

.

•

1.25	watts,	115 1	V ac,	400	cps
------	--------	-------	-------	-----	-----

Power

Time constant in liquid Approximately 20 seconds nitrogen or alcohol

The 20-second time constant was measured by plunging the sensor first into liquid nitrogen at -317° F and then into dry ice/alcohol at -91° F. Tests were made under one-g and l atmosphere and are not applicable to supercritical oxygen and zero-g.

Telemetry would indicate the temperature of the sensor itself, but under rapidly changing conditions the sensor could remain almost unaffected by local temperature changes in other parts of the tank. The effect of various failure modes on the transducer and its output signal are presented in table B7-I.

OXYGEN TANK QUANTITY INSTRUMENTATION

The oxygen tank quantity gage is shown in figure B7-1. This gage senses the average dielectric constant of oxygen in the cylindrical annular volume between two concentric aluminum tubes. The dielectric constant is proportional to density, which in turn is proportional to the quantity of oxygen in the tank. The gage is approximately 2 feet long; the outer tube is about 0.85-inch ID and the inner tube is about 0.65-inch OD to form two plates of a capacitor with 0.10-inch spacing. The gage mounts in the center of the tank.

The gage capacitance is connected in series with a reference capacity to form a capacitive 400-cycle ac voltage divider as shown in figure B7-3 and is adjusted to apply zero volts input to the amplifiers when the tank is empty. As the tank is filled, the gage capacity increases, applying a voltage to the amplifier input. This voltage is amplified and rectified to provide an output signal voltage which increases to 5 volts dc when the tank is full.

The reactive voltage developed across the probe capacitance will change as rapidly as capacitance changes. The rectifier filter on the output of the signal conditioner introduces a time constant of about 0.022 second in the instrument response.

TABLE B7-I.- FAILURE MODES OF THE OXYGEN TANK TEMPERATURE TRANSDUCER

Failure mode	Indication	Resulting damage
Any of the four temperature sensor leads shorted to 115 V ac line (1, 2, 3, 4)	Full scale output followed by zero output	Would fail signal condi- tioner amplifier, sensor element, and pulse code modulation gate
Temperature sensor shorted to the density probe element	*No change in output	Probably no circuit element damage
Temperature sensor shorted to ground (either side)	*Zero output signal	No circuit damage
Dc power shorted to temper- ature sensor	Full scale output	Would fail signal condi- tioner output
Either or both sensor leads open	Full scale output	None
400 Hz power input to power supply discon- nected.	Output drifts to zero as charge in power supply filter capac- itors dis- charge.	None
Temperature sensor leads shorted to each other	*Zero out- put	None
Any one of leads 1, 3, or 4 broken (open) (fig. B7-2)	Zero out- put	No circuit damage
Open lead 2 (fig. B7-1)	*Immediate rise to full scale followed by a linear decay to zero in approx. 10 msec	No circuit damage

*Indication verified by test

ner name

.

Figure B7-3 .- Oxygen quantity gage block diagram.

а.

÷.,

۰ ^۱

Gage parameters are as follows:

Tank condition	Empty	Full
Density	0	69.5 lb/ft ³
Dielectric Constant	1.0	1.45
Capacitance	121	175 picofarads
Output voltage	0	5 V de
Output impedance		500 ohms
Power		2-1/2 watts
Supply voltage		115 V, 400 cycles
Accuracy		2.68 percent full scale
Value of fixed capacitance		1000 picofarads
Data sampled		Once per second

This method of gaging works well for single-phase fluids in any gravity environment so long as the fluid is uniformly mixed with no significant density variations. But under zero-g, density and temperature variations can exist in the fluid, especially when heat is added without any fluid movement (convection). Under these conditions, the gage measures the average density of the oxygen between the two tubes which may or may not be representative of the average density in the tank.

If the gage is either opened or shorted, the signal conditioner is overdriven and a greater-than-100-percent quantity is indicated. Other malfunction characteristics follow.

Failure Mode

Effect

- 1. Elements of probe shorted to Full scale output each other
- 2. Wire to either element Full scale output disconnected from probe
- 3. Outside element of probe
or its lead wire shorted
to groundMeasurement indicates
some value between zero
and full scale
- 4. Inside element of probe Random output tending or its lead shorted to towards zero ground
- 5. Clear shorted probe
 6. Clear open probe fault
 6. Clear open probe fault
 0.7 second, then increases to correct value in about 1-1/2 second
 0.7 second
 0.7 second, then increases to correct value in about 1-1/2 second
- 7. Intermittent shorts, any Output becomes irregular combination sawtooth

OXYGEN TANK 2 PRESSURE INSTRUMENTATION

The location of the oxygen tank pressure measuring instrumentation is shown schematically in figure B7-4. Pressure transducers for both tanks are located in a valve module assembly along with the pressure switches and pressure relief valves as shown in figure B7-5. The valve module assembly is connected to the oxygen tanks by 19-foot lengths of 1/4-inch and 3/16-inch OD tubing.

The pressure transducer consists of a diaphragm 0.2 inch in diameter and 0.015 inch thick to which are attached 4 chips of strain-sensitive semi-conductor materials electrically connected into a bridge circuit. When pressure is applied, deflection of the diaphragm changes the electrical resistance of the semi-conductor clips to unbalance the bridge and develop an electrical output proportional to the applied pressure. This output is amplified so that full-scale pressure of 1050 psia gives a 5 V dc output which is indicated on the CM instrument panel and telemetered to the ground through the PCM telemetry system.

Figure B7-4.- Oxygen system.

B-135

. .

Figure B7-5.- Pressure transducer, relief valve, and pressure switch.

Other pressure transducer parameters are as follows:

Range	19 to 1080 psia					
Accuracy	±2.68 percent fuel range					
Output voltage	O to 5 V dc					
Output impedance	500 ohms					
Power	1.5 watts					
Voltage supply	28 V dc					
Data sampled	Once per second					

Under normal operating conditions oxygen flow through the 19 feet of tubing is about 1.5 pounds per hour and the pressure drop through the line is negligible.

The physical dimensions and electronic characteristics of the pressure transducer are such that its time lags are negligible as compared with acoustical lags of the tubing. If the relief valve opens (normally set at 1008 psia) or if the pressure in the tank changes suddenly, the delta P is communicated through the tube at sonic velocity (813 fps at 288° R) so that a delay of about 23 msec would be expected exclusive of pressure drops due to flow through the tubing. Tests run at MSC show that when a step pressure increase is applied at the tank end of the system, pressure indicated by the transducer begins to change in about 16 msec and reaches 63 percent of the pressure change in about 40 msec.

