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CHALLENGES IN MACRO-FINANCE MODELING

DON H. KIM∗

Abstract. This paper discusses various challenges in the specification and implemen-
tation of “macro-finance” models in which macroeconomic variables and term structure
variables are modeled together in a no-arbitrage framework. I classify macro-finance
models into pure latent-factor models (“internal basis models”) and models which have
observed macroeconomic variables as state variables (“external basis models”), and
examine the underlying assumptions behind these models. Particular attention is paid
to the issue of unspanned short-run fluctuations in macro variables and their poten-
tially adverse effect on the specification of external basis models. I also discuss the
challenge of addressing features like structural breaks and time-varying inflation uncer-
tainty. Empirical difficulties in the estimation and evaluation of macro-finance models
are also discussed in detail.

1. introduction

In recent years there has been much interest in developing “macro-finance models”,
in which yields on nominal bonds are jointly modeled with one or more macroeconomic
variables within a no-arbitrage framework. The need to go beyond “nominal yields
only” no-arbitrage models (i.e., to include a description of the macroeconomy or other
asset prices) has been felt for a long time by academic researchers and policy makers
alike. Campbell, Lo, MacKinlay (1996), for example, have emphasized that, “as the term
structure literature moves forward, it will be important to integrate it with the rest of the
asset pricing literature.” Policy makers have often used traditional theories such as the
expectations hypothesis and the Fisher hypothesis to extract an approximate measure of
market expectations of interest rates and macroeconomic variables like inflation, but they
are also aware that risk premiums and other factors might complicate the interpretation
of the information in the yield curve,1 and would welcome any progress in term structure
modeling that would facilitate greater understanding of the messages in the yield curve.
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Despite a lot of exciting work in macro-finance modeling of late,2 as a central bank
economist who monitors markets regularly, I have found it difficult to bring current
generation of models to bear on the practical analysis of bond market developments
or to implement the models in real time to obtain a reliable measure of the market’s
expectation of key variables like inflation.3 In the academic literature there is not much
evidence in this regard (either for or against macro-finance models). One exception is the
recent paper of Ang, Bekaert, and Wei (2007a, henceforth ABW), which performed an
extensive investigation of the out-of-sample inflation forecasting performance of various
models and survey forecasts and found that the no-arbitrage models that they have used
perform worse than not only survey forecasts but also other types of models.4

It thus seems useful at this juncture to review and discuss various challenges in the
specification and implementation macro-finance models that might help shed light on the
lack of documented practicality of macro-finance models in general and on the findings
of ABW (2007a) in particular. To this end, in this paper I propose to take a closer
look at what role the no-arbitrage principle is playing in macro-finance models and
reconsider the assumptions that are often made in this literature. No-arbitrage itself
is clearly a reasonable assumption, but the models also make additional assumptions
whose validity may not have been discussed thoroughly in the existing literature. I also
discuss “more advanced” issues (such as structural breaks and time-varying volatility)
that require going beyond the standard affine-Gaussian framework of most macro-finance
models and the challenges encountered in this regard. A big part of the challenge in
macro-finance modeling is empirical, hence I shall also discuss at length the difficulties
in the implementation stage (estimation and evaluation of models). Although the main
focus of this paper is on the extraction of information from the yield curve (particularly
inflation expectations), much of the discussion may be relevant for macro-finance models
that were developed to address other issues, as they share some of the key assumptions
discussed in this paper.

The state variables in the reduced-form no-arbitrage model framework (on which
most macro-finance models are based) can be heuristically viewed as forming a basis onto
which to project information in yields and other data. In this paper, I make a distinction
between models that use (what I shall call) an “internal basis” versus models that use
an “external basis”. By an internal basis, I refer to a basis that is determined inside the

2Examples include Ang and Piazzesi (2003), Hoerdahl, Tristani, and Vestin (2006), Rudebusch and
Wu (2003), and Ang, Bekaert, and Wei (2007a,b).

3I emphasize that I speak as one of many central bank economists and that my views in this paper
do not necessarily represent the general consensus among economists at central banks.

4For example, the root-mean-square errors (RMSEs) for one-year CPI-inflation forecasts based on
the two no-arbitrage models in ABW (2007a) (what they refer to as MDL1, MDL2) are larger than
those of AR(1) and ARMA(1,1) models by more than 30 % for the post-1995 window. Furthermore,
out of ABW (2007a)’s 11 regression models that involve term structure variables (what they refer to
as TS1-TS11), all but one produce smaller RMSEs in forecasting the one-year CPI (PUNEW) inflation
than the no-arbitrage models in the post-1995 sample.
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estimation, hence unknown before the estimation. Latent factor models that describe
inflation expectations and term structure jointly, such as Sangvinatsos and Wachter
(2005) and D’Amico, Kim, and Wei (2007), are examples of internal basis models. By
an external basis, I mean a basis that is a priori fixed completely or partially, as when
a specific macroeconomic variable (such as inflation) is taken as a state variable. Note
that no-arbitrage guarantees the existence of some pricing kernel, but it does not mean
that the pricing kernel can be represented well by a priori selected variables. In this
paper, I shall argue that external basis models involve strong assumptions, and discuss
potential problems that they may give rise to in practice. All is not well with internal
basis models either: the weaker assumptions of these models may come at the cost of
the ability to give specific, intuitive interpretation of the yield curve movements. Most
importantly, internal basis models face many empirical difficulties that are similar to
those in the estimation of external basis models, in particular the overfitting and small-
sample problems.

The remainder of this paper is organized as follows. Section 2 reviews the standard
affine-Gaussian setup of macro-finance models, derives the affine bond pricing formula
in a way that emphasizes the replicating portfolio intuition, and introduces a distinction
between internal basis models and external basis models. Section 3 provides a critical
examination of the assumptions in external basis models, both in the case of the “low-
dimensional” and “high-dimensional” external basis models. Section 4 discusses the
challenge of accommodating nonlinear/non-Gaussian effects such as structural breaks
and time-varying uncertainties. Potential problems with empirical techniques commonly
used in the estimation and evaluation of macro-finance models are discussed in Section
5. Section 6 comes back to ask why surveys perform better than models in inflation
forecasting (as documented by ABW (2007a)), and Section 7 concludes.

2. Basic Model

2.1. Affine-Gaussian framework. Most macro-finance models in the literature are
based on the “affine-Gaussian” model, given by

mt+1 ≡ logMt = −r(xt) − λ(xt)
′ǫt+1 −

1

2
λ′tλt(1)

xt+1 = Φxt + (I − Φ)µ+ Σǫt+1,

rt = ρo + ρ′xt

λt = λa + Λbxt

where Mt is the pricing kernel, xt is an n-dimensional vector of state variables, rt is the
nominal short rate (i.e., one-period yield), and λt is the market price of risk of the n-
dimensional shocks ǫt+1. (Φ, Σ, and Λb are n×n constant matrices, ρ and λa are constant
n-dimensional vectors, and ρo is a constant.) A well-known result in finance theory says
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that no-arbitrage implies the existence of a pricing kernel (stochastic discount factor) of
the form (1).5

There is freedom in choosing the specific functional form of rt and λt and the dynamics
of xt. Having affine forms for rt and λt and the Gaussian specification (VAR(1) speci-
fication) of xt constitutes the affine-Gaussian model. This form has certain limitations
(discussed in Section 4), but it is still quite general and capable of encompassing many
of the known models in finance and macroeconomics.

Using the recursion relation for the price of a τ -period zero-coupon bond at time t

(2) Pτ,t = Et(Pτ−1,t+1Mt+1),

it is straightforward to show that bond prices in this model are given by

(3) Pτ,t = exp(Aτ +B′
τxt)

where Aτ and Bτ are the solution of the difference equations

0 = ρo + Aτ − Aτ−1 −
1

2
B′

τ−1ΣΣ′Bτ−1 −B′
τ−1((I − Φ)µ− Σλa)

0n×1 = ρ+Bτ − (Φ − ΣΛb)
′Bτ−1(4)

with boundary condition Aτ=0 = 0, Bτ=0 = 0n×1; see, for example, Ang and Piazzesi
(2003). Hence the framework (1) leads to a tractable affine formula for bond yields yt,τ

(= − log(Pτ,t)/τ).
The original “finance term structure models” such as Dai and Singleton (2000) and

Duffee (2002) were written for nominal bond yields only. For example, the model (1)
could be estimated with just nominal yields data, with suitable (normalization) restric-
tions on the parameters Φ,µ,ρ,... to insure that the model be econometrically identified.
The state variables in this case are “latent factors” without an explicit economic mean-
ing.

In a seminal paper, Ang and Piazzesi (2003, henceforth AP) proposed to combine this
setup with a description of macroeconomy. Their basic insight is that the well-known
Taylor-rule specification of the short rate also has an affine form:

(5) rt = ρππ
Y
t + ρg gapt + const,

where πY
t is the annual inflation and gapt is the GDP gap (log GDP minus log potential

GDP).6 Therefore, taking variables like inflation and GDP gap to be part of the state
vector in eq. (1), i.e.,

(6) xt = [πY
t , gapt, ....]

′,

one can have a system in which bond yields are linked to key macro variables. Some
macroeconomic variables might not be well described by a simple VAR(1) dynamics,
but this is in principle not a problem, as a higher-order VAR process (VAR(q) model)

5Duffie (2001) discusses this in the continuous-time formalism; see also Cochrane (2001).
6To be precise, AP (2003) use the GDP growth, instead of GDP gap in their formulation.
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can be written as a VAR(1) process with an expanded state vector that includes lags of
these variables (e.g., [πY

t , π
Y
t−1, ..., gapt, gapt−1, ...]

′).
Various macro-finance models differ by the choice of the restrictions imposed on the

matrices like Φ,ρ,..., etc. For example, AP (2003) adopt an atheoretical (statistical)
approach, reminiscent of Sims (1980)’s original VAR proposal, while Hoerdahl, Tristani
and Vestin (2006), henceforth HTV) imposed more structure based on a New-Keyesian
model as in Clarida, Gali, Gertler (2000) though still remaining in the reduced-form
framework.

These are an innovation from the earlier approach of handling long-term bond yields in
macroeconomic models. In fact, most macroeconomic models have not dealt with long-
term bond yields at all, despite their importance for savings and investment decisions
in the economy. Pre-macro-finance models like Federal Reserve’s FRB/US model do
contain the 5-year and 10-year nominal yields, which are specified as the expectations-
hypothesis-implied yield plus a term premium (the 5-year term premium and the 10-year
term premium are modeled separately),7 but the framework (1) allows not just a few
selected long-term yields but the entire yield curve information to be integrated with a
description of the macroeconomy.

2.2. No-arbitrage and replicating portfolios. While the derivation of the affine
bond pricing equation (3) using the recursion relation involving the pricing kernel is
simple and elegant, it is useful to re-derive it using the hedging (spanning) argument,8

in order to get a better sense of the role that the no-arbitrage principle is playing in
macro-finance models.

Suppose there are n-dimensional shocks underlying the term structure movements,
denoted by a standard normal random vector ǫt. The change in the value of a bond with
maturity τ can be expressed generally as

(7)
δPτ,t+1

Pτ,t

= µτ,t + γ′τ,tǫt+1,

where I have used the notation δPτ,t+1 for Pτ−1,t+1 − Pτ,t (the change in the value of a
bond which was of time-to-maturity τ at time t) to avoid confusion with simple time-
differencing ∆Pτ,t+1 = Pτ,t+1−Pτ,t, µτ,t is the one-period expected return on a bond that
has time-to-maturity τ at time t (i.e., µτ,t = Et(δPτ,t+1/Pτ,t)), and the n-dimensional
vector γτ,t is the loading on the shocks that determine the unexpected return.

