
Distribution System Considerations for

Treatment

Michael R. Schock USEPA, ORD, NRMRL, WSWRD Cincinnati, OH schock.michael@epa.gov

Presented at the Workshop on Inorganic Contaminant Issues, Cincinnati, Ohio, August 22, 2007

Examples of Distribution System Piping Most often, treatment changes are applied to "old" pipes

General Nature of Pipe Surfaces

- Metallic
 - Oxides, hydroxides, hydroxycarbonates, carbonates, hydroxysulfates, etc. from corrosion
 - Similar compounds from deposition or postprecipitation (particularly Fe, Mn, Al), may include silicates
 - Phosphates from corrosion control
 - All may be mixed with NOM

RESEARCH & DEVELOPMENT

General Nature of Pipe Surfaces

- Cement (A-C, CML, Concrete)
 - Metallic oxides, hydroxides, hydroxycarbonates, carbonates, hydroxysulfates, silicates,etc. from deposition or post-precipitation
 - Aluminosilicates, hydroxides, hydroxycarbonates from "corrosion"
 - May be mixed with NOM

General Nature of Pipe Surfaces

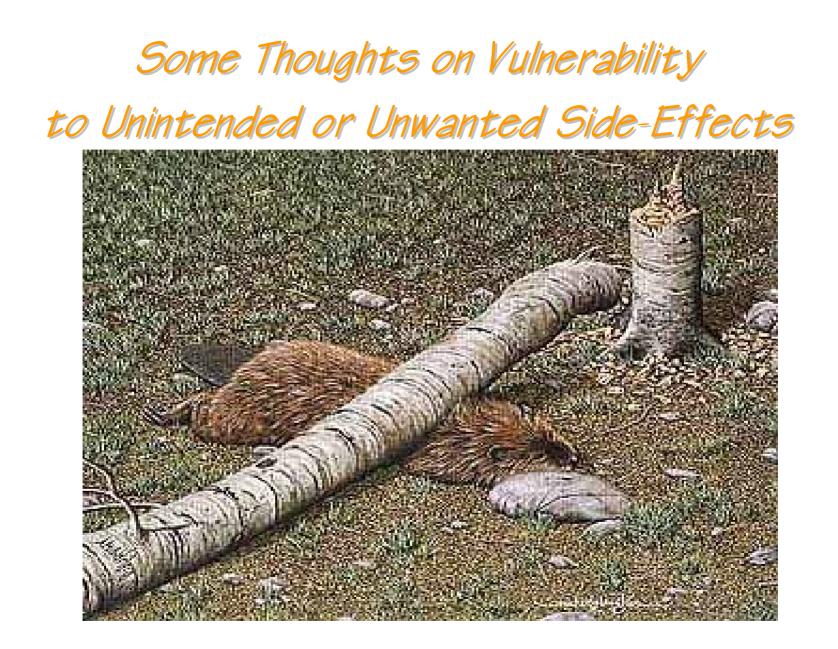
- Plastics
 - Metallic oxides, hydroxides, hydroxycarbonates, carbonates, hydroxysulfates, silicates,etc. from deposition or post-precipitation
 - May be mixed with NOM

RESEARCH & DEVELOPMENT

How Might Pipes Be Reactors?

- Sorption, desorption of constituents
- Dissolution, precipitation, coprecipitation
 - Corrosion/solubilization
 - Post-deposition
 - Instability of water quality
 - Anions
 - Oxidants
 - pH
 - NOM

RESEARCH & DEVELOPMENT


How Might Pipes Be Reactors?

- Substrate for microbial activity
 - Transformation of sorbed material
 - Redox reactions
 - DBP's
 - Nitrification
 - Microbially-specific parameters
 - HPC
 - Pathogens?
- Lime (Ca, OH⁻) and AI leaching from cements

RESEARCH & DEVELOPMENT

Holistic View of Treatment Changes and Possible Adverse Impacts

Imbalancing Processes

- Softening processes
- "Tight" membrane processes
- Optimum or enhanced coagulation
- Polyphosphate sequestration
- Major changes to pH, Ca, Alkalinity

RESEARCH & DEVELOPMENT

- Over-softening
- "Enhanced softening" & Mg removal
- Ion-exchange
- Membrane softening