PULSE CODE MODULATION SYSTEM DESCRIPTION

The instrumentation system on the Apollo spacecraft interfaces with a pulse code modulation (PCM) telemetry system. In such a system, measurements are not presented continuously, but are sampled in time and quantitized in amplitude. Signal conditioners standardize the outputs from all sensors to a range of 0 to 5 volts. This voltage is fed into the PCM system where it is sampled and encoded for transmission to the ground.

The PCM system basically consists of a number of electronic input switches and an analog-to-digital encoder, all of which are controlled by a programmer. The analog switches, through programmer control, are sampled sequentially with a sample period of 40 microseconds for each

input. The sampled voltage is then converted by the encoder into an 8-bit binary word which is subsequently transmitted to the ground. The sampling rate for each channel is selected on the basis of the rapidity with which that channel value changes under normal operation. Programmer sampling rates are 200, 100, 50, 10, and 1 sample per second. The end result of this operation when the system is in the high-bit-rate mode is a serial stream of data consisting of 128 eight-bit words in each frame with 50 frames transmitted each second. This corresponds to a bit rate of 51,200 bits per second. In the low-bit-rate mode, 1600 bits per second are transmitted and the measurements are made at a reduced sampling rate.

In evaluating telemetry data, consideration must be given to the fact that the system samples data in time and quantitizes in amplitude.

Figure B7-6 depicts an analog signal and its equivalent digital representation to illustrate several limitations of PCM telemetry systems.

1. Fast transients which happen to occur between the sample times will not be recorded.

2. A long transient whose peak amplitude occurs between sample times will be recorded with an incorrect peak amplitude.

3. A low-amplitude transient may go completely unrecorded even if its peak amplitude occurs at a sample time.

4. A change of one count in a parameter does not necessarily mean that the analog quantity has changed by an amount equal to the difference in count values. If the analog quantity happens to be very close to the switchover point between counts, a small change can cause the count to change.

5. If the analog quantity remains for a long time close to the switchover point from one count to the next, the output may toggle (jump back and forth) from one count to another. This does not indicate that the analog value is actually changing this rapidly but is characteristic of the system when noise is present.

6. In addition to the phenomena illustrated in figure B7-6, it must be recognized that noise in the RF link may cause erroneous data to be received on the ground. Such errors usually appear in the data as values which differ greatly from adjacent outputs from the same channel.

Table B7-II lists the measurements telemetered from the Apollo 13 command and service modules as well as their ranges, sampling rates, and value of one count.

Figure B7-6.- Digital coding and reconstruction of analog signal.

B**-13**9

-

	Measurement		Samples/Second		Units/Count		
Number		Unit	Approx.	Range	High Bit	Low Bit	onit's count
Number	11616	OHIC	Low	High	Rate	Rate	
CA1820T	TEMP CREW HS ABL	°F	-300	+850	1	-	4 - *NL
CA1821T	TEMP CREW HS ABL	°F	-300	+850	1	-	4 - NL
CA1822T	TEMP CREW HS ABL	°F	-300	+850	1	-	4 - NL
CA1823T	TEMP CREW HS ABL SUR LOC 10A	°F	-300	+850	1	-	4 - NL
SA1830T	TEMP SM SKIN	°F	-120	+270	1	-	1.5 - NL
SA1831T	TEMP SM SKIN	°F	-120	+270	1	-	1.5 - NL
SA1832T	TEMP SM SKIN SUBE LOC 74	°F	-120	+270	1	-	1.5 - NL
SA1833T	TEMP SM SKIN	°F	-120	+270	1	-	1.5 - NL
SA2377T	TEMP BAY 2 OX	۰F	-100	+200	1	-	1.2
SA2378T	TEMP BAY 3 OX	°F	-100	+200	1	-	1.2
SA2379T	TANK SURFACE TEMP BAY 5 FUEL	°F	-100	+200	1	-	1.2
SA2380T	TEMP BAY 6 FUEL TANK SURFACE	°F	-100	+200	1	-	1.2
SC00300	QUANTITY H2 TANK 1	PCT	0	100	1	1	0.4
SC0031Q	QUANTITY H2 TANK 2	PCT	0	100	1	1	0.4
SC0032Q	QUANTITY 02 TANK 1	PCT	0	100	1	1	0.4
SC0033Q	QUANTITY 02 TANK 2	PCT	0	100	1	1	0.4
SC0037P	PRESS 02 TANK 1	PSIA	20	1080	1	1	4.0
SC0038P	PRESS 02 TANK 2	PSIA	20	1080	1	1	4.0
SC0039P	PRESS H2 TANK 1	PSIA	0	350	1	1	1.5
SC0040P	PRESS H2 TANK 2	PSIA	0	350	1	1	1.5
SCOOLIT	TEMP O2 TANK 1	°F	-325	+80	1	1	1.6
SC0042T	TEMP O2 TANK 2	°F	-325	+80	1	1	1.6
SCOOL3T	TEMP H2 TANK 1	°F	-425	-200	1	1	1.0
SCOOL4T	TEMP H2 TANK 2	°F	-425	-200	1	1	1.0
CC0175T	TEMP STATIC	°F	+32	+248	1	-	1
ссо176т	TEMP STATIC	°F	+32	+248	1	-	1
CC0177T	TEMP STATIC	°F	+32	+248	1	-	1 - NL
CC0200V	AC VOLTAGE MAIN	VAC	0	+150	10	1	0.6
CC0203V	AC VOLTAGE MAIN	VAC	0	+150	10	1	0.6
CC0206V	DC VOLTAGE MAIN	VDC	0	+45	10	1	0.18
CC0207V	DC VOLTAGE MAIN	VDC	0	+45	10	1	0.18
1	000 0		L				<u> </u>

