Nanoscale Studies of Plant Protective Membranes

J.D. Batteas and R.E. Stark

Department of Chemistry and Institute for Macromolecular Assemblies CUNY-College of Staten Island

Dr. Ning Chi, Dr. Andy Round, Racha Estephan, James Saccardo and Deena New

> National Research Initiative Competitive Grants Program

nl Research e Competitive Program

159×□5.00 kγNanotech Grantees Workshop, 9/16/03159×□5.00 kγ16 mmCL:-10.0Prof. William L'Amoreaux, Dept. of Biology, CUNY-College of Staten Island (SEM)

Developing Nanoscale Approaches for the Investigation of Plant Surfaces and Interfaces

- The outermost surfaces of the fruits and leaves of higher plants are coved by a cuticular membrane $\sim 100 \text{ nm} 20 \text{ }\mu\text{m}$.
- Functions as the plant's primary protective barrier.
- Breakdown of this barrier by pathogens is associated with ~ \$10 billon annual loss due to crop damage.^{1a} (20 % worldwide loss in cash crops^{1b})

 Surface morphology Important for wetting behavior. 3-D topology provides "ecological landscapes" for micro-organisms. 	AFM SEM
Mechaber et al., Mapping Leaf Surface Landscapes, PNAS, 93 (1996) 4600.	1
Surface and membrane interfacial rheology	
Critical for understanding fracture of the membrane	AFM
allowing pathogenic access.	NMR
→ Focus on water and temperature. (surface vs. bulk?)	
- Surface chemistry	1.200
Important for waterproofing of plant tissues.	AFM
Influences adsorption of agrochemicals (wetting behavior).	SIMS

^{1a}G.N. Agrios, *Plant Pathology*, Academic Press, New York, 1988; ^{1b}E.C. Oerke, H.W. Dehne, F. Schonbeck and A. Weber, *Crop Production and Crop Protection*, Elsevier, Amsterdam, 1994.

Adapted from Bechinger et al. Science (1999) 1896.

A closer look at the membrane . . .

We examine a model system **b** tomato fruit cuticle (chemically simple)

- 1) Enymatically isolated to remove outer underlying plant cell
- 2) Investigate investigate influence of water on the surface and bulk rheology → intact membrane

isolated biopolymer support (lipids extracted)

- Avg. roughness ~ 20 nm rms.

-Avg roughness ~ 7 nm rms.

Interfacial Structure...

Pea leaf – polysaccharide Bundles (~ 20 nm)

Crystalline lipids on Pea Leaf

Pea leaf provided courtesy W. Abraham, Monsanto

Relative Force (nN)

Nanoindentation...

Compare force-distance curves for an ideally hard surface (Si wafer) to those from cuticular membrane.

Analyze indentation data using a simple Hertz contact mechanics model.

Hertz Contact Mechanics Model $A = \pi \left(\frac{R \cdot L}{K}\right)^{2/3}$

$$K = \frac{4}{3} \left(\frac{1 - v_{tip}^2}{E_{tip}^2} + \frac{1 - v_c^2}{E_c} \right)^{-1}$$

- L = load(N)
- v = Poisson ratio

$$E_c = \frac{3K\left(1 - {\nu_c}^2\right)}{4}$$

E = Elastic modulus

In the limit of E_{tip} >>> E_{cutin}

Elasticity studies of Isolated Cutin Membrane (no lipids) vs. water uptake. . .

Networked structure enhances rigidity parallel to the surface.

Elasticity studies of the native membrane (w/lipids) vs. water uptake. . .

• AFM shows no sensitivity to water uptake — sees only the lipid covered surface.

Suggests that the lipid coating is > 30 nm in thickness.

• Bulk response shows plasticizing impact of lipids and water uptake.

Modulated force and friction mapping of plant surfaces

Spatial mapping of viscoelastic properties. Surface chemical heterogeneity.

Friction Contrast Map on Pea Leaf Surface

Probing Surface Thermal transitions. . .

NMR Studies of Biopolymer Molecular Motions

Experiment	Dynamics	Significance	Example
T ₁ (¹³ C)	~ 75 MHz	Segmental motions (bulk modulus)	Cutin chains vs. cross- links Dry vs. wet
Τ ₁ ρ(¹³ C)	~ 50 kHz	Overall chain motions; impact strength	cutin/wax
T ₁ ρ(¹ Η) 2D-WISE	~ 50 kHz	Spin diffusion (intimate mixing)	Cutin/wax association

Relationship between biopolymer structure and bulk mechanical properties.

2-D ¹H-¹³C NMR WISE Measurements

- Use methylene lineshapes to discern information about flexibility.