"Tight" Membrane Processes

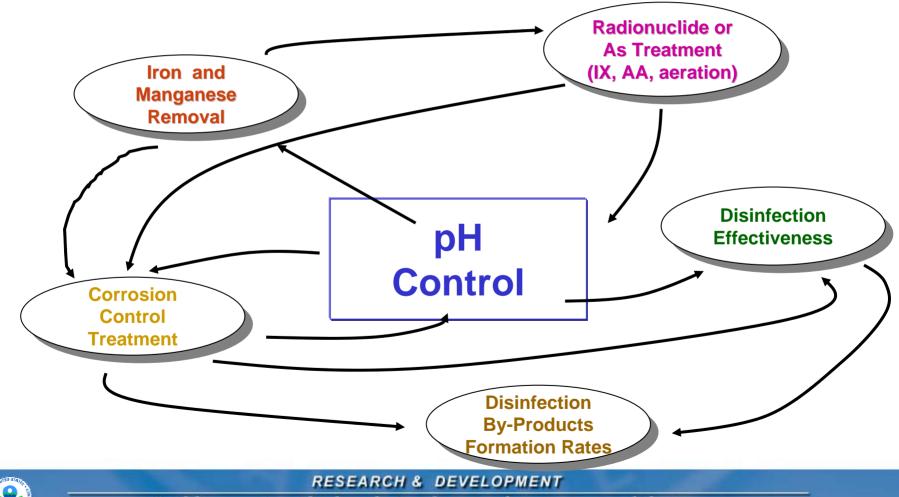
- Reverse Osmosis (RO)
- Nanofiltration (NF)
- Electrodialysis reversal (EDR)

RESEARCH & DEVELOPMENT

Optimum or Enhanced Coagulation

- Lowers pH
- Increases sulfate or chloride

RESEARCH & DEVELOPMENT


Polyphosphate Sequestration

- Reduces effectiveness of existing Ca, HCO₃⁻
- Attacks calcareous cement minerals
- Prevents Ca-supported passivation (when hardness plays beneficial role)

RESEARCH & DEVELOPMENT

pH Interactions with Treatment Processes

LCR Chemistry Considerations

- pH in distribution system
- DIC
- (Ortho)phosphate addition
- ORP

ESWTR Interactions

- Coagulant increase = alkalinity decrease
- Acid addition to depress pH
- Role of residual aluminum

RESEARCH & DEVELOPMENT

Groundwater Rule

- Change in oxidation state affects metals in solution
 - Iron
 - Manganese
 - Copper
 - Arsenic
- Disturb existing distribution system
 - Fremont, Nebraska started chlorination
 - Release of iron, copper and arsenic
 - Particular problem in high alkalinity, near neutral pH waters of Midwest

Arsenic Removal Interactions

- Nanofiltration and RO may require pH depression and remove hardness, DIC
- Anion exchange pH adjustment, supplement DIC to replace loss
- Activated alumina may require pH adjustment before and/or after
- Iron Media may require oxidizing conditions either for disinfection or enhanced removal
- Ferric coagulation requires oxidizing conditions

RESEARCH & DEVELOPMENT

- Aeration is BAT
 - Removes carbon dioxide
 - Raises pH
 - Changes redox conditions

Radionuclides: Radium

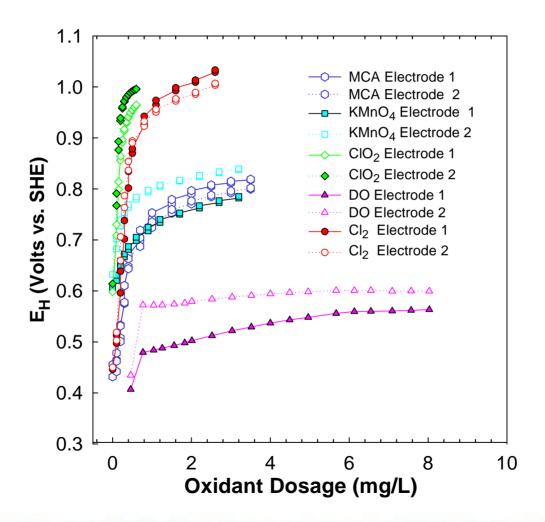
- Cation exchange removes calcium, can depress pH
- Alumina can change pH or needs lowered pH
- Nanofiltration pH adjustment, can remove hardness, DIC
- RO Needs pH adjustment, removes hardness, DIC