NL - Non Linear

Measurement					Samples/Second			
Number	Title	Unit	Approx Low	. Range High	High Bit Rate	Low Bit Rate	Units/Count	
ćC0210V	DC VOLTAGE BAT-	VDC	0	+45	10	1	0.18	
CC0511A	DC VOLTAGE BAT-	VDC	0	+45	10	1	0.18	
CC0215C	DC CURRENT BATT	AMP	0	+5	10	l	0.02	
CC0222C	DC CURRENT BATTERY A	AMP	0	+100	10	1	0.4	
CC0223C	DC CURRENT BATTERY B	AMP	0	+100	10	1	0.4	
CC0224C	DC CURRENT BATTERY C	AMP	0	+100	10	1	0.4	
CC0232V	DC VOLTAGE BAT- TERY RELAY BUS	VDC	0	+45	10	1	0.18	
SC2060P	N2 PRESSURE FC 1 REGULATED	PSIA	0	75	10	-	0.3	
SC2061P	N2 PRESSURE FC 2 REGULATED	PSIA	0	75	10	-	0.3	
SC2062P	N2 PRESSURE FC 3 REGULATED	PSIA	0	75	10	-	0.3	
SC2066P	02 PRESSURE FC 1 REGULATED	PSIA	0	75	10	-	0.3	
SC2067P	02 PRESSURE FC 2	PSIA	0	75	10	-	0.3	
SC2068P	02 PRESSURE FC 3	PSIA	0	75	10	-	0.3	
SC2069P	H2 PRESSURE FC 1	PSIA	0	75	10	-	0.3	
SC2070P	H2 PRESSURE FC 2 REGULATED	PSIA	0	75	10	-	0.3	
SC2071P	H2 PRESSURE FC 3	PSIA	0	75	10	-	0.3	
SC2081T	TEMP FC 1 COND	°F	+145	+250	1	1	0.4	
SC2082T	TEMP FC 2 COND EXHAUST	°F	+145	+250	1	1	0.4	
SC2083T	TEMP FC 3 COND	°F	+145	+250	1	1	0.4	
SC2084T	TEMP FC 1 SKIN	°F	+80	+550	1	1	2	
SC2085T	TEMP FC 2 SKIN	°F	+80	+550	1	1	2	
SC2086T	TEMP FC 3 SKIN	°F	+80	+550	1	1	2	
SC2087T	TEMP FC 1 RADIATOR OUTLET	°F	-50	+300	l	1	1.4	
SC2088T	TEMP FC 2 RADIATOR OUTLET	°F	-50	+300	1	1	1.5	
SC2089T	TEMP FC 3 RADIATOR OUTLET	°F	-50	+300	1	1	1.5	
SC2090T	RAD INLET TEMP FC 1	۰ _F	-50	+300	1	-	1.5	
SC2091T	RAD INLET TEMP FC 2	۰F	-50	+300	i	-	1.5	
SC2092T	RAD INLET TEMP FC 3	°F	-50	+300	1	-	1.5	
SC2113C	DC CURRENT FC 1	AMP	0	+100	10	1	0.4	
	OUTLET							

B-141

41.4

ю. н

	Measurement		Samples/Second		Units/Count		
Number	Title	Unit	Approx	. Range	High Bit	Low Bit	
Manoer	11016	OHIC	Low	High	Rate	Rate	
SC2114C	DC CURRENT FC 2 OUTPUT	AMP	0	+100.0	10	1	0.4
SC2115C	DC CURRENT FC 3 OUTPUT	AMP	0	+100.0	10	1	0.4
SC2139R SC2140R SC2141R SC2142R SC2142R SC2143R SC2144R	FLOW RATE H2 FC 1 FLOW RATE H2 FC 2 FLOW RATE H2 FC 3 FLOW RATE H2 FC 3 FLOW RATE 02 FC 1 FLOW RATE 02 FC 2	LB/HR LB/HR LB/HR LB/HR LB/HR		.2 .2 .2 1.7 1.7	10 10 10 10	- - - -	.001 - NL .001 - NL .001 - NL .005 - NL .005 - NL
SC2144N	PH FACTOR WATER		NORM	HIGH	10	1	.005 - NL
SC2161X	PH FACTOR WATER		NORM	HIGH	10	1	
SC2162X	PH FACTOR WATER COND FC 3		NORM	HIGH	10	1	
CC2962C	CSM TO LEM CURRENT MONITOR	AMP	0	+10	10	1	0.04
CD0005V	DC VOLTAGE PYRO BUS A	VDC	0	+40	10	-	0.15
CD0006V	DC VOLTAGE PYRO BUS B	VDC	0	+40	10	-	0.15
CD0023X CD0024X	CM-SM RELAY CLOSE A CM-SM SEP RELAY CLOSE B			SEP SEP	10 10	1 1	
CD0123X	SLA SEPARATION RELAY A			SEP	10	1	
CD0124X	SLA SEPARATION RELAY B			SEP	10	1	
CDO130X	HAND CONTROLLER INPUT A			ABORT	10	1	
CD0131X	HAND CONTROLLER INPUT B			ABORT	10	1	
CDO132X	EDS ABORT LOGIC INPUT NO 1		VOTE/ OFF	ARM	10	1	
CD0133X	EDS ABORT LOGIC INPUT NO 2		VOTE/ OFF	ARM	10	1	
CDO134X	EDS ABORT LOGIC INPUT NO 3		VOTE/ OFF	ARM	10	1	
CD0135X	EDS ABORT LOGIC OUTPUT A			ABORT	10	1	
CD0136X	EDS ABORT LOGIC			ABORT	10	1	
CD0170X CD0171X CD0173X CD0174X CD0200V	RCS ACTIVATE SIG A RCS ACTIVATE SIG B CM RCS PRESS SIG A CM RCS PRESS SIG B DC VOLTAGE LOGIC	VDC	0	ENABLE ENABLE PRESS PRESS + 40	10 10 10 10 10	1 1 1 1	0.15
	BUS A	-	-				