7See, for example, Brayton et al (1997).
8The derivation here can be viewed as a discrete-time analogue of Cox, Ross, Ingersoll (1981)’s

continuous-time derivation.
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Consider a portfolio formed by taking positions in n + 1 bonds with maturities
τ1, τ2, ..., τn+1, with portfolio weights w1t, .., wn+1,t. Denoting the value of this portfo-
lio V , the return on the portfolio is given by

(8)
δV

V
= w1

δPτ1

Pτ1

+ ...+ wn+1

δPτn+1

Pτn+1

=
n+1
∑

i=1

wiµτi
+ (

n+1
∑

i=1

wiγτi
)′ǫ,

where the time index t has been suppressed for notational simplicity. If the portfolio is
locally risk-free (

∑n+1
i=1 wiγτi

= 0), then by no-arbitrage it should yield a risk free rate
(one-period yield), thus

(9)
n+1
∑

i=1

witµτi,t = rt.

Together with
∑

iwit = 1, this implies, in matrix form,

(10)

[

µτ1,t − rt · · · µτn+1,t − rt

γτ1,t · · · γτn+1,t

]

wt = 0(n+1)×1,

where wt = [w1t, ..., wn+1,t]
′. In order for this matrix equation to have a nontrivial (i.e.,

nonzero) solution wt for an arbitrary choice of τi’s, the expected excess return µτ,t − rt

has to be a linear combination of γτ,t, i.e.,

(11) µτ,t − rt = γ′τ,tλt,

where the n-dimensional vector λt (“market price of risk”) expresses the linear-dependence
between µτ,t − rt and γτ,t.

It is often more convenient to deal with log prices and log returns on bonds, δ logPτ,t+1

(= logPτ−1,t+1 − logPτ,t). From the discrete-time version of the Ito’s lemma,9 one has

(12) δ logPτ,t+1 = µ̃τ,t + γ′τ,tǫt+1,

where

(13) µ̃τ,t = Et

(

δP

P

)

− vart

(

δP

P

)

= µτ,t −
1

2
γ′τ,tγτ,t.

Thus, eq. (11) can be also written

(14) µ̃τ,t − rt +
1

2
γ′τ,tγτ,t = γ′τ,tλt.

Note that the derivation thus far has been quite general. If the short rate and market
price of risk are affine in the state variables and if the state variables follow a VAR(1)
process (i.e, eq (1)), one obtains a particularly simple result. Positing that the bond
prices take the form logPτ,t = Aτ +B′

τxt, one has (from eq. (12))

µ̃τ,t = Aτ−1 − Aτ +B′
τ−1(I − Φ)µ+ (B′

τ−1Φ − B′
τ )xt(15)

γ′τ,t = B′
τ−1Σ.(16)

9See, for example, Campbell, Chan and Viceira (2003).
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Substituting these (and the expressions for rt and λt) into eq. (14) gives the same
difference equation for bond prices as in eq. (4), hence the same bond prices, as promised
earlier.

2.3. Internal basis models versus external basis models. The key formula in the
above derivation of the bond pricing equation is eq. (11), or equivalently eq. (14). It
states that the expected return on a bond of arbitrary maturity in excess of the short
rate depends on the product of the bond-independent market price of risk, λt, and the
bond’s sensitivity to risk, γτ,t. The basic intuition underlying eq. (11) is that the yield
curve is “smooth”, so the risks to a bond can be hedged well by a portfolio of (a relatively
small number of) other bonds. This is well known from the factor analysis of Litterman
and Scheinkman (1991) and other studies. One can also see this from the regression of
the quarterly change in the 5-year yield on the changes in 6-month, 2-year, and 10-year
yields, which gives very high R2s (e.g., 99%).

Note that eq. (11) itself is silent about the structure of the λt vector, except for the
condition that it does not depend on bond specific information (like maturity). In fact,
the early generation of affine-Gaussian models assumed a constant market price of risk
vector λ, which in effect implied a version of the expectations hypothesis. Later studies
recognized that λt can depend on the state of economy, thus a variable influencing the
market price of risk would also influence bond prices.10 However, this creates, in a sense,
too large a set of possibilities – any variable, e.g., coffee production in Brazil, could in
principle enter the expression for market price of risk and, in turn, the expression for
bond yields.

Latent-factor models of the term structure, such as the affine-Gaussian model of Duf-
fee (2002) (EA0(n) model in Duffee’s terminology), partly get around this problem by
implicitly defining the model in statistical terms. A “maximally flexible” n-dimensional
affine-Gaussian model (1) can be viewed as an answer to the question, “what is the most
general n-dimensional representation of the yield dynamics in which yields are Gaussian,
linear in some basis, and consistent with no-arbitrage?”11 As the yield curve seems to
be well described by a small number of risk sources, it stands to reason that there exists
a suitable representation for a relatively small n. Thus, the no-arbitrage principle in
this setting can help describe the rich variation of the yield curve in a tractable and
relatively parsimonious way, while allowing for a general pricing of risk (as opposed to
the expectations hypothesis).

Duffee (2002)’s affine-Gaussian model describes only the nominal yield curve, but it
is straightforward to write down a “joint model” of nominal yields and inflation in the

10Thus, a shock that changes λt, say ξt, should be also included in the vector of shocks ǫt that moves
bond prices.

11Appendix A of the present paper gives two examples (eqs. (55) and (65)) of such maximally flexible
affine-Gaussian models for n = 3; see also Dai and Singleton (2000) for a discussion of maximally flexible
affine models.
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same spirit by combining eq. (1) with the following specification of the inflation process,

πt+1 = χ(xt) + σ̃′ǫ̃t+1,(17)

χ(xt) = ψo + ψ′xt

where the one-period inflation πt+1 (= log(Qt+1/Qt), Qt being the price level) consists
of the one-period expected inflation χ(xt) and unforecastable inflation σ̃′ǫ̃t+1. As in the
case of the nominal short rate rt, the one-period inflation expectation is specified as an
affine function of the state vector xt. The disturbance vector ǫ̃t includes the vector of
shocks that move interest rates (ǫt in eq. (1)) and a shock (say ǫ⊥t ) that is orthogonal
to the interest rate shocks.12 As in the nominal-yields-only model, the state vector xt

is a vector of statistical variables (latent variables), which is determined only up to
normalization restrictions (on parameter matrices Φ, ρo, ρ, ψo, ψ,...) that insure the
(maximal) identification of the model. I shall refer to such a model as an “internal basis
model,” as the state vector xt is unknown before the estimation and is determined inside
the estimation with yields, inflation, and possibly other data.13

Such a joint model makes only fairly weak assumptions: writing the one-period infla-
tion as the sum of expected inflation and unexpected inflation in eq. (17) is quite general,
and it makes intuitive sense to have the state vector xt describe inflation expectations
and bond yields together, as a variable that moves inflation expectation would be also
expected to move nominal interest rates. At the same time, this formulation relaxes the
assumptions implicit in the two traditional theories of nominal yields: it goes beyond the
expectations hypothesis, as it now allows for time-varying term premia, and the Fisher
hypothesis, as it now implicitly allows for a general correlation between real rates and
inflation.

Note that the state vector xt in the joint model has more economic meaning than
the nominal-yields-only model in the sense that it is now (implicitly) related to objects
like inflation expectations and inflation risk premia. However, the fact that xit’s are
still latent factors is potentially an unattractive feature, and makes it difficult to dis-
cuss bond market developments in a simple manner. One would not win an “effective
communication award” by telling market participants that “bond yields moved x basis
points because latent factors did this and that.”

Thus, many papers in the macro-finance literature take all or part of the state vector
to be specific macroeconomic variables (or variables with clear macroeconomic interpre-
tation) so as to make the connection between the yield curve and macroeconomy more
explicit. These variables form an external basis, in the sense that they are a priori fixed,
partially (“mixed” models) or completely (observables-only models). Simply speaking,

12This shock (ǫ⊥t ) is introduced to allow for shocks to inflation that are not spanned by interest rate
shocks. (One can also define the ǫt vector in eq. (1) to include this shock.)

13Perhaps the best known example of internal basis models is factor analysis (e.g., Litterman and
Scheinkman (1991)). As in the no-arbitrage internal basis models, the factors in factor analysis are
determined only up to an invariant transformation, thus normalization restrictions are needed to define
them.
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internal basis models try to project information in yields yτ,t and “observable” macro
variables f o

it onto the state vector xt consisting of unobservable variables fu
it, while exter-

nal basis models try to project information in yields onto “observable” macro variables
f o

it and latent variables (if there are any). Schematically,

internal basis : {yτ,t}, {f o
it} ⇒ xt = [fu

1t, f
u
2t, ...]

′.

external basis : {yτ,t} ⇒ xt = [f o
1t, f

o
2t, ..., f

u
1t, f

u
2t, ...]

′.

As one moves on to external basis models, one might be also moving away from the
relative comfort of the original intuition behind no-arbitrage (the smoothness of the yield
curve); hence a close scrutiny of additional assumptions that they involve is warranted.

3. Examining the assumptions in the external basis models

3.1. Unspanned short-run inflation. One implication of having a macroeconomic
variable like inflation as a state variable in the setup of eq. (1) is that short-run inflation
risk can be hedged by taking positions in nominal bonds.14 Many practitioners, however,
would be skeptical about this claim. Policy makers are well aware of large short-run
variations in price indices such as PPI and CPI that do not require a policy response, and
they are careful to “smooth through the noise” in interpreting data on inflation. Blinder
(1997) puts this clearly and strongly: “[The noise issue] was my principal concern as
Vice-Chairman of the Federal Reserve. I think it is a principal concern of central bankers
everywhere.”

Market participants are also (implicitly) cognizant of these issues. One striking ev-
idence is the bond market’s reaction to the announcement of total CPI (also called
“headline CPI”, or simply “CPI”) and core CPI. Core CPI is an inflation measure ob-
tained by stripping out the volatile food and energy prices from total CPI. As can be
seen in Figure 1a, monthly inflation based on total CPI is substantially more volatile
than that of core CPI, and annual (year-on-year) inflations based on core CPI and total
CPI can also differ significantly (Figure 1b). In the US, core CPI and total CPI for each
month are announced in the following month (by the Bureau of Labor Statistics, typi-
cally in the second or third week). Before the release of the data, business economists
partake in a survey about what the released numbers are going to be, from which “con-
sensus expectations” are computed. The released number minus this consensus number
can be viewed as a measure of the surprise component of the announcement.15

The regression of the change in the 2-year yield surrounding the data release (denoted
∆y2Y,t) on the surprise component of core CPI or total CPI (denoted ∆COREt and

14Let the first element of the state vector xt in eq. (1) be inflation. The formalism (1) then implies
that one can in general form a portfolio of bonds which replicates the inflation shock ǫ1t.

15This measure has been frequently used to study bond market’s reaction to data announcements.
See, e.g., Fleming and Remolona (1997).
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Figure 1: US monthly and annual inflation in core CPI and headline CPI (total CPI).

∆TOTALt, respectively) in the 1990-2006 period gives:16

∆y2Y,t = 0.11(0.23) + 18.41(2.39)∆COREt + et,(18)

∆y2Y,t = 0.10(0.26) + 6.97(2.07)∆TOTALt + et,(19)

where the standard errors are given in parentheses. The coefficients on the surprise
component in both cases are positive, in line with intuition: a positive inflation surprise
leads to an upward revision in yields.

The more interesting case, however, is when both surprise components are used as
regressors:

(20) ∆y2Y,t = 0.09(0.24) + 19.49(2.88)∆COREt − 1.49(2.22)∆TOTALt + et.

Note that the coefficient on ∆TOTALt is now insignificant. In other words, once the
information in the core CPI surprise is taken into account, the total CPI surprise has
no explanatory power. There are also many instances of the total CPI and core CPI
surprises having opposite signs to re-do the regression (19) for them only (about 40 in

16Here I present the results on the 2-year yield, as the 2-year maturity is often regarded as the most
sensitive to policy expectations; other yields lead to similar conclusions. Intraday data on two-year
benchmark Treasury yield are used to compute the yield change (5 minutes before the announcement
and 25 minutes after the announcement).
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1990-2006), which gives:

(21) ∆y2Y,t = −0.03(0.35) − 8.91(3.22)∆TOTALt + et.