Radionuclide - uranium and Inorganics nitrate and nitrite

- Anion Exchange
 - May require pH adjustment and stabilization
 - Supplement alkalinity to increase DIC lost via carbonate and bicarbonate removal

RESEARCH & DEVELOPMENT

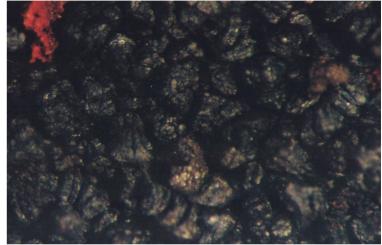
Treatment Changes Related to Oxidant/Disinfectant Changes


Treatment Influences on ORP in Drinking Water

- Disinfection
- Pre-oxidation (O_3 , H_2O_2 , CIO_2 , $KMnO_4$)
- Oxidative metal removal (eg. As, Fe, Mn)
- Ammonia removal
- Aeration (corrosion control, VOC, Rn, H_sS removal)
- Taste and odor control

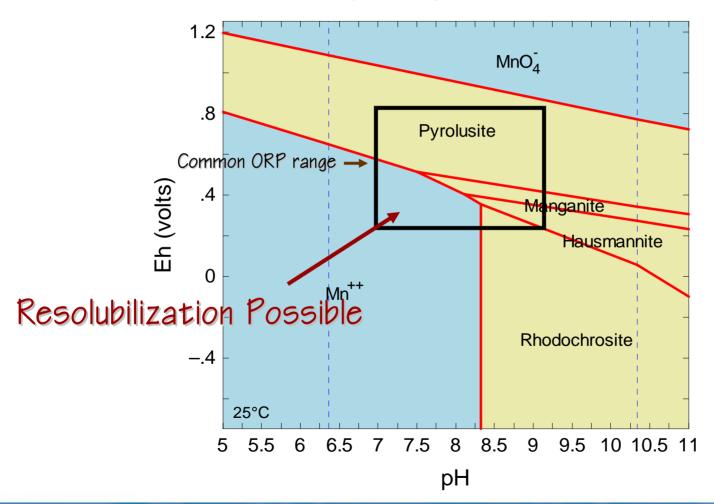
RESEARCH & DEVELOPMENT

Redox Potential of Common Oxidants (pH 7, 10 mg C/L, 25°C)