NL - Non Linear

	Measurement		Samples/Second				
Number	Title	Unit	Approx Low	. Range High	High Bit Rate	Low Bit Rate	Units/Count
CD0201V	DC VOLTAGE LOGIC	VDC	0	+ 40	10	-	0.15
CD0230X CD0231X CD1154X	FWD HS JETTISON A FWD HS JETTISON B CSM-LEM LOCK RING SEPE BELAY A			JETT JETT SEP	10 10 10	1 1 1	
CD1155X	CSM-LEM LOCK RING SEP RELAY B			SEP	10	1	
CEOOOLX	DROGUE DEPLOY RELAY			DEPLOY	10	1	
CE0002X	DROGUE DEPLOY RELAY CLOSE B			DEPLOY	10	1	
CE0003X	MAIN CHUTE DEPL DRG			DEPLOY	10	1	
CE0004X	MAIN CHUTE DEPL DRG			DEPLOY	10	l	
CE0321X	MAIN CHUTE DISCON-			DISC	10	1	
CE0322X	MAIN CHUTE DISCON- NECT RELAY B			DISC	10	l	
CF0001P	PRESSURE CABIN	PSIA	0	17	1	1	0.067
CF00021 CF0003P	PRESS 02 SUIT TO CABIN DIFF	IN H2O	-5	+125 +5	10	1 -	0.3 - NL 0.04
CF0005P	PRESS CO2 PARTIAL	MIM HG	0	30.00	1	1	0.12 - NL
CF0006P CF0008T	PRESS SURGE TANK TEMP SUIT SUPPLY MANIF	°F	30 +20	1080 +95	10 1	1 1	4 0.3
CF0009Q	QUANTITY WASTE WATER TANK	PCT	0	100	1	1	0.4 - NL
CF0010Q	QUAN POTABLE H20 TANK	PCT	0	100	1	1	0.3 - NL
CF0012P	PRESS SUIT DEMAND REG SENSE	PSIA	0	17	10	1	0.07
CF0015P	PRESS SUIT COM- PRESSOR DIFF	PSID	0	1.00	10	1	0.0035 - NL
CF0016P	PRESS GLYCOL PUMP	PSIG	0	60	10	1	0.24
CF0017T	TEMP GLYCOL EVAP	°F	+20	+95	l	-	0.3
CF0018T	TEMP GLY EVAP OUTLET LIQUID	°F	+25	+75	l	1	0.2
CF0019Q	QUANTITY GLYCOL	PCT	0	107	10	1	0.5 - NL
CF0020T	TEMP SPACE RADI-	°F	-50	+100	1	1	0.6 - NL
CF0034P	BACK PRESS GLYCOL	PSIA	0	0.25	1	-	0.0008
CF0035R CF0036P	FLOWRATE ECS 02 PRESS OUTLET 02 REG SUPPLY	LB/HR PSIG	0.16 0	1 150	10 10	_ 1	0.003 - NL 0.6

NL - Non Linear

and the second for a construction of the second secon

в-143

Number	Title	Unit	Approx Low	- Range High	High Bit Rate	Low Bit Rate	Units/Count
CF0070P	PRESS SEC GLYCOL	PSIG	0	60	10	1	0.24
CF0071T	TEMP SEC EVAP	۰F	+25	+75	10	1	0.2
CF0072Q	QUANTITY SEC GLYCOL	PCT	0	100	10	1	0.8 - NL
CF0073P	PR SECONDARY EVAP	PSIA	0.05	0.25	1	-	0.0008
CF0120P	PRESS H20 AND	PSIA	0	50	1	-	0.2
CF0157R	RATE GLYCOL FROM	LB/HR	45	330	10	-	0.9 - NL
CF0181T	TEMP GLYCOL EVAP INLET	۰F	+35	+100	1	-	0.3
SF0260T	TEMP PRIMARY RADI-	°F	+55	+120	1	1	0.25
SF0262T	TEMP SECONDARY RADIATOR INLET	°F	+55	+120	1	1	0.25
SF0263T	TEMP SEC RADIATOR	°F	+30	+70	l	1	0.15
SF0266X	RADIATOR FLOW CONT SYS 1 OR 2		SYS 1	SYS 2	10	1	
сго46от	TEMP URINE DUMP	°F	0	+100	1	1	0.4
CF0461T	TEMP WASTE WATER DUMP NOZZLE	°F	0	+100	1	1	0.4
CG1040V	120 VDC PIPA SUPPLY	VDC	+84	+135	1	-	0.2
CG1110V	2.5 VDC TM BIAS	VDC	0	5	1	1	0.02
CG1201V	IMU 28V .8KC 1 PCT	VRMS	0	30	l	-	0.12 - NL
CG1331V	3.2KC 28V SUPPLY	VRMS	0	30	1	-	0.12 - NL
CG1513X CG1523X CG1533X CG2112V	28V IMU STANDBY 28V CMC OPERATE 28V OPTX OPERATE IG 1X RESOLVER OUT- PUT SIN	VRMS	OFF OFF OFF -21	STBY OPR OPR +21	10 10 10 10	1 1 1	0.17
CG2113V	IG 1X RESOLVER OUT-	VRMS	-21	+21	10	-	0.17
CG2117V	IGA SERVO ERROR IN PHASE	VRMS	-3	+3	100	-	0.025
CG2142V	MG 1X RESOLVER OUT-	VRMS	-21	+21	10	-	0.16
CG2143V	MG 1X RESOLVER OUT-	VRMS	~20	+40	10	-	0.16
CG2147V	MGA SERVO ERROR IN	VRMS	-3	+3	100	-	0.024
CG2172V	OG 1X RESOLVER OUT- PUT SINE	VRMS	~21	+21	10	-	0.16

NL - Non Linear

	Measurement		Samples/Second				
Number	Title	Unit	Approx Low	. Range High	High Bit Rate	Low Bit Rate	Units/Count
CG2173V	OG 1X RESOLVER OUT-	VRMS	-21	+21	10	_	0.16
CG2177V	OGA SERVO ERROR	VRMS	-3	+3	100	_	0.025
CG2300T	PIPA TEMPERATURE	°F	+119	+140	1	1	0.08
CG3721V	SHAFT CDU DAC OUT-	VRMS	-12	+12	10	-	0.09
CG3722V	TRUNNION CDU DAC	VRMS	-12	+12	10	-	0.09
CG5040X	CMC WARNING		WARN		10	1	
СН3500Н	FDAI CM/SM ATT ERBOR PITCH	DEG	-5 -15	+5	50	-	MM ,
СН3501Н	FDAI CM/SM ATT	DEG	-5	+5	50	-	MM
СН3502Н	FDAI CM/SM ATT	DEG	-5 5	+5	100	-	MM
CH3503R	FDAI SCS BODY RATE PITCH	DEG/ SEC	-1 -5	+1 +5	100	-	MM
CH3504R	FDAI SCS BODY RATE YAW	DEG/ SEC	-10 -1 -5	+10 +1 +5	100	_	ММ
CH3505R	FDAI SCS BODY RATE ROLL	DEG/ SEC	-10 -1 -5	+10 +1 +5	100	-	MM
СН3517Н	GIMBAL POSITION	DEG	-50 -5	+50 +5	100	-	0.04
СН3518Н	GIMBAL POSITION	DEG	-5	+5	100	-	0.04
сн3546х	RCS SOLENOID ACT		FIRE/	ARM	200	-	
СН3547Х	RCS SOLENOID ACT		FIRE/	ARM	200	-	
сн3548х	RCS SOLENOID ACT		FIRE/	ARM	200	-	
сн3549х	RCS SOLENOID ACT		FIRE/	ARM	200	-	
сн3550х	RCS SOLENOID ACT		FIRE/	ARM	200	-	
СН3551Х	RCS SOLENOID ACT		FIRE/	ARM	200	-	
СН3552Х	RCS SOLENOID ACT B3/15/-X		FIRE/	ARM	200	-	
СН3553Х	RCS SOLENOID ACT		FIRE/	ARM	200	-	
сн3554х	RCS SOLENOID ACT		FIRE	ARM	200	-	
СН3555Х	RCS SOLENOID ACT D2/22/Z		OFF FIRE/ OFF	ARM	200	-	

MM - Multiple Mode Calibration

.....