The coefficient on ∆TOTALt is now counterintuitive (negative) and significant.
These results do not necessarily mean that the “extra” components in the total CPI

(food and energy prices) are completely irrelevant to the yield curve. They do, however,
raise the question as to whether it is reasonable to treat the fluctuation in total CPI as
risks that are spanned by the the yield curve factors (an implicit assumption in most
external-basis macro-finance models).

In a more prosaic approach, one can also examine the spanning of short-run inflation
risk by regressing the change in quarterly inflation πt onto the changes in 6-month, 2-
year, and 10-year yields.17 This regression gives an R2 of at most 10% in the 1965-2006
period, in stark contrast to the aforementioned regression of the change in the 5-year
yield (R2 of 99%). Even when the lagged inflation terms are included, as in

(22) ∆πt = a+ b1∆πt−1 + b2∆πt−2 + b3∆πt−3 + b4∆y6M,t + b5∆y2Y,t + b6∆y10Y,t + et,

the R2’s do not exceed 40%.18 This exercise is similar in spirit to Collin-Dufresne and
Goldstein (2002), who argue that the relatively low R2’s in the regressions of the changes
in interest rate derivative prices on the changes in interest rates indicate the presence of
“unspanned stochastic volatility” in interest rates.

The evidence for poor spanning of short-run inflation risk raises questions as to
whether external basis models are compatible with the no-arbitrage principle. Let us
now address a related question — whether external basis models can properly describe
inflation expectations, which, according to the Fisher hypothesis intuition, are an im-
portant determinant of the nominal term structure.

3.2. Do macro variables form a suitable basis for representing expectations?

To those who engage in inflation forecasting extensively, the poor inflation forecast
performance of macro-finance models like those of ABW (2007a) might not be a sur-
prise: a long line of research has explored the inflation forecasting performance of the
yield curve information and generally obtained disappointing results. Stock and Watson
(2003) summarize the situation thus: “With some notable exceptions, the papers in this
literature generally find that there is little or no marginal information content in the
nominal interest rate term structure for future inflation.”

17Let yt denote a vector of n yields. In the affine model, one has yt = a + Bxt, where xt is the n-
dimensional vector of state variables, a is an n-dimensional constant vector, and B is an n×n constant
matrix. Inverting it gives xt = B−1a +B−1yt. Thus, if πt is an element of xt, this implies ∆πt = c′∆yt,
where c is a constant vector. This is in the linear regression form without the residual error term (and
the intercept term).

18In the regression (22), I have tried both quarterly inflations based on the quarter-averaged CPI and
the end-of-quarter (last month of the quarter) CPI. In the former and latter cases, the quarter-averaged
yields and end-of-quarter yields were used, respectively.
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One paper that does find evidence for the predictive information in the yield curve
for future inflation is Mishkin (1990), so it is worth updating his results. Mishkin’s
regression takes the form

(23) πt+τ,t − πt+u,t = ατ,u + βτ,u(yτ,t − yu,t) + et+τ ,

where πt+τ,t is the inflation between time t and t + τ , i.e., πt+τ,t = (1/τ) log(Qt+τ/Qt),
and τ > u. This regression is motivated by the Fisher hypothesis, which can be stated
as

(24) Et(πt+u,t) = yu,t − real yield.

If the real yield were constant, subtracting this from the same equation with maturity
τ would give eq. (23) with β = 1. Mishkin argued that his finding of statistically
significant βs indicates the usefulness of the information in the yield curve for inflation
forecasting.

With yield data from 1960 to 1983, I obtain a result similar to Mishkin: for example,
running the regression (23) for τ = 2-year and u = 1-year gives a βτ,u of 2.32 (with
standard error 0.28), which is indeed large and significant, and in fact larger than 1
(which is also the case in Mishkin (1990) with both his “full” sample and “pre-October
1979” sample). However, the same regression with the more recent 1984-2006 sample
gives a much smaller βτ,u of 0.17 (and standard error of 0.26). As discussed in Appendix
B, the Mishkin regression coefficient probably has an upward bias, which may explain
why the the coefficient in the earlier-period sample is substantially larger than 1. But
this bias also suggests that the coefficient in the 1984-2006 sample, already small, may
have been overstated. In sum, even the Mishkin regression provides little support for
the usefulness of the yield curve information in the more recent sample period (which is
presumably a more relevant period for current applications).

Most of the regression-based inflation forecasting models in the literature include
current and lagged inflation as regressors in order to take into account the persistence
of inflation. The expected inflation over the next year in these models takes the form

(25) Et(πt+1Y,t) = a+ b0π
∗
t + b1π

∗
t−1 + ..+ c′zt,

where π∗
t is either the one-period inflation or annual inflation, and the vector zt denotes

other regressors, which could include term structure variables.
Consider a macro-finance model (1) that has quarterly (one-period) inflation πt as a

state variable. In other words, xt = [πt, z̃
′
t]
′, where z̃t(= [z̃1t, z̃2t, ..]

′) denotes other state
variables. The expected inflation over the next year is

Et(πt+1Y,t) = [1, 0, ..., 0] ((Φ + Φ2 + Φ3 + Φ4)(xt − µ) + µ)

= ã + b̃0πt + b̃1z̃1t + b̃2z̃2t + · · · ,(26)
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which is in the same form as eq. (25).19 (The case is similar with models that use annual
inflation as a state variable.) As such, the difference between the macro-finance models
formulated this way and the regression models is simply in the coefficients, not in the
basis. There is a possibility of an “efficiency gain” with no-arbitrage models (through the
imposition of useful constraints on the coefficients), but even this is not assured, if the
results in ABW (2007a) are any indication. More fundamentally though, the frequently
poor inflation forecast performance of regression models and macro-finance models like
ABW(2007a) raises questions about the basis itself.

3.3. Lessons from simple models. Some of the key conceptual issues in the rep-
resentation of the yield curve and inflation expectations may be explained through a
comparison of two simple models of inflation, namely AR(1) and ARMA(1,1) models:

πt = (1 − φ)µ+ φπt−1 + εt, (AR)(27)

πt = (1 − φ)µ+ φπt−1 + εt − αεt−1. (ARMA)(28)

The τ -period-ahead inflation expectations in both models take the form

(29) Et(πt+τ ) = φτ−1(χt − µ) + µ,

where the expected one-period inflation χt ≡ Et(πt+1) for the AR(1) model is given by

(30) χt = φπt + (1 − φ)µ

and χt for the ARMA(1,1) model is given by

(31) χt = φπt − αεt + (1 − φ)µ.

The estimate of φ in the AR(1) model, based on US quarterly CPI inflation data from
1960Q1 to 2005Q4, is 0.785(0.045), while the estimates of φ and α in the ARMA(1,1)
model are 0.935(0.031) and 0.341(0.081), respectively, standard errors being in parentheses.
These numbers imply fairly similar one-quarter-ahead inflation expectations, as can be
seen in Figure 2a. (There is somewhat more jaggedness in the AR(1) forecast.) The
same parameter estimates, however, imply very different longer-horizon inflation expec-
tations: the 5-year-ahead (20-quarter-ahead) inflation expectation from the AR(1) model
is almost constant, while the 5-year-ahead inflation expectation from the ARMA(1,1)
model is more variable. (This reflects the difference between 0.78520−1 = 0.01 versus
0.93520−1 = 0.28 in eq. (29).)

An almost constant 5-year-ahead inflation expectation from the AR(1) model in the
past 40 years is highly questionable. The main reason for the qualitative difference
between the AR and ARMA models is that the ARMA(1,1) model tries to separate
out the “unforecastable inflation” from the expected inflation, while the AR(1) model

19If the z̃t vector includes latent factors, they can be “inverted” and expressed in terms of yields
(because of the linear relationship between the yield and the factors), which again leads to the form (25).
However, latent factors in these “mixed” models are partly defined by their relation to the macro-factors,
and this may entail complications, as discussed later in Section 3.4.
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Figure 2: US inflation expectations based on AR(1) and ARMA(1,1) models.

does not. This can be seen from the fact that the ARMA(1,1) model is a univariate
representation of the following “two-component model”:

πt = χt−1 + ηt(32)

χt = (1 − φ)µ+ φχt−1 + et,

ηt ∼ N(0, σ2
π), et ∼ N(0, σ2

x), corr(ηt, et) = ̺,

in which χt is an expected inflation process and ηt is an unforecastable inflation.20

Though simple, this two-component model (of which the internal basis model (17) dis-
cussed in Section 2.3 can be viewed as an extension) is quite useful for illustrating some
of the key points in this paper.21

The unforecastable inflation component ηt in eq. (32) can help explain several puzzling
empirical results in the literature. Among them is the negative one-lag autocorrelation
of the changes in quarterly inflation ∆πt (= πt − πt−1), which, according to Rudd and

20The MA(1) coefficient in the ARMA(1,1) model is related to the two-component model parameters

as α = c −
√

c2 − 1, where c ≡ [(1 + φ2)σ2
π + σ2

x − 2̺φσπσx]/[2(φσ2
π − ̺σπσx)]. See, for a derivation,

Cochrane (2001, pp418-20).
21This model of inflation has an interesting parallel with the consumption-based asset pricing model

of Bansal and Yaron (2004), who argue that writing the consumption growth ∆ct as the sum of expected
component and unexpected component (∆ct+1 = χt+ηt+1) can help resolve the equity premium puzzle.
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Whelan (2006, Sec III.C), is an evidence against the new-Keynesian Phillips curve models
(which generate positive one-lag autocorrelation). In the case of the two-component
model (32), one has

(33) cov(∆πt,∆πt−1) = cov(∆ηt,∆ηt−1) + cov(∆χt−1,∆χt−2) + cov(∆χt−1,∆ηt−1).

The obviously negative first term dominates the second and third terms at appropriate
parameter values, resulting in a negative cov(∆πt,∆πt−1). The unforecastable compo-
nent ηt also plays the role of putting an upper bound on the predictability of inflation.

Economically, the ηt term represents the very-short-run effects in total CPI inflation,
including part of the food and energy prices that create the wedge between total CPI
and core CPI (as seen in Section 3.2), as well as the unforecastable components of the
core CPI inflation and potential errors in the measurement of CPI. A large part of ηt

is beyond the control of monetary policy makers (or economic agents, for that matter);
thus, in some sense, the presence of a substantial amount of unforecastable inflation is
a “fact of life”.

The importance of the ηt-term in the two-component model (32) has a parallel impli-
cation for no-arbitrage macro-finance models: the failure to separate out the “unspanned
macro shocks” in macro-finance models may produce problems that mirror those of the
AR(1) inflation model. It is worth mentioning here that Stock and Watson (2007) have
also recently emphasized that separating inflation into a trend component and a seri-
ally uncorrelated shock (like ηt in eq. (32)) is useful for explaining key features of the
US inflation dynamics,22 though they do not discuss the ramifications for macro-finance
(no-arbitrage) models.

It is instructive to ask about the basic variable underlying the term structure of
inflation expectations in the ARMA(1,1) model. As is clear from eq. (29), the basic
variable is χt, not the realized inflation πt. Note that in the case of the AR(1) model, χt

is πt (up to a prefactor and an intercept), as can be seen from eq. (30). This is not the
case for the ARMA(1,1) model: it is straightforward to show (by solving for εt in eq.
(28) and recursively substituting into eq. (31)) that χt in the ARMA(1,1) model can be
expressed as

(34) χt = (φ− α)
∞

∑

j=0

αj(πt−j − µ) + µ.

This is in the exponential smoothing form, which has been familiar at least since the
work of Muth (1960).

