

Case Studies in the Integrated Use of Scale Analyses to Solve Lead Problems

Carol A. Rego, P.E. Vice President, CDM

Michael R. Schock Chemist, USEPA, ORD, NRMRL

AWWA Research Symposium Reno, Nevada – March 3, 2007 (c) AWWA 2007

Presentation Outline

- ♦ Background
 - Pb control mechanisms
 - Limitations of "conventional" methods of analysis
- Techniques for characterization of pipe scales
- Case study details three categories:
 - Predictive
 - Diagnostic/forensic
 - Tracking changes

Pb Control Mechanisms

- <u>All</u> methods involve immobilizing lead into relatively insoluble compounds (pipe deposits)
- Many different solid phases can form:
 - Carbonates pH/alkalinity adjustment
 - Phosphates orthophosphate
 - Silicates??
 - Examples:
 - Basic Pb(II) carbonate = Pb₃(CO₃)₂(OH)₂
 - Pb(II) orthophosphate = Pb₅(PO₄)₃OH
 - Pb(IV) oxide = PbO₂

Limitations of Conventional Methods of Analysis

- Equilibrium solubility models are useful, but dependent upon
 - Accuracy of characterization of solids and complexes
 - Accuracy of the thermodynamic constants used
 - Model completeness (e.g., kinetics, interaction with organic/unknown complexes or tuberculation/corrosion products
 - Post-treatment deposition of various scales (such as compounds of Fe, Ca, Mn)

Limitations of Conventional Methods of Analysis (con'ft)

Empirical coupon tests

- Adequate control of variables
- Representativeness of coupon materials
- Cannot address treatment changes (pre-existing scales)
- Corrosion rate measurements
 - Limited usefulness for Pb (corrosion rates too low)
 - Poor correlation to observed Pb release

Pipe Scale Analysis

- Scales reflect actual distribution system conditions
 - <u>Direct</u> indication of the effectiveness of a current treatment protocol
 - Reality check on theoretical models

Pipe Scale Analysis (con't)

- Characteristics and behavior of the lead solids can be integrated with water quality and operational data to:
 - Understand mechanisms of corrosion inhibition and uniformity throughout the system
 - Understand speciation of metals and predict mobility/stability
 - Follow impacts of treatment changes
 - Avoid making a major treatment change mistake

Solids Characterization Methods

- Numerous and highly varied in cost and complexity
- Some are specific to crystalline compounds
- Some provide only quantitation of certain chemical elements
- Some give detailed information on chemical bonding and structure at the surface of the corrosion deposits

Some Analysis Methods and What They Can Tell You

Method	Type of Sample	Information
XRD <mark>X-r</mark> ay diffraction	Ground, randomly-oriented powder	Identification of crystalline compounds
ICP-OES, ICP-MS Inductively Coupled Plasma	Digested or fused (then dissolved) powder	Quantitative elemental composition for most metals and some others, e.g., S, Si, P
SEM	Small piece of pipe or material	Very small scale sample particulate morphology
EDS, EDXA Energy-dispersive spectrometry	Small piece of pipe or material, or packed powder	Qualitative to semi-quantitative elemental analysis (>AI)
XANES (X-ray Absorption Near-Edge Spectroscopy)	Ground, randomly-oriented powder In-situ mounted sample	Identification and speciation of compounds of targeted metals
Elemental Analyzer (TIC, TC, S)	Ground powder, combusted or digested	Quantitation of specific elements such as C, S, N

Case Study Categories

- 1. Predictive (e.g., systems contemplating change in treatment)
- 2. Diagnostic/forensic (e.g., why something went wrong)
- 3. Track results/changes (e.g., understand and follow progress of treatment)

ALL case studies have lead service lines...

- Issue: contemplating NH₂Cl conversion for DBP control
- Conclusions:
 - Analyses confirmed predominance of Pb(IV) mineral in scales
 - Explains 90th Percentile Pb level below EPA Action Level despite lower-than-optimal pH for carbonate passivation
 - Some scales are mixtures of Pb(II) and Pb(IV) indicating that conversion to NH₂Cl will not be straightforward
 - Results being used to design a pipe loop testing program to evaluate alternatives

Calcium Carbonate – Theoretical Saturation Index and Precipitation Potential

Parameter/Index Source Finis Water pH		Finished '	shed Water pH		
	6.8	9.0	8.7	8.2	8.0
LSI	- 1.71	1.33	1.22	0.30	- 0.18
CCPP (mg/L)	- 40	35	26	2.1	- 1.21
Precipitation?		Yes	Yes	Maybe	No