• • • • •

B**-1**45

محمد المحمد والمحمد والمحمد والمحمد والمحمد والمحافظ

the state of the second second second

the second s

Measurement					Samples/Second		Units/Count
			Approx.	Range	High Bit	Low Bit	011202,22
Number	Title	Unit	Low	High	Rate	Rate	
сн3556х	RCS SOLENOID ACT		FIRE/	ARM	200	-	
СН3557Х	D1/21/-Z RCS SOLENOID ACT		FIRE/	ARM	200	-	1
сн3558х	B2/12/-Z RCS SOLENOID ACT		FIRE/	ARM	200	-	
сн3559Х	Al/Y RCS SOLENOID ACT		FIRE/	ARM	200	-	
снз560х	C2/Y RCS SOLENCID ACT		FIRE/	ARM	200	-	
CH3561X	RCS SOLENOID ACT		FIRE/	ARM	200	~	
СН3574Х	TRANSLATIONAL		OFF	ON	10	1	
СН3575Х	TRANSLATIONAL		OFF	ON	10	1	
сн3576х	TRANSLATIONAL		OFF	ON	10	1	
СН3577Х	TRANSLATIONAL		OFF	ON	10	1	
сн3578х	TRANSLATIONAL		OFF	ON	10	1	
CH3579X	TRANSLATIONAL		OFF	ON	10	1	
СН3582V	SCS TVC AUTO COM-	VDC	-10	+10	100	-	0.08
CH3583V	SCS TVC AUTO COM-	ADC	-10	+10	100	~	0.08
СН3585Н	ROT CONTROL/MTVC	VDC	-10	+10	50	-	0.078
СН3586Н	ROT CONTROL/MTVC	VDC	-10	+10	50	-	0.08
СН35871	I ROT CONTROL/MTVC	DEG	-11	+11	50	-	0.087
сн3588)	ATTITUDE DEADBAND		MAX	MIN	10	1	
CH35902	HIGH PRO RATE LIMIT		LOW OFF	HIGH ON	10 10		
CH3593	RATE 5 FDAI SCALE ERROR		OFF	ON	10	1	
CH3600	50/15, RT50/10 X SCS DELTA V		CSM	LM/	10	1	
CH 3601	CG-LM/CSM POS X DIR RCS SW NO 1		OFF	CSM ENABLE	10	1	
СН3602	ENABLE POS X DIR RCS SW NO 2		OFF	ENABLE	10	1	
сн3604	EN ABLE POS X SPS SOLENOID		FIRE/	ARM	10	1	
СН3605	DRIVER NO 1 SPS SOLENOID DRIVER NO 2		OFF FIRE/ OFF	ARM	10	1	

	Measurement		Samples/Second				
Number	Title	Unit	Approx	. Range	High Bit	Low Bit	Units/Count
			Low	High	Rate	Rate	
сн3606х	LIMIT CYCLE SW		ON	OFF	10	1	
сн3607х	SC CONTROL SOURCE		СМС	SCS	10	1	
сн3609х	ROLL MAN ATT SW		OFF	ON	10	1	
сн3610х	R MAN ATT SW MIN		OFF	ON	10	1	
CH3612X	PITCH MAN ATT SW ACCEL CMD POS		OFF	ON	10	l	
снз613х	P MAN ATT SW MIN IMP CMD POS		OFF	ON	10	1	
сн3615х	YAW MAN ATT SW		OFF	ON	10	1	
СН3616Х	YAW MAN ATT SW MIN IMP CMD POS		OFF	ON	10	1	
СН3623Х	GYRO 1 COMB SPIN		LOW	NORM	10	1	
СН 3624 Х	GYRO 2 COMB SPIN		WQI	NORM	10	1	
снз6з5х	BMAG MODE SW-ROLL		OFF	ON	10	_	
сн3636х	BMAG MODE SW-ROLL		OFF	ŅN	10	-	
снзбз8х	BMAG MODE SW-PITCH		OFF	ON	10	-	
сн3639х	BMAG MODE SW-PITCH		OFF	ON	10	-	
снз641х	BMAG MODE SW-YAW		OFF	ON	10	-	
снз642х	BMAG MODE SW-YAW		OFF	ON	10	-	
снз666с	TVC PITCH DIFF	MAMP	-800	+800	200	-	
сн3667с	TVC YAW DIFF CURRENT	MAMP	-800	+800	100	-	
CJ0060J	EKG COMMANDER LH	MV	NA	NA	200	-	
CJ0061J	EKG COMMANDER CTR	MV	NA	NA	2 0 0	-	
CJ0062J	EKG LM PILOT BH COUCH	MV	NA	NA	200	-	
CJ0200R	RESP RATE CMD,	ОНМ	NA	NA	50	-	
CJ0201R	RESP RATE CM PILOT CTR COUCH	онм	NA	NA	50	-	
CJ0202R	RESP RATE LM PILOT RH COUCH	онм	NA	NA	50	-	
СКОО26А СКОО27А	CM ACCEL X-AXIS CM ACCEL Y-AXIS	G G	-2 -2	+10 +2	100 100	_	0.05 0.016

B-147

.