The expression (34) suggests that the connection between realized macro variables
and state variables in no-arbitrage term structure models could be complicated, and
that the poor inflation forecasting performance of regression models and no-arbitrage

22Stock and Watson (2007) write the US inflation process for the last half century as πt = τt + ηt,
where ηt is a serially uncorrelated disturbance term. The τt term (what they refer to as the trend
component) can be identified as χt−1 in eq. (32). Stock and Watson (2007)’s τt and ηt have time-
varying volatilities, a feature which, they argue, is important in the inflation persistence debate.
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models with macro variables may be a more complex issue than being just a matter of
having “efficient” coefficients (with conventional basis). To be sure, the state variables
in nominal term structure models are not simply those that underlie the variation of
inflation expectations. Factors that affect the real term structure and inflation risk
premia should also be included in the nominal term structure model. However, it is not
clear that these additional aspects would be any better described by macro variables.

Note that the expression for χt in eq. (34), although useful for conceptual illustration,
is still deficient as a description of inflation expectations for both subtle and fundamental
reasons. The subtle reason concerns the conditioning information: if the two-component
model (32) is the data generating process for inflation, the “true” inflation expectation
cannot be expressed simply in terms of the past inflations (except when ̺ = ±1 in eq.
(32)). Mathematically,

(35) Et(πt+1|ηt, et, ηt−1, et−1, ...) 6= Et(πt+1|πt, πt−1, ....).

In other words, the one-period inflation expectation based on the past history of inflation
(as computed from the ARMA(1,1) model) is not the same as the one-period inflation
expectation χt in eq. (32) computed using more information than just the inflation data.

More fundamentally, the ARMA model and even the two-component model are defi-
cient, as both models imply that the one-period inflation expectation is an AR(1) process,
which means that inflation expectations for all horizons are given by a single factor χt,
with the term structure of inflation expectations monotonically sloping up when χt is
below its long-run mean and monotonically sloping down when χt is above its long-run
mean. This stiffness (lack of flexibility) of the model makes it difficult to describe the
inflation environment of the past decades, during which people’s perception of Federal
Reserve’s inflation target is believed to have changed appreciably. Thus, the model’s
results depend materially on how long the estimation sample is. Figure 2b, based on
the estimation with a “long sample” that includes the 1970s, indicates the current (circa
2006) five-year-ahead CPI inflation expectation of about 4%, which is too high to be
believed. More generally, one can view the level to which inflation mean-reverts itself as
varying over time.23

3.4. Low-dimensional external basis models. Let us now consider some specific
issues that arise in external basis models with a “low-dimensional” state vector.

Suppose that one has a three-factor macro-finance model in the setup of eq. (1),
with the state vector xt consisting of all “observable” macro variables, say, the quarterly

23Note that if χt is highly persistent or nonstationary (as in Stock and Watson (2007)), the one-period
inflation expectation χt itself can be interpreted as a time-varying (perceived) inflation target, but in
this case χt would miss shorter-run predictable variation in inflation. Multi-factor internal basis models
discussed in Section 2.3 can help address this problem, as the state vector xt therein can be viewed as
including a time-varying inflation target (or people’s perception of the target) as well as factors related
to shorter-horizon inflation expectations. Note also that external basis models like HTV (2006) have
time-varying inflation target in the state vector.
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inflation πt, quarterly GDP growth gt, and the effective federal funds rate fft. The infla-
tion expectations in this model are then linear functions of contemporaneous variables
πt, gt, fft. (To see this, simply substitute z̃1t = gt, z̃2t = fft in eq. (26).) This type of fore-
cast (VAR(1)) has more qualitative similarity to the AR(1) model than the ARMA(1,1)
model; in particular, despite its multi-factor nature, it still mixes “signal” with “noise”
and can therefore be expected to inherit many of the problems with the AR(1) model.

Some of the macro-finance models in the literature, including Ang, Dong, and Pi-
azzesi (2005, henceforth ADP) and ABW (2007a), remain in a relatively low-dimensional
framework but use a mix of latent factors and macroeconomic variables, but these
“mixed models” may still have difficulties. Consider, for example, the ABW (2007a)’s
affine model (their MDL1 model) with quarterly inflation and two latent factors, i.e.,
xt = [πt, f1t, f2t]

′. If the latent factors f1t, f2t are interpreted as πt−1, πt−2, eq. (26) takes
a form similar to the smoothing form (34). However, besides the issue that two lags
might not be enough, one may not have the freedom to interpret ft’s this way, as that
would deprive the ability to describe other aspects of the nominal term structure (e.g.,
real interest rates, time-varying risk premium, time-varying perceived inflation target).

In the mixed models, having a macro variable like πt as a part of the state vector
may cause a distortion in the inference, as the latent factors can end up absorbing the
“unspanned” variation in πt. To illustrate this schematically, suppose that the true
model of the short rate is

(36) rt = ρπ̃t + ft,

where π̃t is the “spanned” part of the one-period inflation πt, i.e,

(37) πt = π̃t + et,

with et denoting the unspanned component. If one uses realized inflation πt in place of
π̃t, then

(38) rt = ρ(πt − et) + ft = ρπt + (ft − ρ et).

Thus the latent factor ft would be distorted by an amount ρ et. Although this was
illustrated with an affine model, the same problem can occur in the non-affine models.

3.5. High-dimensional external basis models. Some of the external basis macro-
finance models in the literature use a fairly large number of state variables that include
lagged macro variables. Many such models (including those of AP (2003) and HTV
(2006)) use annual inflation πY

t (=πt,t−1Y ) as a state variable instead of the one-period
inflation. This may help alleviate concerns about the problem with the use of the
one-period inflation, since the year-on-year inflation partly “smooths out” the noise in
quarterly inflation: πY

t can be written

(39) πY
t =

∑

i

wiπt−i,

where the weights wi are 1
4

for i = 0, 1, 2, 3, and 0 for i > 3.
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Note, however, that the construction (39) automatically implies a moving average
structure in πY

t , which suggests that the simple VAR(1) description would not be a
good description of its dynamics. Thus, macro-finance models that use annual inflation
as a state variable typically include additional lags, e.g., AP (2003) use 12 monthly lags,
in effect having a VAR(12) model. Bond yields in this case depend on a “large” set of
state variables that include lagged macroeconomic variables.24

A problem with this type of “high-dimensional” specification is that it inherits the
well-known problems of the the unrestricted VAR models. In fact, AP (2003)’s inflation
dynamics is a conventional VAR. They separate the vector of relevant variables into
an “observable” macro vector f o

t and an unobservable (latent) vector fu
t , i.e., x̃t =

[f o′

t , f
u′

t ]′,25 and impose the restriction that the latent factors do not affect the expectation
of macroeconomic variables. Their macro vector dynamics is given by the VAR(q):

(40) f o
t = Φo

1f
o
t−1 + Φo

2f
o
t−2 + · · · + Φo

qf
o
t−q + co + Σoǫot ,

where q = 12. Although the parameters in the matrices Φo
1, ...,Φ

o
q are in principle

identified and can be estimated by OLS, this kind of unrestricted VAR is well known
to suffer from overparametrization problems (which will be discussed further in Section
5.1).

By having only the macro variables describe inflation dynamics, AP (2003) turned off
the possibility of the yield curve saying something about future inflation. Unfortunately,
it is difficult to lift that restriction. The overparametrization problem would get worse,
as the full (maximally-identified) model would have an even larger number of parameters:
in the specification of the state vector dynamics

(41)

[

f o
t

fu
t

]

=

[

Φo
1 Φou

1

Φuo
1 Φu

1

] [

f o
t−1

fu
t−1

]

+

[

Φo
2 Φou

2

Φuo
2 Φu

2

] [

f o
t−2

fu
t−2

]

+ · · ·+ c+ Σǫt,

the matrices Φou
1 , Φou

2 ,... are now nonzero and have to be estimated. Furthermore, the
two-step estimation procedure that AP (2003) used is no longer applicable, hence the
estimation now involves a “one-step” optimization of a very-high-dimensional likelihood
function.

Models like HTV (2006) have more structure (in the form of the new-Keynesian
Phillips curve and IS equations), which may help alleviate overparametrization concerns,
but at a possibly greater misspecification risk: various aspects of the new-Keynesian
specification are still under debate, e.g., the presence or absence of the interest rate

24Since an invertable ARMA(1,1) model can be written as an AR model with infinite lags, the use
of lagged macro variables in an external basis model may partly address the deficiency of the AR(1)
model (relative to the ARMA(1,1) model) discussed in Section 3.4. However, identifying inflation as a
state variable may be still problematic conceptually (especially in the case of the one-period inflation
πt), in view of our earlier discussion regarding the difference between χt and πt.

25Here I have attached a tilde to xt to clarify that this is not the full state vector. The full state
vector (on which bond yields depend) in AP (2003) is larger: xt = [fo′

t , fo′

t−1, ..., f
u′

t ]′.
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smoothing term (e.g., English et al (2003), Rudebusch (2006)) and the strength of the
backward-looking inflation terms (e.g, Rudd and Whelan (2006)).

A common practice in the specification of external basis models that contain lags of
macroeconomic variables in the state vector is to set the coefficients of the market price of
risk (Λb matrix in eq. (1)) that load on lagged macro variables to zero (e.g., AP (2003)
and HTV (2006)). Even with this restriction, the number of remaining market price
risk parameters is large, and modelers often make additional ad hoc restrictions on the
Λb matrices to reduce the number of parameters further.26 Unfortunately, the practice
of setting the Λb coefficients on lagged macro variables to zero is not as innocuous as
it might appear. It implies that the expected excess return on a bond, µτ,t − rt, is
completely spanned by contemporaneous macroeconomic variables (and latent factors, if
there are any). Recall, from eqs. (11) and (16), that

(42) µτ,t − rt = B′
τΣλt.

Therefore, if λt does not depend on lagged macro variables, neither does the bond return
premium. This means that while one has

(43) yτ,t = aτ + bτ,1πt + bτ,2πt−1 + bτ,3πt−2 · · · ,
one cannot have

(44) µτ,t − rt = ατ + βτ,1πt + βτ,2πt−1 + βτ,3πt−2 + · · · .
This asymmetry in the way yields and bond risk premia depend on lagged macro vari-
ables has nothing to do with no-arbitrage, and has little empirical basis. In other words,
in order to cast the model in a “no-arbitrage” framework, many external basis macro-
finance models are introducing arbitrary and nontrivial assumptions about the market
price of risk. This raises the question of whether the no-arbitrage principle can play its
intended role.27

3.6. Would composite factors help? Several recent studies have explored the use of
composite variables created from a large array of macroeconomic variables in modeling
the term premia (e.g., Ludvigson and Ng, 2006) or the yield curve (e.g., Moench, 2006).

The composite factors may be appealing because they utilize a much bigger infor-
mation set and also because they may be cross-sectionally smoothing out some of the
idiosyncratic noise in quantities like CPI, hence one can expect them to reflect more of
the systematic variation than the individual macro variables.

26For example, AP (2003) and HTV (2006) assume that Λb is a block-diagonal matrix (a block matrix
for macro factors and a block matrix for latent factors).

27Duffee (2006) has also recently questioned the modeling of term premium in the macro-finance
literature, more specifically, the finding in some macro-finance papers of a strong relationship between
term premium and macroeconomy. His point is that these studies often do not provide alternatives
other than the “expectations hypothesis” (zero or constant return premium) and the term premium
that depends on macro variables, leading to an exaggerated role of macro variables in term premium
variation.
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However, since these models do not address expectations concerning specific macroe-
conomic variables of potential interest, one cannot tackle issues such as the expectation
of the CPI inflation implicit in the yield curve; thus macro-finance models based on
purely composite factors would not have much to say about TIPS pricing, as TIPS are
specifically indexed to the CPI.