RESEARCH & DEVELOPMENT

Mn Deposit from Northeastern US DS

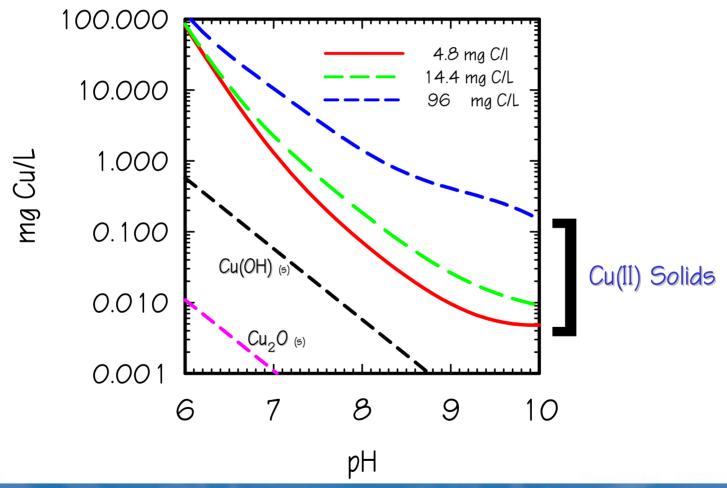


RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

pH & ORP Impact on Manganese

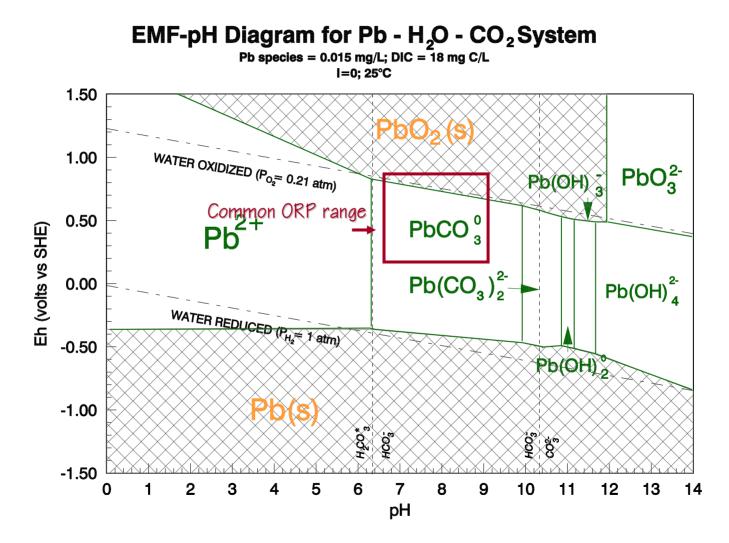
Mn (O.1 mg/L) DIC = 10 mg C/L

RESEARCH & DEVELOPMENT

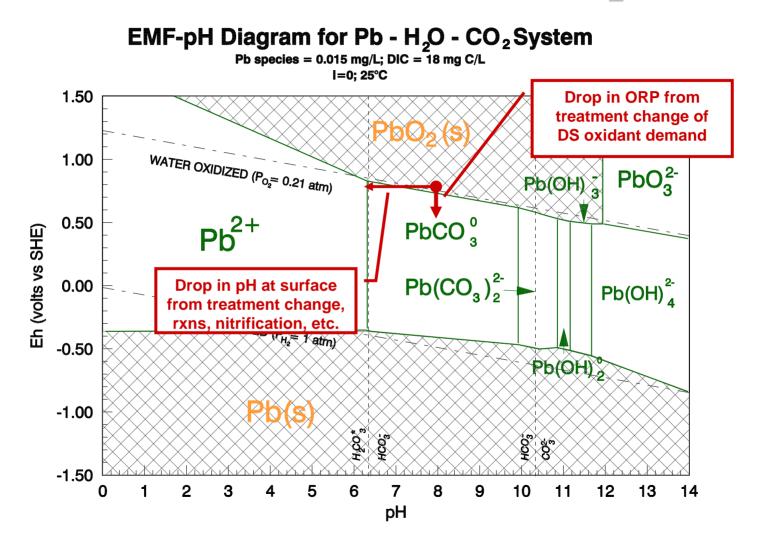

Cu species = 1.3 mg/L; DIC = 96 mg C/L

I=0: 25øC 1.50 Water Oxidized $P_{O2} = 1$ atm Cu(OH) (s) 0 0 1.00 Cu²⁺ 0.50 Common ORP range E_H (volts vs SHE) Cu(OH); Qu, 0(s) 0.00 Resolubilization Resolution $P_{N2} = 1$ atm Cu(s) -1.00 H₂CO^{*} HCQ-HCO. CO. -1.50 2 3 8 9 10 11 12 13 14 5 6 0 4 7 1 pH

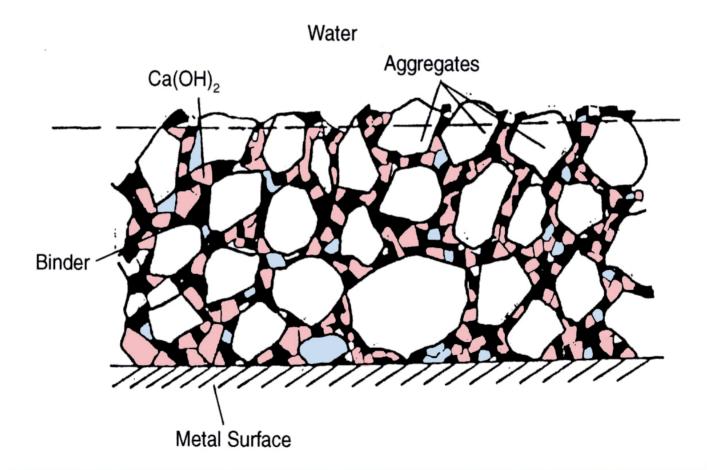
RESEARCH & DEVELOPMENT


Introducing Disinfection or Oxidation: May Induce New Copper Corrosion Issue

RESEARCH & DEVELOPMENT



Pb(II)-Pb(IV) Relationships



Inert!!