	Measurement		Samples/Second		Units/Count		
	Title	Unit	Approx. Range		High Bit	Low Bit	
Number			Low	High	Rate	Hate	
CK0028A CK1051K	CM ACCEL Z-AXIS RADIATION DOS-	G VDC	-2 0	+2 5	100 10	-	0.016 0.02 - NL
CK1052K	RADIATION DOS-	VDC	0	5	10	-	0.02 - NL
CK1053R	IMETER 2 DOSIMETER RATE CHANGE	VDC	0	5	l	-	0.02 - NL
СК1043 СК1044	70mm HASSELBLAD 70mm LUNAR PHOTOG- RAPHY		OFF OFF	ON ON	100 100	-	
SPOOOlP	HE PRESS TANK	PSIA	0.	5000	10	1	10
SP0002T	HE TEMP TANK	°F	-100	+200	1	-	1.C
SP0003F	PRESS OXIDIZER	PSIA	0	250	10	L	7
SPOOD6P	PRESS FUEL TANKS	PSIA	0	250 90	10 10	1 -	0.46
SP0022H	VLV 1 POT B	DEG			10	-	0.46
SP0023H	POSITION FUEL/OX VLV 2 POT B	DEG		90	10	-	0.46
SP0024H	POSITION FUEL/OX VLV 3 POT B	DEG		90	10	_	0.46
SP0025H	POSITION FUEL/OX VLV 4 POT B	DEG	0	90	10		0.8
SPOOLST	TEMP ENG VALVE BODY TEMP ENG FUEL FEED	°F °F	0	+200		1	0.8
SPOOLOT	LINE TEMP ENG OX FEED	°F	0	+200	l	1	0.8
92005Jm	LINE TEMP 1 OX DISTRI-	°F	0	+200	1	-	0.8
gp0057	BUTION LINE TEMP 1 FUEL DISTRI-	°F	0	+200	1	-	0.8
apoo(35	BUTION LINE	°F	0	600	1	-	2.3
SPOOLI	TEMP NO 1	ੇ • ਜ	0	600	1	-	2.3
SP00621	TEMP NO 2	PSTA	0	5000.	1	-	21
SP0600H	TANK PR PRI	DOTA		5000.	1	-	21
SP06011	ENG VLV ACT SYS TANK PR SEC	PD1A		50	l	-	0.2
SP06550	Q QUAN OX TANK 1 PRI-TOTAL AUX	PUT			1	-	0.2
SP06560 SP06570	QUAN OX TANK 2 QUAN FUEL TANK 1	PCT PCT	0	50	1	-	0.2
SP06580	QUAN FUEL TANK 2	PCT	0	60 150	1 100	-	0.6
SP0661	CHAMBER	PSTA	0	300	10	-	1.3
SP0930	P PRESS FUEL SM/ENG INTERFACE D DRESS OY SM/ENG	PSIA	0	300	10	-	1.3
52093L	TNTERFACE		ł		1		

	Measurement		Samples/Second				
Number	Number		Approx.	Range	High Bit	Low Bit	Units/Count
- Humber	IItie	Unit	Low	High	Rate	Rate	
CR0001P CR0002P CR0003T CR0004T CR0035P CR0036P	HE PRESS TANK A HE PRESS TANK B HE TEMP TANK A HE TEMP TANK B PRESS CM-RCS HE MANIFOLD 1 PRESS CM-RCS HE MANIFOLD 2	PSIA PSIA °F °F PSIA PSIA	0. 0. 0 0 0	5000 5000 +300 +300 400 400	1 10 10 10 10	1 1 1 1 1	21 21 1.2 1.2 1.7
SR5001P SR5002P SR5003P SR5004P SR5013T SR5014T SR5015T SR5016T SR5025Q	HE PRESS TANK A HE PRESS TANK B HE PRESS TANK C HE PRESS TANK D HE TEMP TANK A HE TEMP TANK B HE TEMP TANK C HE TEMP TANK D QUAN SM RCS PRO SYS A	PSIA PSIA PSIA °F °F °F °F VDC	0 0 0 0 0 0 0 0 0	5000 5000 5000 +100 +100 +100 +100 5	1 1 1 10 10 10 10 10 10		21 21 21 0.4 0.4 0.4 0.4 0.4 0.4 0.02
SR5026Q	QUAN SM RCS PRO SYS B	VDC	0	5	1	1	0.02
SR5027Q	QUAN SM RCS PRO SYS C	VDC	0	5	1	l	0.02
SR5028Q	QUAN SM RCS PRO	VDC	0	5	l	1	0.02
SR5065T	TEMP ENGINE PACK-	°F	0	+300	l	-	1.2
SR5066T	TEMP ENGINE PACK-	°F	0	+300	1	-	1.2
SR5067T	TEMP ENGINE PACK-	°F	0	+300	1	-	1.2
SR5068T	TEMP ENGINE PACK- AGE D	°F	0	+300	l	-	1.2
SR5729P SR5733P	A HE MANIFOLD PRESS OX MANIFOLD PR SYS A	PSIA PSIA	0 0	400 300	10 10	1 -	1.7 1.3
SR5737P	FUEL MANIFOLD PR SYS A	PSIA	0	400	10	1	1.7
SR5776P	B HE MANIFOLD PRESS	PSIA	0	400	10	1	1.7
SR5780P	OX MANIFOLD PR SYS B	PSIÁ	0	300	10	-	1.3
SR5784P	FUEL MANIFOLD PR	PSIA	0	400	10	1	1.7
SR5817P	C HE MANIFOLD PRESS	PSIA	С	400	10	1	1.7
SR5820P	OX MANIFOLD PR	PSIA	0	300	10	-	1.3
SR5821P	OX MANIFOLD PR SYS D	PSIA	0	300	10	_	1.3

в**-**149

	Measurement		Samples/S	Second	Units/Count		
			Approx.	Range	High Bit	Low Bit	Shirbs, scale
Number	Title	Unit	Low	High	Rate	Rate	
SR5822P	FUEL MANIFOLD PR	PSIA	0	400	10	1	1.7
SR5823P	SYS C FUEL MANIFOLD PR	PSIA	0	400	10	1	1.7
SR5830P	D HE MANIFOLD PRESS	PSIA	0	400	10	1	1.7
BS0080X BS0081X	EDS ABORT REQUEST A EDS ABORT REQUEST B		NORM NORM	ABORT ABORT	10 10	1 1	
CS0150X	MASTER CAUTION- WARNING ON		WARN/ OFF	NORM	10	1	
LS0200H	ANGLE OF ATTACK	PSID	0	5	10		0.017
CS0220T	TEMP DOCKING PROBE	°F	-100	+300	1	-	1.7
CT0012X	DSE TAPE MOTION		OFF	MOTION	10	1	
CT0015V	MONITOR SIG COND POS SUPPLY	VDC	0	22	10	1	0.09
CT0016V	VOLTS SIG COND NEG SUPPLY	ADC	-22	0	10	1	0.09
CT0017V	VOLTS SENSOR EXCITATION	VDC	0	5.5	10	1	0.02
CT0018V	5 VOLTS SENSOR EXCITATION	VDC	0	11.	10	1	0.04
CT0120X	PCM BIT RATE CHANGE		LOW	HIGH	1	1	
CT0125V	8 BIT PCM HI LEVEL 85	VDC	0	+5	10	1	0.02
CT0126V	PERCENT REF PCM HI LEVEL 15	VDC	0	+5	10	1	0.02
CT0262V	UDL VALIDITY SIG		NA	NA	50	10	
CT0340X	4-BIT PCM SYNC SOURCE EXT		INT	EXT	10	-	
CT0620E	OR INT S-BAND REC 1-2 AGC	COUNTS	1	254	10	1	1 - NL
CT0640F	VOLTAGE S-BAND RCVR 1-2 STATIC PH ERR	COUNTS	l	254	10	~	1 - NL
ST0820K	PROTON COUNT RATE	KHz	0	100	10	-	0.015 - NL
ST0821K	CHANNEL 1 PROTON COUNT RATE	KHz	0	10	10	-	0.0015 - NL
ST0822K	CHANNEL 2 PROTON COUNT RATE	KHz	0	10	10	-	0.0015 - NL
ST0823K	CHANNEL 3 PROTON COUNT RATE	KHz	0	10	10	-	0.0015 - NL
STO830K	CHANNEL 4 ALPHA COUNT RATE	KHz	0	10	10	-	0.0016 - NL
ST08311	CHANNEL 1 ALPHA COUNT RATE CHANNEL 2	KHz	0	10	10		0.0015 - NL