More fundamentally, it is unclear whether composite factors can be valid state vari-
ables in no-arbitrage term structure models, as they may still face many of the afore-
mentioned problems with external basis models. In particular, the way the composite
factors in Moench (2006) and Ludvigson and Ng (2006) are constructed is such that
they are not very persistent variables.28 For example, Ludvigson and Ng (2006) report
that their most persistent factor has a monthly AR(1) coefficient of 0.77 (the half-life
is less than a quarter). In order for such a variable to describe yields in the setup of
(1) even just qualitatively (e.g., producing the kind of persistence that yields have), one
needs long lags, which again raise overparametrization concerns. In addition, even if
principal components analysis indicates that a small number, say n, of factors describe
the bulk of yield curve movements, it is not clear whether the proper truncation number
for cross-sectional composite factors should be also small or is related to n.

4. Affine Gaussian models versus non-affine/non-Gaussian models

4.1. Structural stability. One potential limitation of the general framework (1) is
structural stability. To be sure, the debate about the structural stability of macroeco-
nomic relationships is not new (see, e.g., Rudebusch (1998) and Sims (1998)). However,
it may have different ramifications for internal basis models and external basis models,
and hence merits a discussion here.

Several well-known structural instabilities are of direct relevance to macro-finance
models. Many have noted that in the 1990s a large part of the term structure variation
seemed to be due to the variation of real rates, while in the 1970s the variation in infla-
tion expectations seemed to be a more dominant factor. The stark difference between
the Mishkin regression coefficients in the 1960-83 and 1984-2006 periods discussed in
Section 3.2 lends support to the claim of a change in the relative importance of inflation
for explaining yield curve movements. Another instability is that of the Taylor rule coef-
ficients, as argued by Clarida, Gali, and Gertler (2000) and others. Since the Taylor rule
underpins the short-rate specification of many macro-finance models, this instability is
a serious concern for the macro-finance models that are estimated with a “long” sample
that includes the pre-Volcker disinflation period. Note also that the dynamics of many

28Models like Moench (2006) use only the composite factors and the short rate as state variables for
the term structure model (i.e., without “latent” factors). Together with the restriction that the market
price of risk does not depend on lagged variables, this implies that the expected excess return on a bond
is a linear function of the contemporaneous composite factors and the short rate (recall eq. (42)). The
lack of persistence of the composite factors may then imply a bond return premium that has a lot of
short-run variability by design.
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macro-finance models is similar to conventional VARs, but low-dimensional macro-VARs
were often found to be unstable (e.g., Stock and Watson (1996)).

The traditional specification may also face difficulty in accommodating relatively new
developments. For example, in recent years there has been an increased discussion
of the effects of global forces on domestic bond markets. Increased “global liquidity”
has been often cited as a potential factor pressing down inflation expectations or bond
risk premia, and interest rates movements in various countries, including the United
States, Euro area, and Japan, have lately become more highly correlated.29 Whether
structurally stable Taylor-rule type specifications are consistent with these developments
is an open question.

One may hope that concerns about structural instability would be alleviated if latent
factors are also included in external basis models. For example, a macro-finance model
with a Taylor-rule-like mixed specification of the short rate (similar to ADP (2005))

(45) rt = const+ ρππ
Y
t + ρg gapt + ft,

where ft is a latent factor, can be written as

(46) rt = const + πY
t + (1 − ρπ)(πY

t − π∗
t ) + ρg gapt,

where π∗
t (=−ft/(1 − ρπ)) is the time-varying inflation target. However, the factor

ft may have to play a number of other roles in the model, for instance, the interest
rate smoothing term, time-varying risk premium, and so on (analogously to an earlier
discussion in Section 3.4 regarding ABW (2007a)’s affine model). Thus a model written
with ft as a time-varying inflation target in mind might have some difficulty capturing
the intended effect.

Furthermore, there may be instabilities other than time-varying intercept, for instance,
changes in the conditional correlation of various macroeconomic variables, changes in
the persistence of the macroeconomic variables, and so on. Imagine, heuristically, a
situation in which the “true” model is

(47) rt = c+ ρπ,t π
Y
t + ρg,t gapt,

i.e, a Taylor-rule-like short-rate with time-varying loadings on the macroeconomic vari-
ables. In this case, the 2-factor affine model in which the state variables are [πY

t , gapt]
′

is obviously misspecified. For another example, consider a “time-varying inflation-
persistence model”

(48) πY
t = φt−1π

Y
t−1 + c+ εt.

Again, identifying πY
t as a state variable in an affine setting would be a misspecification.

One way to address this problem is to model these effects explicitly in non-affine/non-
Gaussian models. However, these models, being richer than affine-Gaussian models,
may be even more susceptible to overfitting concerns and may incur a greater risk
of misspecification. The disappointing inflation forecasting performance of the vector

29See, for example, Backus and Wright (2007).
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regime-switching model and the no-arbitrage “regime-switching” model in ABW (2007a)
(referred to by them as RGMVAR and MDL2, respectively) may serve as a reminder in
this regard.

Alternatively, the use of an internal basis (while still remaining in the affine-Gaussian
setup) may allay structural instability concerns to some extent: internal basis models are
agnostic as regards the definition of the factors; thus a model that is obviously unstable
from the point of view of an external basis may not necessarily be so from the point
of view of an internal basis. For example, going back to eq. (47), choosing the state
variable as xt = [ρπ,t π

Y
t , ρg,t gapt]

′ may be more effective than having xt = [πY
t , gapt]

′,
although there may be an even better internal basis for the problem (depending on how
the rest of the model is defined).30

Of course, no-arbitrage models with an internal basis should not be expected to an-
swer all structural stability concerns. A strong structural instability may be difficult to
capture even with an internal basis model, in which case it might be better to use a
shorter, structurally more homogeneous sample.

4.2. Time-varying uncertainty. Another limitation of the affine-Gaussian models
(both internal and external basis models) is that they imply homoskedastic yields, while
there is copious evidence for time-varying volatility of interest rates, e.g., from inter-
est rate derivatives as well as the stochastic-volatility models and GARCH-type models.
However, it is not clear whether a no-arbitrage model that allows for time-varying volatil-
ity would produce better results. Again, the concern is that such a model may incur
greater specification errors and implementation errors.

Theoretically and intuitively, one should expect a relation between term structure
variables and time-varying uncertainty about interest rates: to the extent that bond
market term premia arise from risk, the changing amount of interest rate risk should
translate to a changing term premium. It also stands to reason that at least a part of the
variation in interest rate volatility is linked to the variation in the uncertainties about key
macro variables. Various studies have noted that macroeconomic uncertainties (inflation,
GDP, monetary policy) have declined since the Volcker disinflation, a phenomenon often
dubbed the “Great Moderation”.31 One can expect this effect to be accompanied by a
corresponding reduction in term premia in the bond market. Kim and Orphanides
(2007) indeed report positive relationships between the term premium in the 10-year
forward rate and proxies for uncertainties about monetary policy and inflation based on
the dispersion of long-horizon survey forecasts.32

However, much work remains to be done to properly address the relationship between
term premia and macroeconomic uncertainties, in particular inflation uncertainty. For

30If πY
t and ρπ,t are Gaussian processes, the process ρπ,t πY

t would be non-Gaussian (with time-
varying volatility). However, one can still think of the affine version as an approximation of the non-
Gaussian process.

31Bernanke (2004b) discusses this phenomenon from a policy maker’s perspective.
32See also Backus and Wright (2007).
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instance, one can debate as to whether the survey dispersion measure used in Kim
and Orphanides (2007) is a good proxy for uncertainty. Furthermore, their evidence
is mainly about the low-frequency relation; whether there is a relation at shorter time
scales remains unclear. A key difficulty addressing this question is measuring the rele-
vant uncertainty. For example, the uncertainty measures from GARCH-type models of
inflation do not seem promising for making a connection with bond market term pre-
mia, as those models imply a tight relation between short-term inflation uncertainty and
long-term inflation uncertainty.33

Recall from the discussion in Section 3 that much of high-frequency variation in infla-
tion is not spanned by interest rates. This, in turn, suggests that the changing amount
of this unspanned risk might not have much connection with bond market term premia
either. Furthermore, the relevant inflation uncertainty is over the life of the bond, which
could be qualitatively different from short-run uncertainty about inflation.
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Figure 3: The dispersion of long-horizon US inflation forecasts in the Blue Chip Financial Forecasts
and the 1-year rolling standard deviation of monthly CPI inflation.

The increase in the volatility of monthly inflation in total CPI from about 1999 and on
(which can be clearly seen in Figure 1a) is a case in point. This increase in the near-term
uncertainty does not seem to have translated to an increase in the perception of longer-
term uncertainty. Indeed, as shown in Figure 3, a proxy for the long-horizon inflation
uncertainty based on a survey forecast dispersion has been subdued in this period,
contrasting with an elevated level of one-year rolling standard derivation of monthly
inflation (a simple proxy for short-run inflation uncertainty) in the same period. Even

33Consider a GARCH specification of the one-period inflation, πt+1 = f(πt, πt−1, ...) + ǫt+1, ǫt+1 ∼
N(0, σ2

t ), σ2
t = α + βσ2

t−1 + γǫ2t . It is straightforward to show that the the uncertainty about multi-
period inflation πt+τ,t = (πt+1+πt+2+· · ·πt+τ )/τ has similar qualitative time-variation as σt (short-run
inflation uncertainty).
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granting the imperfection of the long-horizon inflation uncertainty measure, this lack of
relation bears noting.34

The complexity of inflation dynamics can thus create considerable challenge for at-
tempts to go beyond homoskedastic models: it may be that a nonlinear model with
time-varying inflation uncertainty can lead to poorer results if the model’s inflation un-
certainty is misspecified, as when a model that does not make a qualitative distinction
between short- and long-run inflation uncertainties tries to link the rise in the volatility
of short-run inflation of the recent several years (as seen in Figure 3) to bond market
term premia.35

5. Empirical issues

5.1. Overfitting problems. Flexibly specified no-arbitrage models tend to entail much
estimation difficulty due to a large number of parameters to be estimated and due to the
nonlinear relationship between the parameters and yields that necessitates a nonlinear
optimization. Even if one finds the parameter vector that corresponds to the global
optimum of the criterion function, not all may be fine with the resulting estimate.

The experience with the unrestricted VARs explored in the 1980s macroeconomics
literature is an important reminder in this regard. Unrestricted VARs can be estimated
via the OLS regression, thus the estimation itself is straightforward; however, it is well
known that unrestricted VARs often lead to poor results.36 The main problem is that
these models get easily overparameterized, and there is little structure in the model
to prevent estimations from generating unreasonable outcomes. This problem can be
expected to be shared by flexibly specified macro-finance models (both internal basis
models and external basis models), which are, like the unrestricted VARs, an “atheoret-
ical” representation with a large number of parameters.

The key innovation of the macro-finance models like AP (2003), as compared to the
traditional macro models, is that they link not only the short rate rt (= y1,t) but also
the rest of the term structure ({yτ,t}τ>1) to the macroeconomy by casting the problem
in the no-arbitrage framework (1), introducing the market price of risk λt for the shocks
in the model. However, it does not seem to have been seriously questioned as to whether
the amount of additional information thus introduced is large enough to compensate for
the large increase in the number of parameters of the model.

Note that the no-arbitrage principle tells the existence of a pricing kernel such as eq.
(1), but the principle by itself does not constrain the parameters of the market price of

34Interestingly, an earlier literature including Ball and Cecchetti (1990) and Evans (1991) has also
emphasized in another context the need to distinguish between the short-run and long-run inflation
uncertainties.

35There has been much discussion about the low level of term premia in recent years (see, e.g., Backus
and Wright (2007)). Trying to explain the low term premium and high uncertainty would be a daunting
prospect.

36See, e.g., Todd (1984) and Stock and Watson (2001).



CHALLENGES IN MACRO-FINANCE MODELING 25

risk (Λb matrix). Suppose, as in AP (2003), that one has in the state vector p observable
variables, its q − 1 lags, and m unobservable (latent) variables, in other words,

(49) xt = [f o
1t, .., f

o
pt, f

u
1t, .., f

u
mt, f

o
1,t−1, .., f

o
p,t−1, · · · , f o

1,t−q+1, .., f
o
p,t−q+1]

′.