Schematic Anatomy of Cement Lining

RESEARCH & DEVELOPMENT

Manifestations of Cement Deterioration

- Increased pH
 - Decreased performance of lead or copper control with phosphate dosing
 - Turbid water from various precipitates
 - Taste problems
 - Higher THM's
 - In extreme cases (pH >> 10), higher lead

RESEARCH & DEVELOPMENT

Manifestations of Cement Deterioration

- Increased aluminum
 - possible future CCL issue
 - challenge to industry or hospital treatment
- Increased calcium
- Increased trace metals

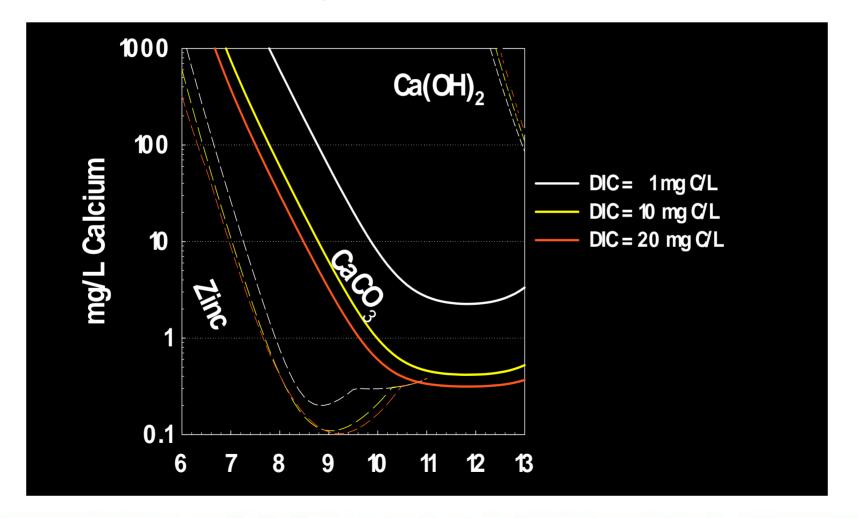
RESEARCH & DEVELOPMENT

Remedies for Cement Deterioration

- Materials-based
 - Alternate cement mixes
 - Carefully check for data from similar water
 - Compare vendors and processes
 - Some experience in UK with modified mortar
 - Do NOT use CML in low-flow or dead end areas
 - Epoxy material relining
 - Various plastic lining processes

RESEARCH & DEVELOPMENT

How Does Zinc Protect Cement?


2- Step Hypothesis (hemimorphite example):

 $5Zn^{2+} + 2CO_3^{2-} + 6H_2O \rightleftharpoons Zn_5(CO_3)_2(OH)_6 + 6H^+$

 $\begin{aligned} &4\{\text{Zn}_{5}(\text{CO}_{3})_{2}(\text{OH})_{6}\} + 10\{\text{Si}(\text{OH})_{4}\} \rightleftharpoons \\ &5\{\text{Zn}_{4}\text{Si}_{2}\text{O}_{7}(\text{OH})_{2} \bullet \text{H}_{2}\text{O}\} + 8\text{CO}_{3}^{2^{-}} + 16\text{H}^{+} + 14\text{H}_{2}\text{O} \end{aligned}$