	Measurement		Samples/Second		linite (Count		
	Title	Unit	Approx. Range		High Bit	Low Bit	Units/count
Number			Low	High	Rate	Rate	
ST0832K	ALPHA COUNT RATE	KHz	0	10	10	-	0.0015 - NL
ST0838K	PROTON-ALPHA INTEGR COUNT RATE	KHz	0	100	10	-	0.015 - NL
STO840T	TEMP NUCLEAR PAR-	°F	-120	+200	1	-	1.2 - NL
ST0841T	TICLE DET TEMP NUCLEAR PAR- TICLE ANALYZER	۰F	-120	+200	1	-	1.2 - NL

NL - Non Linear

MISSION CONTROL

The Flight Director in Mission Control is supported by a team of specialists who are responsible for different aspects of spacecraft operation. These specialists are located in Mission Control and sit in front of console displays which provide real-time telemetry data. Each specialist is in voice contact with a group of support personnel in adjacent rooms who also have access to real-time telemetry data. See Appendix A, Part A⁴ for a description of the organization of Mission Control.

The display console for the CSM Electrical and Environmental Engineer (EECOM) is shown in figure B7-7 and is representative of the type of displays available to all the specialists in the Mission Control Center. The two television monitors on the console are used to display real-time telemetry data. Although various data formats are available to the EECOM, the two displays most frequently in use are shown in figures B7-8 and B7-9. These displays are updated once per second.

As an aid in recognizing out-of-tolerance parameters and spacecraft events, three groups of event indicators are provided at the top of the console. The lights on these panels which alert the EECOM to out-of-tolerance parameters are referred to as limit sense lights. A limit sense light comes on whenever the parameter in question falls outside of high and low limits which are manually set by the EECOM for that particular parameter. Among the 72 lights on panel 3, there are a total of 12 limit sense lights for pressure, temperature, and quantity in each cryogenic oxygen and hydrogen tank. In normal operation, the EECOM sets fairly tight limits on the limit sense lights in order to get an immediate indication of parameter variations. Consequently, it is not unusual for several limit sense lights to be burning.

Besides the limit sense lights, there are lights which indicate spacecraft events. One of these, located in the upper row of panel 9, indicates the presence of a master caution and warning in the spacecraft.

The following is a list of the system specialists in Mission Control:

(a) Retrofire Officer (RETRO) - responsible for abort planning, deorbit/entry times, and landing point prediction.

(b) Flight Dynamics Officer (FIDO) - responsible for coordinating and participating in mission planning and the control of the trajectory aspects of the mission, including powered flight trajectory, abort, and orbital GO/NO GO decision.

Display request keyboard Manual select keyboard Status/status report Summary message inable keyboard Analog meter Voice communication position	
21113 284320 1843	
Event indicator Event indicator Voice communication position Precision TV monitor Precision TV monitor Event indicator	
<i>wwor</i> ∞ <i>o</i>	

Description

Location

Description

Location

Figure B7-7.- CSM EECOM engineer console.

LM1885

CSM EPS HIGH DENSITY

0518

CTE 055:46:51	() GET 5	5:46:53	()	SITE	
DC VOLTS	S	AC	VOLT	s		FC °F -	
CC0206 VMA	29.5	CC0200 A	AC 1	115.6	SC2084	1 SKN	409.1
CC0207 VMB	29.4	CC0203 A	AC 2	115.7	SC2085	2 SKN	412.7
CC0210 VBA	36.4	FC	PSIA		SC2086	3 SKN	414.5
CC0211 VBB	39.5*	SC2060 1	L N2	55.8	SC2081	1 TCE	158.0
CC0232 VBR	35.8	SC2061 2	2 N 2	53.9	SC2082	2 TCE	158.9
CD0200 VMLA	0.15	SC2062 3	3 N2	54.4	SC2083	3 TCE	157.1
CD0201 VMLB	0.15	SC2066	1 02	64.6	F	C RAD	°F
CD0005 VMOA	0.15	SC2067 2	2 02	62.7	SC2087	1 OUT	70
CD0006 VMOB	0.15	SC2068 3	3 02	63.5	SC2088	2 OUT	71
DC AMPS		SC2069	1 H2	64.7	SC2089	3 OUT	75
TOT SC	67.7	SC2070 :	2 H2	62.9	SC2090	1 IN	86
TOT FC	67.6	SC2071 3	3 H2	63.4	SC2091	2 IN	88
FC PCT SC 1	00.0	1 02-N2	ΔP	8.8	SC2092	3 IN	95
TOT BAT	0.0	2 02-N2	ΔP	8.8	- PCT TO	TAL FC	LOAD -
BAT PCT SC		3 02-N2	ΔP	9.1		FC 1	31.6
SC2113 FC 1	21.4	1 H2-N2	ΔP	8.9		FC 2	31.6
SC2114 FC 2	21.3	2 H2-N2	ΔP	9.0		FC 3	36.9
SC2115 FC 3	24.9	3 H2-N2	ΔP	9.1		- INST -	
CC0222 BAT A	0.0	F	C LB/H	IR	CT0120	PCM	HBR
CC0223 BAT B	0.0	SC2139	1 H2	. 0659	CT0125	4.25	4.249
CC0224 BAT C	0.0	SC2140	2 H2	. 0679	CT0126	0.75	. 731
CC0215 CHRGR	1.12*	SC2141	3 H2	. 0739	СТ0340	TMG	CTE
CC2962 LM	1.6	SC2142	1 02	0.488	CT0015	+20	20.1
SC2160 PH 1 L	.ow	SC2143	2 02	0.507	СТ0016	-20	-20.0
SC2161 PH 2	ow	SC2144	3 02	0.550	CT0017	+5	5.03
SC2162 PH 3	-				CT0018	+10	10.1
Patt D Charaina		1 -	2 -	3	CT0620	SS	
* Datt B Unarying CC0175/76/7	7 INV TH	1PS 90	88	73	CS0220	PROBE	312 *
							(09~54)

Figure B7-8.- Electrical power system parameters display.