In that case the Λb matrix in eq. (1) can have as many as (p+m)·(p·q+m) parameters.37

For p = 2, q = 12, m = 3 (as in AP (2003)), there are 135 parameters for Λb to be
determined; even if one chooses a smaller q, the number of parameters is still quite
large.

Empirically, yields of various maturities tend to be highly correlated, giving rise to
the finding in factor analysis and principal components analysis that there is a single
dominant factor. But this also means that the pure additional information in longer-
term yields (beyond what is in the short rate) may be modest in amount and perhaps
too delicate to capture with a specification of the market price of risk that is liable to be
overfitted; the relation that one might see between yields and macro variables in macro-
finance models may be more of a statement of the Taylor rule (macro description of
the short rate) rather than no-arbitrage. Thus, it is not clear whether the reduced-form
no-arbitrage framework (1) can do an effective job of incorporating the information in
the entire yield curve.38

Though the overparametrization problem may be particularly severe with external
basis models that contain lags of macroeconomic variables, internal basis models (which
tend to be implemented with comparatively smaller number of factors, e.g., 3 factors)
may also face serious overfitting concerns; they may be more easily overfitted than
external basis models because of the especially flexible nature (the definitional freedom)
of the latent-factor models. In particular, latent factor models could fit very well data
that it is asked to fit, even if the data or the model were a poor one. For example,
because yield fitting errors are minimized as a part of the estimation process, internal
basis models with 3 ∼ 4 factors can fit the cross-section of the yield curve quite well
(with much smaller fitting errors than external basis models), but that by itself might
not be a sufficient reason to recommend internal basis models.

As another example, I find that estimating the 3-factor internal basis model in D’Amico
et al (2007) with yields and inflation data in the 2000-2006 period and with supplemen-
tary data on the SPF survey forecast of 10-year inflation (assuming that survey expec-
tation is the model expectation plus a measurement error whose size is also estimated)
can fit very closely the survey forecast, which has hardly moved from the level of 2.5%.
Such an outcome is likely due to the richness and flexibility of the model rather than a
genuine feature of market expectations. The problem is that although the latent factor

37The lagged macro variables do not have market price of risk, but the market price of risk of
contemporaneous variables and latent variables can still depend on them, as discussed in Section 3.5.

38It may be useful here to compare with the way long-term yields are included in the FRB/US model
(mentioned in Section 2.1). The FRB/US model takes in only a few yields (besides the short rate) using
a fairly simple specification for term premia, but in that case it is introducing only a relatively small
number of additional parameters.
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model is identified in principle (with suitable normalization conditions), there may be
not enough discipline in the model and not enough information in other data in the
sample to prevent “too close” fit of the SPF survey data.39

5.2. Small sample problems. The implementation of macro-finance models is also
complicated by small sample problems that arise from the highly persistent nature of
the data. Both interest rates and inflation are known to be persistent; unit-root tests
often fail to reject nonstationarity (unit-root) null for them.40

In light of this, many practitioners often use nonstationary models to forecast inflation.
For example, many of the inflation forecasting models used by the Federal Reserve staff
impose the unit root condition.41 By the Fisher-hypothesis intuition, unit root inflation
dynamics implies a unit-root interest rate dynamics.

By contrast, most of the estimated macro-finance models (or nominal term structure
models) in the literature assume stationarity. This may be due in large part to tra-
dition, but there is also an intuitive justification as well: being “rates”, interest rates
and inflation do not grow unboundedly, and experience tells us that these variables typ-
ically stay within the range of, say, 0% and 20%; this has been the case for modern
economies (excluding special episodes like hyperinflation and deflation) as well as in
ancient economies such as the Babylonian economy. The implication of unit root mod-
els that the unconditional means of inflation and interest rates are undefined and their
unconditional variances are infinite is objectionable.

It thus seems more reasonable that the “true model” of yields is a stationary one,
perhaps with many factors to describe the complex dynamics of yields and expectations,
schematically,

(50) yτ,t = fτ (x1t, x2t, x3t, ...., xNt).

In practice, however, one is forced to deal with relatively low-dimensional models, be-
cause limited amount of data make it impossible to pin down the parameters of such a
model, or because one does not have enough knowledge to write down a very detailed
model. In this case, it is not clear whether the “best” low-dimensional approximation

(51) yτ,t ≈ f̃τ (x̃1t, ..., x̃nt), (n≪ N)

of the model (50) should be a stationary or nonstationary (unit-root) model.
The distinction between stationary and nonstationary models could be semantic in

the sense that a stationary model that is close to the unit-root boundary is almost

39For this reason, the estimations in D’Amico et al (2007) use a longer sample going back to 1990
and do not consider models beyond the 3-factor case.

40Though there have been claims that inflation dynamics has become less persistent in recent decades,
this may be due to a shift in the relative weights of the variance of the short-run disturbance in inflation
and the variance of the persistent component (as discussed by Stock and Watson (2007) and Sims
(2002)), rather than the weakening of the persistence of inflation expectations.

41Federal Reserve staff make inflation forecast judgmentally, but they do look at a variety of models
to inform their judgments. The staff’s forecasting procedure is discussed, for example, in Kohn (2005).



CHALLENGES IN MACRO-FINANCE MODELING 27

indistinguishable from unit-root models. But whether to assume stationarity or not
can make a big difference operationally, as conventional estimations have tendency to
bias down the persistence of stationary time series, the bias being stronger the smaller
the sample. This makes the expectations appear converging to a long-run level faster
than they actually do; thus longer-horizon expectations of inflation and interest rates
in (estimated) stationary models are often artificially stable, varying little from the
sample-mean of these variables.

Another manifestation of the small sample problem (besides bias) is imprecision:
highly persistent interest rates effectively make the size of the sample “small”; no matter
how frequently the data are sampled, some of the key aspects of the term structure model
(those pertaining to expectations in the physical measure, as opposed to the risk-neutral
measure) are difficult to estimate, as stressed in Kim and Orphanides (2005). In a con-
ventional estimation of term structure model with the last 10 ∼ 15 years’ yield data,
one often finds that many of the parameters of the model are estimated very imprecisely
and the confidence intervals for quantities of interest like the model-implied short-rate
forecast are too wide (i.e., includes almost any scenarios).

5.3. Are classical procedures applicable? Most implementation of macro-finance
models have relied on classical methods such as the maximum likelihood estimation
(ML) and generalized method of moments (GMM), but these methods may be less
effective in this context than is often presumed.

At the heart of the matter is the point that reduced-form macro-finance models are
obviously an approximate representation of data, and hence not very compatible with
the classical premise of having the “true model.” Though it goes without saying that
all models in economics and finance are approximate, this point is particularly relevant
here in view of the atheoretical (statistical) nature of many of the macro-finance models
and the large number of parameters. For instance, it is not clear that the ML or GMM
criterion function of these models should contain a unique meaningful maximum; there
might be different maxima which capture different aspects of data with differing degree
of emphasis. The small sample problems discussed above adds to the difficulty, as they
make asymptotic statistics a poor guide to finite sample properties.

Let us now consider specific difficulties with certain classical procedures. In some im-
plementations the fit of certain unconditional moments are used either as an estimation
condition (e.g., Brandt and Chapman (2003)) or as a diagnostic check (ABW (2007b)),
for example,

E(yτ,t) =
1

T

T
∑

t=1

yτ,t(52)

E(yτ,tyτ ′,t−j) =
1

T

T
∑

t=1

yτ,tyτ ′,t−j ,
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and so on. As discussed above, nonstationary (unit-root) scenario cannot be dismissed
easily for the “approximate model”, but trying to match the moment conditions (52)
in this case is pointless: the right-hand side numbers are finite, while the left-hand side
numbers infinite (or indefinite). In the case of near-nonstationarity, the left-hand side
numbers are finite, but the proximity to the unit root boundary means that they are
likely to be very inaccurate estimates, so that “how close the unconditional moments
are to sample moments” could be a poor guide to a model estimation or evaluation.42

Many of the classical estimation approaches implicitly minimize fitting errors for the
one-period-ahead conditional moments. For example, the ML estimation can be viewed
as minimizing the one-period prediction errors or the errors in the fit of the “likelihood
score moments” ( ∂

∂θ
log f(yt|yt−1, θ)) in a GMM framework. While in theory this could

yield an asymptotically correct estimate of the true model (if the true model exists), the
inherently approximate nature of model means that fitting the one-period moments as
closely as possible might come at the expense of other aspects of the model. Cochrane
and Piazzesi (2006) in effect make this point when they note that conventionally esti-
mated affine models may have difficulty producing the kind of term premia that they
find based on regressing multi-period (one-year) excess returns on a set of forward rates.

In macro-finance models, the reliance on the one-period-ahead conditional moments
could be further compromised by the complexity of relatively high-frequency macro
data. A rather striking demonstration is provided by a comparison of the “quarterly
inflation” measured in two ways: quarterly inflation based on the CPI values in the
middle month of each quarter, πmid

t (e.g., log CPI difference between May and February)
and in the last month of each quarter, πlast

t (e.g., log CPI difference between June and
March). The sample one-lag autocorrelations corr(πmid

t , πmid
t−1 ), corr(πlast

t , πlast
t−1) based

on the 1960-2006 sample are 0.79 and 0.67, respectively. Considering that the only
difference between πmid

t and πlast
t is the one-month shift in the definition, this is a large

discrepancy. This effect is even more pronounced in the 1984-2006 sample, which gives
corr(πmid

t , πmid
t−1 ) = 0.33 and corr(πlast

t , πlast
t−1) = −0.04. This is largely due to a very sharp

rise and reversal in the one-month total CPI inflation in 2005 (as can be seen in Figure
1a); one version of the quarterly CPI inflation (πlast) is picking this up and the other
(πmid) is not. Ang, Bekaert, and Wei (2007b) look at lagged autocovariance terms based
on πlast

t as a part of their diagnostic check, but nothing in theory says that πlast
t is more

valid than πmid
t . Thus it is difficult to take either corr(πmid

t , πmid
t−1 ) or corr(πlast

t , πlast
t−1)

too seriously.43

42One indication of the problem may be the occurrence in Brandt and Chapman (2003) of no-solution

cases in the inversion of state variables from yields (quadratic equation) in the quadratic-Gaussian model
estimated by fitting “economic” unconditional moments (despite the good fit of these moments).

43Incidentally, corr(πt, πt−1) is the persistence coefficient of the AR(1) model. It can be seen that
even the value of the higher of the two (corr(πmid

t , πmid
t−1 ) = 0.33) is quite low, but this does not

necessarily imply a reduced persistence of inflation expectations (as discussed in a footnote in Section
5.2).
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5.4. How can we evaluate models? The above discussion suggests that looking at the
fit of the moments that are often used in the classical estimation might not necessarily
be a good criterion for model evaluation.

Some papers do look directly at practical implications of the model, such as the
multi-period forecasts of inflation and interest rates. Indeed, in view of the fact that
the second moment aspects of affine-Gaussian models are trivial, much attention has
focused on these conditional first moments (the forecasting performance) as a part of
diagnostic criteria, as in Ang and Piazzesi (2003), HTV (2006), and Moench (2006).

However, it is unclear to what extent summary measures of forecasting performance
examined in these papers can help with model evaluation/selection. To be sure, looking
at the forecasting performance can be useful for detecting problematic models. In Duffee
(2002), for example, interest rate forecast RMSEs that are substantially larger than
the random-walk benchmark were used to highlight problems with certain stochastic-
volatility no-arbitrage models (e.g., the EA2(3) specification). Similarly, the inflation
forecast RMSEs based on ABW (2007a)’s no-arbitrage models that are substantially
larger than the univariate inflation model benchmark may signal problems with the
no-arbitrage models that they have used.