RESEARCH & DEVELOPMENT

Solubility of Protective Initial Zinc Solids Compared to Calcium Solids

RESEARCH & DEVELOPMENT

Solutions for Imbalances

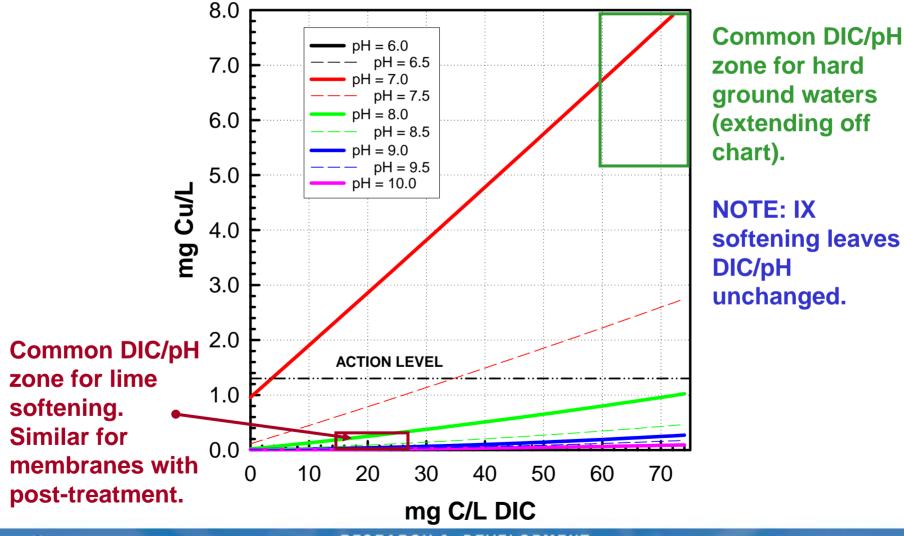
- Careful process control
- Post-treatment
 - Recarbonation (softening)
 - Limestone/dolomite contactors
 - Chemical adjustments
 - pH
 - Corrosion inhibitors
 - Others (eg. lime, soda ash, etc.)
 - Aeration
- Blending (when feasible)

RESEARCH & DEVELOPMENT

Minimize Water Quality Changes

- Well-buffered water
 - Reduces general corrosion
 - Reduces tuberculation of iron
 - Deters nitrification
 - Holds quality with storage
 - Facilitates action of phosphates
- Balance of hardness, DIC, pH--Why?
 - Unlined iron
 - Cement linings
 - Asbestos-cement

RESEARCH & DEVELOPMENT


Special Softening Issues

- Copper corrosion impacts
- Polyphosphate over-dosing in lime-softened systems

RESEARCH & DEVELOPMENT

All Softening Processes Are Not Equal

zone for hard ground waters (extending off

softening leaves unchanged.

RESEARCH & DEVELOPMENT

Effect of polyphosphate on phosphate dose response (Colin Hayes, Swansea Univ.)

Median Pb emissions (µg/l) after 30 min contact with new Pb pipe at 25°C

<u>o-PO4 dose</u>	Zero poly-P	0.2 mg/l poly-P	<u> 1.6 mg/l poly-P</u>
0	142	143	281
1	3	19	54
2	3	12	51
3	3	10	44
4	3	9	32

Be careful not to overdose polyphosphate, or hydrocerussite protective coatings will be damaged.

RESEARCH & DEVELOPMENT

Watch for Study Extrapolation Problems Lab to Field

- "New" surface vs. "old" surface
 - Reaction with existing scale
 - No cathodic reaction on "old" surface
 - Corrosion rate vs. metal release tendency
- Stagnation time
- Differences in materials
- "Aging" rates could be months to years

RESEARCH & DEVELOPMENT

Some Constructive Pro-actions

- Know the locations of materials in DS and how water flow relates to them
- Consideration of potential changes in water treatment should trigger
 - Studies of impact on existing scales
 - Enhanced monitoring during implementation

RESEARCH & DEVELOPMENT

Constructive Pro-actions

- Examples of significant changes
 - Anything that changes pH
 - Corrosion inhibitor formulations
 - Coagulation/coagulant changes
 - Disinfection/disinfectant changes
 - Membrane filtration
 - Mixing/blending

RESEARCH & DEVELOPMENT

More Constructive Pro-actions

- Know what inorganics/radionuclides are in source water, even if below MCL
 - Monitor periodically in DS
 - Trigger more DS monitoring when
 - Hydraulic disturbances (fires, main breaks, flushing)
 - Drought conditions or storms change water quality
 - Unusual microbial data noted
 - Consumers complain of discolored water or unusual tastes

RESEARCH & DEVELOPMENT

Final Suggestion for LCR Conflicts: Optimal Corrosion and DBP Control

- Removal of precursor material solves problems
 - Reduces DBP formation and potential formation
 - Reduces nutrient material, starving biofilms
 - Reduces disinfectant demand and decay
- Coupling with iron corrosion control is important
 - Reduces demand, hence dosage, hence DBPs
 - Reduces microbe habitat, less disinfectant needed

RESEARCH & DEVELOPMENT

Michael R. Schock USEPA, ORD, NRMRL, WSWRD Cincinnati, OH <u>schock.michael@epa.gov</u>