A. . .

1

B-154

ł

. .

CSM ECS-CRYO TAB

LM1839

CTE 055:46:51 () GET	- 055:46:53	() SITE
LIFE SUPPORT	_	PR	IMARY COO	LANT -
GF3571 LM CABIN P PSIA	ł	CF0019	ACCUM QT	Y PCT 34.4
CF0001 CABIN P PSIA	5.1	CF0016	PUMP P	PSID 45.0
CF0012 SUIT P PSIA	4.3	SF0260	RAD IN T	° ⊢ 73. 8
CF0003 SUIT AP IN H20	-1.68			
CF0015 COMP AP P PSID	0.30			
CF0006 SURGE P P PSIA	891	CF0020	RAD OUT	⊤ ° F 35
SURGE QTY LB	3. 67	CF0181	EVAP IN	t°F 45.7
O2 TK 1 CAP AP PSID	21	CF0017	STEAM T	°F 64.9
O2 TK 2 CAP AP PSID	17	CF0034	STEAM P	PSIA . 161
		CF0018	EVAP OUT	t° f 44.2
CF0036 O2 MAN P PSIA	105			
CF0035 O2 FLOW LB/HR	0 181			
	0, 101	SF0266	RAD VLV	1/2 ONE
CF0008 SUIT T °F	50.5	CF0157	GLY FLO	LB/HR 215
CF0002 CABIN T °F	65	— SECO	NDARY COO	LANT —
CF0005 CO2 PP MMHG	1.5	CF0072	ACCUM QT	Y PCT 36.8
———— H2O ————		CF0070	PUMP P	PSID 9.3
CF0009 WASTE PCT	24.4	SF 0 2 6 2	RAD IN T	°F 76.5
WASTE LB	13 7	SF 0 2 6 3	RAD OUT	t °F 44.6
CF0010 POTABLE PCT	104 5	CF0073	STEAM P	PSIA . 2460
POTABLE LB	37.6	CF0071	EVAP OUT	т°F 66.1
CF0460 URINE NOZ T °F	70	CF0120	H2O-RES	PSIA 25.8
CF0461 H2O NOZ T °F	72	TOTAL	FC CUR	AMPS
CRYO SUPPLY		- 02 - 1 02	- 2 H2	-1 —— H2-2 ——
SC0037-38-39-40 P	PSIA	913 9	08 225.	7 (03-1) 235.1
SC0032-33-30-31 QTY	PCT	77. 63	01.17 73.	24 74.03
SC0041-42-43-44 T	°F	-189 -1	92 -417	-416
QTY	LBS	251.1 2	60.0 20.	61 20.83

Figure B7-9.- Cryogenic system display.

B-155

0613

(c) Guidance Officer (GUIDO) - responsible for the utilization of the guidance and navigation system, correlation of inertial alignment, and evaluation of terminal phase actions in support of rendezvous.

(d) CSM Electrical, Environmental, and Communications Engineer (EECOM) - responsible for monitoring and evaluating the performance of the electrical power, environmental control, instrumentation, and sequential systems of the command and service modules.

(e) CSM Guidance and Navigation Officer (GNC) - responsible for monitoring and evaluating the performance of the guidance and navigation, propulsion, and stabilization and control systems of the command and service modules.

(f) LM Electrical, Environmental, and EMV Officer (TELMU) - responsible for monitoring and evaluating the performance of the primary guidance and navigation, abort guidance, control electronics, ascent propulsion, descent propulsion, and reaction control systems of the lunar module.

(g) LM Control Officer (CONTROL) - responsible for monitoring and evaluating the performance of the electrical, communications, instrumentation, sequential, and environmental control systems of the lunar module.

(h) Instrumentation and Communication Officer (INCO) - responsible for monitoring and evaluating the performance of spacecraft communications systems.

(i) Procedures Officer (PROCEDURES) - responsible for the detailed procedures implementation of Mission Control.

(j) Flight Activities Officer (FAO) - responsible for the detailed implementation of the flight plan and its revision.

(k) Aeromedical Officer (SURGEON) - directs all operational medical activities concerned with the mission.

The following table lists the members of the White and Black Mission Control teams. The White Team was on duty at the time of the accident, and many of the Black Team members were in Mission Control preparatory to their going on duty about an hour later.

Position	White	Black
Flight Director	E. F. Kranz	G. S. Lunney
Asst. Flt. Dir.	J. M. Leeper	L. W. Keyser
RETRO	B. T. Spencer	T. E. Weichel
FIDO	W. M. Stoval	W. J. Boone
GUIDO	W. E. Fenner	J. G. Renick
EECOM	S. A. Liebergot	W. C. Burton
GNC	B. N. Willoughby	J. A. Kamman
TELMU	R. H. Heselmeyer	W. M. Merritt
CONTROL	L. W. Strimple	H. A. Loden
INCO	G. B. Scott	T. L. Hanchett
PROCEDURES	J. R. Fucci	E. W. Thompson
FAO	E. B. Pippert	T. R. Lindsey
SURGEON	W. R. Hawkins	G. F. Humbert

REFERENCES

- 1. Anon.: Apollo 13 Mission 5-Day Report. MSC-02429, Manned Spacecraft Center, April 1970.
- 2. Anon.: Apollo 13 Technical Air-to-Ground Voice Transcription, Manned Spacecraft Center, April 1970.
- 3. Anon.: Spacecraft Operations for S.V. Countdown/Countdown Demonstration. FO-K-0007-SC109, North American Rockwell Corp., Feb. 5, 1970.
- 4. Anon.: Mission Director's Summary Report, Apollo 13. Manned Spacecraft Center, April 20, 1970.
- 5. Anon.: Apollo 13 Mission Operations Report. Manned Spacecraft Center, April 28, 1970.
- 6. Anon.: Saturn AS-508 M + 5 Day Report. Marshall Space Flight Center, April 22, 1970.
- 7. Manned Spacecraft Center: Flight Data File. (The complete set of checklists, procedures, activity timeline books, and flight plan carried on board the spacecraft).

NASA --- MSC