Nonetheless, the RMSE measures for in-sample or out-of-sample forecasts are often
ineffective in discriminating between models. For instance, ABW (2007a) obtain very
similar RMSEs for the one-year out-of-sample inflation forecasts from the AR(1) and
the ARMA(1,1) models, although the AR(1) model implies qualitatively quite different
inflation expectations than the ARMA(1,1) model as discussed in Sec 3.3.

Furthermore, because a large part of the inflation and interest rate variations are
an unforecastable variation, the RMSEs themselves may have substantial uncertainty
(sampling variability).44 Thus, it may happen that the “true model” generates a RMSE
that is no smaller than some other models. In this sense, it may be actually misleading
to focus on the RMSE as a criterion for selecting the model that best describes the
reality. In the case of in-sample forecasts, this problem is exacerbated by the possibility
that RMSEs are artificially pushed down due to the use of “future information” in the
generating the forecast, making interest rates and inflation look more forecastable than
they actually are.

Often there are cases in which classical criteria cannot easily tell if a model’s output
is unreasonable, while practitioners can do so using “judgmental information.” For in-
stance, many macro-finance models estimated with data going back to 1970s generate
current (circa 2006) long-horizon inflation expectation that exceeds 4%. (Recall also the
AR and ARMA model outputs in Figure 2b.) Though long-horizon expectations are dif-
ficult to evaluate on purely econometric grounds as there are not many non-overlapping
observations, most policy makers and market participants would immediately say that

44Clark and McCracken (2006) emphasize that out-of-sample inflation forecast RMSEs may have
weak power.
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4% long-horizon CPI inflation expectation is too high; hence models with such an output
may fail the test of relevance, before any statistical tests.45

Note also that even if two models generated similar forecast RMSEs, practitioners
could have a very different assessment of them, depending on the details of the forecast
errors from the models (such as the direction of the errors). In the 1990s inflation
data often came in on the “low” side, and it is widely believed that not all of this had
been predicted by market participants, i.e., the “true” market forecast of inflation in
this period likely contained a mild upward bias.46 Even if there existed a model that
generated an unbiased forecast or a forecast with bias in the opposite direction (which
would have forecasted inflation better), I doubt whether policy makers would view such
a forecast as a realistic description of the market expectation.47

These discussions highlight the role of the larger information set of practitioners (as
compared to academic researchers). Unfortunately, much of this extra information is
difficult to cast in the formal language of statistical tests, and the proper evaluation of
models remains a challenge for macro-finance modeling.

5.5. Would a Bayesian approach help? The use of the Bayesian techniques to ad-
dress problems with conventional (classical) estimation has a long history, but a par-
ticularly relevant early example is the Bayesian approach to the VAR forecasting. As
discussed in Sections 3.5 and 5.1, unrestricted VARs share some of the key problems en-
countered in flexibly specified macro-finance models, in particular, the statistical (atheo-
retical) nature of the specification and the tendency for overparametrization. Litterman

45The financial press has often noted that the upper boundary of Fed’s “comfort zone” of inflation
is currently (circa 2006) 2% for the PCE inflation. Persistent differential between annual PCE and CPI
inflation of 30∼40 b.p. then puts the upper boundary for the CPI inflation comfort zone at about 2.4%.
In September 2006, annaul core CPI inflation locally peaked at 2.9%. Most policy makers’ speeches
at the time gave an the impression that they viewed this number as high, suggesting that the trend
inflation should be lower. In this environment it seems difficult to justify a long-term CPI inflation
expectation that is substantially higher than 3%. (Incidentally, the Michigan survey of consumers gives
inflation expectation in excess of 3%, but there are problems in interpreting the Michigan survey as a
forecast of the CPI inflation. See, e.g., D’Amico, Kim and Wei (2007).) A number like 4% for a long-
horizon inflation expectaiton is likely due that fact that sample mean of inflation (for samples going
back to the 70s) is in that neighborhood; recall the discussion of small sample problems in Section 5.2.

46Kohn (1999) provides an account of the fact that the FOMC’s forecasts (in the semiannual report
to the Congress) as well as the Fed staff’s forecasts overpredicted inflation. Private sector economists
also did the same, as can be seen from survey forecasts; see, for example, Croushore (1998).

47Though an “unbiased” multi-period forecast is often viewed as a consequence of rational expec-
tations, to obtain it one needs tight assumptions that are difficult to justify in reality, in particular,
the assumptions that there is a relatively simple, structurally stable model of the economy and that
the agents fully know this structure. More realistic rational expectations hypotheses that relax these
restrictions, e.g., models that allow for learning and time-varying structure, are consistent with biased
expectations in “small” samples.
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(1986) and others have documented that a Bayesian implementation with an informa-
tive prior (“random walk prior”) can generate better results than the classical imple-
mentation. This gives an encouragement to take up a Bayesian strategy to address the
empirical difficulties with macro-finance models.

In the macro-finance context, Ang, Dong, and Piazzesi (2005) have in fact already
proposed a Bayesian approach, but it is not clear that the particular priors that they use
would help overcome the problems with classical estimation discussed above. ADP state
that except for the condition that the model be stationary their priors are uninformative.
However, to the extent that the main problem with the classical estimation of macro-
finance models is that the data by themselves are not fully informative about the model
(especially as regards the overfitting and small-sample problems), it is difficult to see
how uninformative priors would solve the problem. Recall that the superior performance
of the Bayesian VARs (over the conventionally estimated unrestricted VARs) came from
having an informative prior.

When ADP (2005) tried to estimate their model using a classical method (maximum
likelihood estimation), they found that the estimated model explained most of the term
structure movements in terms of the latent factor, leaving little role for macro variables
to explain yield curve movements,48 an outcome that is unappealing from the viewpoint
of making a connection between the macroeconomy and the yield curve. However, even
granting the problems with classical methods, there may be a reason for this, namely that
the estimation marginalizes the macro variables to avoid the counterfactual implication
that shocks to inflation have a tight relation to the yield curve movements. This is a
specification issue, i.e, one has to deal with “unspanned” variation in macro variables in
the model. Addressing the problem purely as an estimation issue may lead to problems
elsewhere in the model.

In my view, the main challenge for a Bayesian implementation is in coming up with
suitable informative priors. This is particularly the case when there are latent factors in
the model (external basis models with latent factors or internal basis models): because
the economic meaning of many of the individual parameters related to the latent factors
is unclear, it is difficult to provide sensible priors for them.

For illustration, consider a 3-factor internal-basis nominal-yields-only version of the
affine-Gaussian model (1). This model can be normalized in different ways, as discussed
in Appendix A. Suppose one has chosen certain normalization. To “simplify” the model,
one could try to impose a prior that Λb is a diagonal matrix:

(53) Λb,i6=j ∼ D(0, σ2).

where D stands for some a priori distribution. However, this diagonal structure is no
longer preserved when the model is converted to another normalization.49 Because there

48Private conversation with Andrew Ang. ADP’s paper (2005) itself does not describe the specifics
of the outcome from the classical estimation of their model.

49To be concrete, suppose that one is using the normalization given by eq. (65) in Appendix A. The
model can be expressed in another normalization, eq. (55), using the invariant transformation (64).
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is no special reason to choose one normalization over another, the parsimony implied by
priors like (53) is partly illusory.50

By stating priors about the variables that have direct economic meaning, like inflation
expectations, interest rate expectations, and expected bond returns, one can get around
this problem of normalization dependence: surely these variables must be normalization
independent. Recall also that the source of the small sample problem is the difficulty
of estimating the parameters related to expectations (in the physical measure), thus
imposing priors on these variables would help alleviate the problem. A prior about the
10-year inflation expectation, for example, can be expressed as

(54) ie10Y,t = a10Y (θ) + b(θ)′10Y xt(θ) ∼ N(µt, σ
2
t ),

θ denoting the model parameters collectively. For µt, one can use a survey median
forecast. Setting σt = ∞ corresponds to having no priors on ie10Y . Setting σt at a value
that is large, but not large enough to be irrelevant, can be viewed as a quasi-informative
prior. Other Bayesian priors that are based on economic concepts and mechanisms may
be also utilizable.51

A statement like (54) can be conveniently incorporated within a Kalman-filter set-
ting. Running a Kalman-filter-based ML estimation with with survey median (or mean)
forecast (of interest rates and/or inflation) as a noisy proxy, as in D’Amico et al (2007),
can be viewed as a “poor man’s Bayesian” implementation, the point estimate serving
as the mode of the Bayesian posterior.

6. Understanding the superior performance of survey forecast

The specification and implementation problems discussed so far may help explain why
macro-finance models, which use more information than the past inflation data, could
generate poorer results than simple univariate inflation models. But is the yield curve
information useful at all for inflation forecasting? Why do survey forecasts perform
better than univariate models (and other models)?

One reason ABW (2007a) offer for the superior performance of survey forecasts is that
survey participants have more information about the economy than econometricians.
This is in line with the point made in Sec 5.4 that informational differences may create
a wedge between a practitioner’s and an academic researcher’s evaluation of a model.
But it is worth exploring this issue further.

One could plausibly expect that survey forecasts may have advantages at least at short
horizons, in that a potentially vast amount of information that is relevant for forecasting
the near-term inflation might not be easily summarizable in terms of a small number of

50Note that if all the parameters of the Λb matrix are set to 0 (an “expectations hypothesis prior”),
this is invariant under different normalizations. However, specifying this prior as Λb,ij ∼ D(0, σ2) may
still be problematic, in the sense that the information about σ might not be normalization independent.

51“Structural” priors can be also imposed in a Bayesian setting, as in the dynamic stochastic general
equilibrium (DSGE) modeling literature.
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variables.52 It may be thus instructive to examine the near-term expectations in surveys
and how they are linked to longer-term expectations (i.e., the term structure of survey
inflation forecasts).
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(b) forecasts at selected points

Figure 4: Forecast of US quarterly CPI inflation from the Blue Chip Financial Forecasts (BCFF). The
* symbol in Figures (a) and (b) denotes the long-horizon BCFF survey. (In Figure (b) it is plotted at
the 6-quarter-ahead position.)

Fortunately, fairly detailed information about the near-term term structure of survey
inflation expectations can be obtained, as survey forecasts like SPF and BCFF surveys
provide CPI inflation forecasts up to the next four or more quarters. Figure 4a shows the
one-quarter-ahead, two-quarters-ahead, and four-quarters-ahead CPI inflation forecasts
from the Blue Chip Financial Forecasts (BCFF) survey, based on the surveys published

52It may be useful to recall here that in the ARMA(1,1) model and the two-component model in
Section 3.3, the one-period inflation forecast based on Et(πt+1|πt, πt−1, ...) can be different from and
less efficient than a forecast based on a larger information set.
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in January, April, July, and October (taken at the end of December, March, June, and
September), from 1988 to 2006. The BCFF long-horizon forecast (inflation expected
between the next five to ten years), available twice a year, is also shown. It is notable that
this long-horizon forecast, which can be viewed as a “quasi-long-run” mean of inflation,
has moved about (shifted down) significantly. It is also notable how quickly the multi-
period forecasts approach the quasi-long-run value. Not only is the 4-quarters-ahead
forecast already quite similar to the long-horizon forecast, but also the 2-quarters-ahead
forecast is.

Figure 4b further visualizes this point by showing the term structure of inflation
expectations out to the next four quarters at several moments when the one-quarter-
ahead forecasts were at their local peaks or troughs. Particularly interesting is the case
of 1990Q3, when the one-quarter-ahead inflation expectation peaked. The expectations
for longer horizons show that even then the survey participants expected inflation to
come down quickly to the quasi-long-run level. A more recent example is 2005Q3, in
which one-quarter-ahead expectation had risen amid rising oil prices and other near-
term inflation pressures. Again, however, this was viewed as a temporary rise that
would dissipate quickly. Thus one comes to a somewhat paradoxical conclusion that
“the long-term is quite near.”