NMR-Derived Flexibility of Bulk-Methylene Groups in Tomato Cuticle

¹H Linewidth^{*}

Avg. wt% Water	Broad Component (kHz)	Narrow Component (kHz)	% Narrow Component#
0.9	38.2	5.3	9
1.3	36.2	5.7	12
2.0	32.3	4.9	12
32.0	31.3	4.7	18

Most significant changes in linewidth appear under the most saturated conditions.

Narrow component => relatively mobile CH_2 chain segments Broad component => more rigidly bound CH_2 groups (i.e. near covalent crosslinks)

From spectral deconvolution of narrow and broad components of the chain-methylene resonance; estimated uncertainties are 20%.

Rotating-Frame ¹³C NMR Relaxations for Carbons in Tomato Cuticle

<T_{1p}(C)>^{*}, ms

	(CH ₂) _n	<i>C</i> HOCOR, CHOH
0.9	2.3 ± 0.1	5.5 ± 1.0
1.3	2.7 ± 0.2	5.2 ±1.6
2.0	2.8 ± 0.2	5.8 ± 1.5
32.0	2.0 ± 0.1	3.1 ± 0.3

Main chains

Cross-links

NMR-Derived Cooperative Motions at Carbon Sites in Tomato Cuticle

	Average ¹ H Rotating-Frame Relaxation Rate (ms ⁻¹)					
	Dewaxed Cuticle		Lipid	Native Cuticle		e
Hydration	Cutin (CH ₂) _n	CH _n O	Wax (CH ₂) _n	Cutin (CH ₂) _n	Wax (CH ₂) _n	CH ["] O
Dry (0% RH)	0.40	0.24	0.24	0.28	0.30	0.24
Saturated	0.48	0.18	0.050	0.38	0.32	0.15

Hydration alters slower <u>cooperative</u> motions in both dewaxed and native cuticles: more efficient for acyl chains.

Summary . . .

- Water uptake weakens hydrogen-bonded crosslinks affording increased chain mobility.
- Observed more rapidly by AFM due to surface saturation.
- Bulk rheology and AFM results compared at the extremes, are consistent with NMR WISE data.
- When present, lipids dominate the surface thermomechanical properties.

and currect directions . . .

- Adsorption of model agrochemicals.
 - 1) Triton surfactacts
 - 2) Glyphosates
- Surface chemical mapping by SIMS

Agrochemical Delivery

Importance

• Agrochemical spray on leaves

Ways to enhance spreading

- Temperature
- Coating the surface
- Addition of a surfactant
 - ----> Surfactant enhanced spreading

Alex Couzis, CCNY

Agrochemical Adsorption Studies

How do they impact wetting?

How do they impact foliar uptake?

e.g. 2-(1-naphthyl)acetic acid - TX-100 increases sorption by the cuticle.

Surface Modification of Surfaces

Figure 3. Photographs of water droplets placed on the AKD surfaces: (a) rough surface (the contact angle = 174°); (b) flat surface (the contact angle = 109°).

Figure 4. Surface SEM images of a super water-repellent AKD surface at different magnification. The AKD was solidified in a dry N_2 gas tunosphere at room temperature and left standing for curing under the same conditions for 3 days.

Surface Modified using Alkylketene dimer from melt onto glass

Water Contact angle on: •Flat Surface 109 •Fractal Surface 174 (max)

Tsuji et. al., J.Phys Chem., 1996

is widely used to find a fractal dimension Self-similarity and

Drop Impact Dynamics

	Static Water Contact Angle
Paraffin	97 ⁰
Stainless Steel	67 ⁰
Glass	370

Tran et. al. AIChE 1997

Figure 4. Impact of a 2.7 water droplet on (a) the paraffin wax block; (b) the stainless-steel plate; (c) the glass slide.

Spatial Chemical Mapping: Secondary Ion Mass Spectroscopy (SIMS)

Hydrogen SIMS Chemical Map (100 x 100 μ m)

Prior to lipid abrasion After lipid abrasion

1) Surface Chemical Mapping

- Lateral resolution of ~ 100 nm
- Depth resolution of ~ 2 nm.
- Lipid abrasion or erosion by the environment. => Agrochemical wetting

2) Depth profiling

- Epicuticular lipid surface compositions (and thickness).
- -Agrochemical intercuticular diffusion (Only bulk diffusion rates have ever been measured). => Early diffusion rates => Concentration profiles => Diffusion pathways

In collaboration with Steve Schwarz, Queens College/CUNY

Applications of nanotech to agriculture . . .

- 1) Tools of nanotech applied to agriculture problems.
- 2) Apply design technologies for custom surfaces to agriculture.

Implications of nanotech to agriculture...

- Design of metrology tools to assess crop protection mechanisms e.g. Genetic modification of cuticular barriers Spreading mechanisms of agrochemicals
- 4) Design of better measurement tools coupled with directed design of agrochemicals and genetic modification should directly impact need for agrochemicals.