- Issue: utility contemplated decreasing pH to alleviate seasonal CaCO₃ scaling
- Conclusions:
 - Theoretical solubility calculations indicated lower pH limit for lead was 8.7
 - At pH 8.7, PbCO₃ was the dominant scale mineral; indication that pH not high enough for <u>optimal</u> reduction of plumbosolvency
 - Scale analysis combined with solubility modeling provided good prediction of treatment impacts on metal release
 - Supported decision to return to pH 9.0 and seek alternate means (blended phosphate) to control CaCO₃ precipitation

New	Bri	tain – Ca	arbon	at	e Pa	sviaa	tion	
	1	Range	of Lead s (ug/L)	Le S	ad (% of amples)	2005 L	CR	
	1		° (ag. 2)		2005	Monite	oring	
	1	≤ 5			60%		Sing	
	4	> 5 ani	d ≤ 10		10%	Result	ts	
		> 10 ai	nd ≤ 15		4%			
		> 15 ai	nd ≤ 2U ad < 25		4%			
		> 20 al	nd ≤ 25 nd ≤ 30		4%			
		> 30 a	nd < 50		6%			
1		> 50 a	nd ≤ 100		6%			
		> 100 :	and ≤ 500		2%			
		> 500			2%			
		Averag	e (mg/L)	-	0.0264			
		50th P	ercentile (mg/L)		0.0031			
		90th P	ercentile (mg/L)		0.0126			
		Numbe	r of Samples (n)		48			
Based on	рН	Alkalinity	Hardness		Iron	Manganese	Free	Total
Monthly							Chlorine	Chlorine
Averages		(mg/L as CaCO₃)	(mg/L as CaC	O3)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Average	8.1	20	35		0	0.02	0.61	0.76
Maximum	8.5	24	44		0.1	0.04	0.86	0.95
Minimum	7.8	14	20		0	0.02	0.40	0.50

Pb Frequency Distribution (2005 vs. 2006)

Significance of Findings Issue: no changes were made – the utility experienced an unanticipated increase in 90th percentile Pb levels Conclusions: PbCO₃ dominant scale mineral, which is much more soluble than hydrocerussite is at higher pH (≥9.0) Indication that pH not high enough for optimal reduction of plumbosolvency Scale analyses consistent with Pb(II) solubility modeling Recommendation to increase pH, resulting in decrease in Pb levels in follow-up monitoring

Analysis of Scale Composition

Pump Housing Edge of Scale

Top Side of Scale

- Issue: no changes made the utility experienced an unanticipated, sudden mechanical equipment failure
- Conclusions:
 - Impeller and pump housing scales predominantly CaCO₃ (calcite)
 - Scales on domestic lead service line samples mainly hydrocerussite [Pb₃(CO₃)₂(OH)₂], expected dominant Pb(II) mineral at pH 9.0; only trace amounts of calcite
 - Calcite precipitation at the treatment plant not interfering with predominant carbonate passivation Pb control mechanism

90th Percentile Monitoring History – Selected Quarterly LSL Sampling Locations

51 Lookout

Lead Minerals	Mineral Formula	Layer 1	Layer 2	Layer 3
Hydrocerussite	$Pb_3(CO_3)_2(OH)_2$	++	++	+
Litharge	PbO	+	+	+++
Lead Oxide Carbonate Hydroxide	Pb ₁₀ (CO ₃) ₆ (OH) ₆ O "Plumbonacrite"	+++	+++	+
Elemental Lead	Pb	D	D	D

		1	2
Litharge	Pb3(CO3)2(OFI)2 PbO	ND	+++
Lead Oxide Carbonate Hydroxide	Pb ₁₀ (CO ₃) ₆ (OH) ₆ O "Plumbonacrite"	++	++
Elemental Lead	Pb	D	D
Lead	Pb	D	D

- Issue: Corrosion Control Treatment (CCT) changed to further optimize Pb control
- Conclusions:
 - Two roughly equal scale mineral populations

 plumbonacrite and hydrocerussite
 - Suggests that pH change (decrease) may cause destabilize plumbonacrite before it can recrystallize into more stable hydrocerussite
 - Conventional Pb(II) solubility models do not predict plumbonacrite to form under the historical (pH 10.3) treatment conditions

- Conclusions (cont'd):
 - More research needed on the significance and solubility of plumbonacrite in high pH systems using carbonate passivation to properly advise water systems
 - Establishes baseline to follow evolution of protective scales in response to CCT changes and monitoring results

Acknowledgements

- Newport Water Division
- Town of Reading
- Town of Needham
- New Britain Water Department
- Cambridge Water Department
- Providence Water Supply Board
- ♦ Katherine Mello CDM
- ♦ Tammie L. Gerke, USEPA
- Michael K. DeSantis, Hannah R. Lubbers Pegasus Technical Services