To get further insights into the survey forecasts, it is useful to compare them with ex
post realized inflation and the real-time forecasts from the ARMA(1,1) model. Figure
5a shows the one-quarter-ahead inflation forecasts based on the BCFF survey and the
ARMA(1,1) model (20-year rolling sample forecast), as well as the realized one-quarter
inflation (πt plotted at t − 1). The one-quarter-ahead survey forecast is seen to be less
jagged than the ARMA(1,1) forecast. The ARMA forecast’s jaggedness comes from the
fact that ARMA is a univariate model, thus the near-term forecast can depend substan-
tially on the recent realized inflation. (When the previous period’s realized inflation is
high, current period’s inflation expectation tends to be high.) The RMSEs of the one-
quarter-ahead forecast are 1.19% and 1.40% (annual percentage unit) in the 1988-2006
period for the survey forecast and the ARMA(1,1) model, respectively; thus the survey
indeed performed better. Nonetheless, much of the realized inflation is missed by the
survey forecast. Granting the caveat that surveys might not necessarily be the best pos-
sible forecast, this still suggests that a substantial part of short-run inflation is genuinely
unforecastable ex ante, lending support to a formulation like the two-component model
(32) in which the inflation process is separated into a trend inflation component and an
unforecastable component.

Let us now examine the inflation forecast that most studies focus on, namely the
one-year inflation forecast. Figure 5b shows the one-year forecasts based on the BCFF
survey and the ARMA(1,1) model, along with the realized one-year inflation (πt,t−1Y

plotted at t − 1Y ). For reasons that will become clear soon, both the ARMA(1,1)
forecasts from an expanding sample and from a rolling sample are shown. The ARMA
forecasts produce substantially larger RMSEs than the survey forecast (1.04% for the
20-year rolling sample ARMA, 1.15% for the expanding sample ARMA, 0.76% for the



CHALLENGES IN MACRO-FINANCE MODELING 35

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
−1

0

1

2

3

4

5

6

7
(a) 1−quarter−ahead forecasts

 

 

survey
realized
ARMA (rolling)

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
−1

0

1

2

3

4

5

6

7
(b) 1−year inflation forecast

 

 

survey
realized
ARMA (rolling)
ARMA (expanding)

Figure 5: Comparison of the realized CPI inflation, BCFF survey forecast, and the ARMA(1,1) model
forecasts.

survey). Since one fourth of the one-year forecast is the one-quarter-ahead forecast (i.e.,
Et(πt+1Y,t) = 1

4
Et(πt+1)+

1
4
Et(πt+2+πt+3+πt+4)), the superior one-quarter-ahead survey

forecast explains part of this. But a still more basic reason for the superior forecast of
the survey is that the ARMA model-based forecasts substantially overpredicted inflation
in the 1990s. It can be seen that the ARMA forecasts lie notably above the realized
inflation (and survey forecast). This overprediction is due in large measure to the fact
that the ARMA model in real time tended to generate “too high” values of the long-run
mean level (µ in eq. (28)) to which the forecasts are converging.

This is illustrated in Figure 6, where the long-run mean parameter µ from the expand-
ing sample estimation is seen to lie significantly above the long-horizon survey forecast.
Because the expanding sample includes periods of high inflation (70s and early 80s),
the estimated mean does not fall quickly with declining inflation in the 80s and 90s.
The use of the 20-year rolling sample produces lower µ (than the expanding sample) as
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the estimation sample moves away from those periods, but still the adjustment in the
long-run mean is not fast enough, compared with the surveys.53
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Figure 6: Long-run means from the ARMA(1,1) model estimations of US quarterly inflation data. The
long-horizon BCFF survey inflation forecast is also shown (* symbol).

The key point that emerges from this discussion is that surveys produce a more suc-
cessful forecast of inflation in large part because they capture the trend component of
inflation better than time-series models like the ARMA(1,1) model. In stationary time
series models (e.g., models in Figure 5), forecasts tend to converge to a value close to
the sample mean, while nonstationary models put too much weight on recent past; thus
there is scope for judgmental information to play a role, especially if trend inflation
varies significantly over time. These considerations shed light on the attention that pol-
icy makers pay to long-term inflation expectations (better indicator of the trend inflation
than realized inflation) and also on the use of judgmental forecasts at central banks like
the Federal Reserve.

The importance of modeling the variation of long-term expectations deepens the chal-
lenge for macro-finance models: besides the specification challenge, the nearly nonsta-
tionary nature of the inflation process indicated by the substantial variability of long-
term survey forecasts poses considerable empirical difficulties (discussed in Section 5).
These challenges notwithstanding, the discussions in this paper can be viewed as en-
couraging for attempts to use term structure models to extract inflation expectations: it

53ABW (2007a) also note that survey forecasts’ ability to quickly adapt to major changes in the
economic environment contributes to the superior performance of the surveys. While the majority of
ABW’s estimations were done with expanding samples, they also examine the forecast RMSEs based
on rolling-sample estimation for a subset of their models. Because their rolling sample (10 years) is
shorter than the 20-year rolling sample used here, ABW’s rolling-sample results are even closer to the
surveys. For example, the ratio of the AR model RMSE and the survey RMSE in the post-1995 window
is 0.879/0.861, very close to 1.
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makes intuitive sense that the yield curve contains, at least, information about trend in-
flation, and the indication that the near-term informational advantage of surveys seems
to wear out quickly (beyond a few quarters) gives some hope that models could capture
much of the variation in inflation expectations and compete with surveys.54

7. Concluding remarks

I conclude this paper with a recapitulation of some of the key points and some remarks
on how they are related to each other and to other points also made. In particular,
consider the following points: (1) Not all of the variation in key macro variables is
related to yield curve movements. (2) The yield curve contains useful information about
the trend component of inflation. (3) The no-arbitrage principle might not be sufficient
to guarantee sensible outputs from macro-finance models in practice.

As I have stressed in Section 2, the spanning argument is the basis of the no-arbitrage
framework; hence the presence of a short-run inflation component that is not related to
yield curve movements may undermine the validity of the models that use inflation as a
state variable. Such a component may also cause difficulties in the estimation stage as
well, since taking too seriously the one-period conditional moments that involve it may
not be justified (Section 5.3). Furthermore, they may cause special difficulties when
one tries to go beyond the affine-Gaussian setup to model time-varying uncertainties
about macro variables explicitly. For example, as discussed in Section 4.2, monthly CPI
inflation in recent years has been more volatile than in the 1990s, but there isn’t strong
evidence that this is reflected in the yield curve (e.g., as an increased term premium);
an attempt to link them may thus lead to greater specification errors.

I have also argued in this paper that much of the “spanned” component of inflation
(the part of inflation that is related to the yield curve) is about the trend component
(whose importance was stressed in the discussion in Section 6 of why surveys perform
better). This can help resolve the puzzle that the “conventional wisdom” that the change
in nominal yields often reflects changes in inflation expectations dies hard, despite the
poor performance of inflation forecasting models involving term structure variables. In
some sense, the latent-factor models can be viewed as a way to represent market’s
implicit processing (filtering) of information.

No-arbitrage models of the term structure have been viewed as a promising way to
go beyond the restrictive assumptions implicit in the expectations hypothesis (about

54Although ABW (2007a) find that survey forecasts cannot be improved by combination with models
that they consider, few policy makers would regard survey forecasts as the ultimate measure of inflation
expectations. Consider, for example, the fact that between 1999 and 2006 the 10-year CPI inflation
expectation from the SPF survey has been almost stuck at 2.5%. While there is a broad consensus
that long-term inflation expectations were “better anchored” in the 2000s than in the earlier decades,
it may be a stretch to regard that long-term inflation expectation has become so well anchored as to be
practically immovable. This may be one example in which the yield curve contains useful information
that is unavailable in the SPF survey.
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how risk is incorporated in the yield curve). However, reduced-form affine-Gaussian no-
arbitrage models with flexible specification of market price of risk can quickly become
“too unrestrictive”, with a profusion in the number of parameters of the market price
of risk. In other words, the no-arbitrage principle by itself may be too weak to provide
enough discipline in the model. Note also that the two technical problems with esti-
mation discussed in Section 5 (overfitting and small sample problems) can be viewed as
an extension of the specification discussion, as the main source of the problems can be
viewed as there being not enough information in the data or not enough structure in the
model. Coming up with an effective and non-ad hoc structure on the market price of
risk and other parameters of macro-finance models thus remains an important challenge
for these models.

Appendix A. derivation of the maximally identified models

This Appendix shows that any n-dimensional “yield-only” internal basis affine-Gaussian
model (1) whose feedback matrix has all-real eigenvalues can be transformed to the normalized
form

(55) K̃ =





κ1 0 0
0 κ2 0
0 0 κ3



 , Σ̃ =





1 0 0
Σ21 1 0
Σ31 Σ32 1



 , µ̃ = 03×1, ρ̃o, ρ̃, λ̃a, Λ̃b,

written out for the case n = 3. Note that we have specified K ≡ I − Φ, instead of Φ, and
matrices and vectors that are not fully written out are unrestricted.

First, diagonalize the K matrix, i.e., write

(56) K = PDP−1,

where D is the diagonal matrix consisting of the eigenvalues of K. Now, make an invariant
transformation x → z = P−1(x − µ). Then

(57) ∆zt+1 = −Dzt + P−1Σǫt.

Define an new normal random vector et,

(58) et = Oǫt,

with an orthogonal matrix O (i.e., OO′ = I) such that P−1Σǫt = Wet, where W is a lower
triangular matrix. This can be easily constructed by making use of the Cholesky decomposition,
i.e.,

(59) W = chol(Ω), Ω = P−1ΣΣ′P−1′ = WW ′.

Thus we have

(60) O = W−1P−1Σ.

Now, define x̃ = Sz, where S is a diagonal matrix whose diagonal elements are the inverse of
the diagonal elements of W , i.e.,

(61) S = (diag(W ))−1.
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We have

(62) ∆x̃t+1 = −Dx̃t + Tet,

where

(63) T = SW

is by construction a lower triangular whose diagonal elements are 1’s. We can now express the
pricing kernel in terms of x̃t and et, for example, λ′

tǫt+1 = λ̃′
tet implying λ̃t ≡ λ̃a +Λ̃bx̃t = Oλt.

The model parameters (denoted with tildes) in the new normalization are given by the old
model parameters as follows:

K̃ = D, Σ̃ = T, ρ̃o = ρo + ρ′µ, ρ̃ = S−1P ′ρ,

λ̃a = O(λa + Λbµ), Λ̃b = OΛbPS−1,(64)

where D,P, S,O, T were defined in eqs. (56), (60), (61), and (63).
Therefore, a normalization like the following,

(65) K =





κ11 0 0
κ21 κ22 0
κ31 κ32 κ33



 , Σ = I3×3, µ = 03×1, ρo, ρ, λa, Λb,

is equivalent to the normalization in eq. (55), i.e., it can be written in the form of eq. (55)
through an invariant transformation (64).

Appendix B. bias in the Mishkin regression

This appendix presents a heuristic demonstration of a bias in the Mishkin regression. Sup-
pose that nominal yields are entirely inflation expectations (no real yield component). Thus,

(66) yτ,t = E(πt+τ,t)

for general τ . Now suppose that the inflation process is given by the bivariate model, eq. (32),
in which case yτ,t takes the form

(67) yτ,t = ατ (φ)χt,

where

(68) ατ (φ) ≡ (1 − φτ )/(τ(1 − φ)).

It is well known that φ tends to be downward biased in the conventional estimation. Thus, we
can write heuristically

(69) πt+τ,t = ατ (φ∗)χt + e,

where φ∗ < φ. Thus,

(70) πt+τ,t − πt+u,t = (ατ (φ∗) − αu(φ∗))χt + e.

Using eq. (67), this can be written

(71) πt+τ,t − πt+u,t = β(yτ,t − yu,t) + e,

where

(72) β =
ατ (φ

∗) − αu(φ∗)

ατ (φ) − αu(φ)
.
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It can be shown that for φ∗ < φ, we have β > 1.
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