vector elements.

Description MV VecIndex is an integer pair denoting the start and ending indices of a vector
view. Only supports unit strides, so there is no increment argument. As an exam-
ple, if B is the vector

f0:0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6g

then B(MV VecIndex(1,5)) = 9.9 sets B to

B = f0:0; 0:1; 9:9; 9:9; 9:9; 9:9; 9:9; 0:6g

and is equivalent to

for (i=1; i<=5; B[i++] = 9.9 )

Declaration #include <mvvind.h>

MV VecIndex()

Construct a null index (start=end=-1). Used to denote the complete vector range.
For example,

B(MV_VecIndex()) = A;

will set all elements of B to those of A. This is equivalent to writing

B(MV_VecIndex(0,B.size()-1) = A;

or

B() = A;

or

for (i=0; i<N; i++)

B(i) = A(i);

Note that this is NOT the same as B=A! The latter resizes B accordinly to match
the size of A. The expression \B() = A" requires both vectors to be of the same
size.

MV VecIndex(unsigned int i, unsigned int j)

Construct an index range starting from position i through j. Conditions: 0 � i � j.

Version 1.5a 10 March 8, 1997



MV VecIndex MV++ Matrix/Vector Library MV VecIndex

MV VecIndex(unsigned int i)

Construct an index range consisting of a single position, i. Used mainly for con-
verting integers into MV VecIndex's.

int start()

Returns the �rst index of the index range, or -1 if MV VecIndex has been previ-
ously declared to automatically denote all of elements of a vector. (See method
MV VecIndex::all().)

int end()

Returns the end of index range, or -1 if MV VecIndex has been previously declared to
automaticallydenote all of elements of a vector. (See method MV VecIndex::all().)

int length()

Returns the number of elements in index range, or 0 if MV VecIndex has been
previously declared to automatically denote all of elements of a vector. (See method
MV VecIndex::all().)

int all()

Returns 1 if MV VecIndex has been declared to automatically denote all of elements
of a vector, (null constructor), 0 otherwise. For example,

MV_VecIndex I;

MV_VecIndex J(0,8);

if (I.all()) ... true ...

if (J.all()) ... false ...

MV VecIndex& operator+=(int i)

moves index range up by i elements. For example,

Version 1.5a 11 March 8, 1997



MV VecIndex MV++ Matrix/Vector Library MV VecIndex

MV_VecIndex I(1:10);

I+= 3;

reset I to be (4 : 13).

MV VecIndex operator+(int i)

creates new index whose range is moved up by i elements. For example,

MV_VecIndex I(1:10);

MV_VecIndex K = I+3;

sets K to be (4 : 13).

MV VecIndex operator-(int i)

creates new index whose range is moved down by i elements,

MV VecIndex& operator-=(int i)

moves index range down by i elements.

Version 1.5a 12 March 8, 1997



MV ColMat MV++ Matrix/Vector Library MV ColMat

Name MV ColMat : column oriented (Fortran) templated dense matrix.

Description A two-dimensional version of MV_Vector<TYPE>. Storage is column oriented, com-
patible as an argument to Fortran libraries.

� uses (deep) copy semantics

� indexing via A(i,j) where i; j are either integers or MV VecIndex indices.

� supports only contiguous submatrices

� utilizes Vector<TYPE> container class

� has basic BLAS++ math functionality

� optimized to avoidmemory copies when returning temporary MV ColMat<TYPE>

results by value from functions

Declaration #include <mvmtp.h>

MV ColMat<TYPE>()

Construct a null 0� 0 matrix.

MV ColMat<TYPE>(int m, int n)

Construct a column-major matrix of size m � n, (m;n � 0). Matrix elements are
UNINITIALIZED.

MV ColMat<TYPE>(int m, int n, const TYPE& s)

Construct a column-major matrix of size m � n, (m;n � 0), and initialize matrix
elments to the scalar s.

MV ColMat<TYPE>(TYPE * v, int m, int n)

Construct a m � n matrix by copying the values from a one-dimensional C/C++
array of length mn.

MV ColMat<TYPE>(TYPE * v, int m, int n, MV ColMat ::ref)

Construct a m � n column-oriented matrix as a view of existing C array (length
m� n).

Version 1.5a 13 March 8, 1997



MV ColMat MV++ Matrix/Vector Library MV ColMat

MV ColMat<TYPE>(const MV ColMat<TYPE>& V)

Create a new n-length vector from an existing one by copying.

int newsize(int m, int n)

Resize to a new matrix of size m � n. The element values are UNINITIALIZED,
even if resizing to a smaller matrix.

�MV ColMat<TYPE>()

Destroy matrix and reclaim vector memory space if this the only structure using
it.

Assignments

MV ColMat<TYPE>& operator=(const MV ColMat<TYPE>& M)

Release left-hand side (reclaiming memory space if possible) and construct a new
copy of V. Return reference to new copy.

MV ColMat<TYPE>& operator=(const TYPE& s)

Set elements of left-hand size to the scalar value s. No new matrix is created, so
other matrices that reference this memory space will also be a�ected.

Access Functions

TYPE& operator ( )(int i, int j)

Return (i; j)th element of vector, with zero-based o�set. Optional runtime bounds
checking (0 � i � m), (0 � j � n), set by compile timemacro MV MATRIX BOUNDS CHECK.

Version 1.5a 14 March 8, 1997



MV ColMat MV++ Matrix/Vector Library MV ColMat

TYPE& operator ( )(MV VecIndex I, MV VecIndex J)

Return submatrix view speci�ed by indices I and J. (See MV VecIndex class.) These
indices specify start and ending o�sets, similar to index notation of Matlab or
Fortran 90 (except strides are always one). For example, if I is the range f0; 1g,
and J is the range f3; 4g, then B(I; J) denotes the 2� 2 matrix

�
B0;3 B0;4

B1;4 B1;4

�

.

Information Functions

int size(int d)

Return the length, n, of the dth dimension, i.e. for an M � N matrix size(0)

returns M and size(1) returns N .

int lda()

Return the leading dimension of this matrix (>= M ).

int ref()

Returns 1 if this matrix is a view to another C/C++ array.

Macros

MV MATRIX BOUNDS CHECK

Compile time macro, either de�ned or unde�ned to perform bounds checking on
matrix indexing operations. The default is NOT to perform this check (this is
consistent with C/C++); however, it is highly recommended to utilize this check
{ particularly during initial phases of development, testing, and debugging. There is
a performance penalty for this, (essentially a boolean test at each element reference)
so it can turned o� for production runs, where performance may be critical.

Version 1.5a 15 March 8, 1997



MV ColMat MV++ Matrix/Vector Library MV ColMat

I/O Functions

friend ostream& operator �(ostream& s, const MV ColMat<TYPE>& V)

Print matrix (one row perline), with elements separated by white space.

See also MV Vector<TYPE>, MV VecIndex

Version 1.5a 16 March 8, 1997


