New York ISO 2002 Demand Response Programs: *Evaluation Results*

Charles Goldman

E. O. Lawrence Berkeley National Laboratory

CAGoldman@lbl.gov

Michael Kintner-Meyer

Pacific Northwest National Laboratory

DOE Office of Electric Transmission and Distribution Transmission Reliability Peer Review

Washington DC January 28, 2004

Overview of Presentation

Evaluation of NYISO 2002 Demand Response Program:

- Project Objectives
- Stakeholders
- Accomplishments
 - Approach
 - Key Findings
- Significance
 - Impact of evaluation results on NYISO & NYSERDA Pgms

- Deliverables

Project Objectives

> NYISO:

- Assess Reliability and Market Impacts of DR program(s)
- Understand Customer Performance in a Voluntary Emergency DR Program (EDRP)
- Understand Barriers to Participation in Day-Ahead Market (Economic) Demand Response Programs

> NYSERDA:

- Assess Impact and Role of DR Enabling Technology
- Assess Sustainability of DR Providers from a Business Perspective

Key Stakeholders and their Involvement

Evaluation Approach and Objectives

NYISO Electricity Markets

Customer-

Supplied

Resource

NYISO PRL Program Features

	Market Function	Eligible	Event Notice	Payment	
ICAP	Installed Capacity	> 100 kW	Day-ahead advisory, 2 hour notice	\$/kW Market value of ICAP	
EDRP	Emergency Capacity	> 100 kW	2 hour notice	Greater of \$.50/kWh or RTM LBMP	
DADRP	Economic Energy	1 MW increments	Bid by 5am, day- ahead, notice by noon	Greater of Bid \$/kWh or DAM LBMP	

DR Program: Market Impacts

Program	Participants (Enrolled MW)	Events	Load Curtailed
EDRP 2002	1711 (1481 MW)	22 hr Downstate; 10 hr Upstate	~668 MW
2001	292 (712 MW)	23/17	425 MW
DADRP 2002	24	1486 MWH scheduled	~14 MW (average)
2001	16	2694 MWh	8
) —		Consol	CERTS

EDRP Summer 2002 Performance

Location: NYC/LI (~20%), Western NY (55~%), Capital (~25%)

- 1,711 enrolled
 participants (1,481
 MW)
- Actual Load Curtailed = ~668 MW (avg.)
- ~75% load
 curtailment; onsite
 generation ~20%

FRTS

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

 ISO payments = \$3.5M

EDRP Reliability Benefits and Market Price Impacts

 Reliability benefits: reduction in LOLP valued at \$5.00/kWh

Understanding Customer Response: Performance Metrics

- Subscribed Performance Index (SPI): ratio of customer's actual average hourly load reduction to their subscribed load reduction
 - Indicates customer's actual performance relative to their commitment
- Peak Performance Index (PPI): ratio of customer's actual average hourly load reduction to their noncoincident peak demand
 - Characterizes customer's relative technical potential when compared to similar facilities

> Implications:

- ISO system operators how reliable a resource?
- -ESCOs/CSP and Public Benefits Administrators who

to target?

Performance (SPI) by Business Type and Curtailment Strategy

Curtailment Potential (PPI) by Business Type and Curtailment Strategy

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

Day-Ahead Market "Economic" DR Program: Low Participation and Bidding Activity

- Fewer customer bids accepted and scheduled in 2002 (~7 MW average) vs. 2001
- Customer offer prices generally low (\$50-150/MWh), given DAM price environment

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

Customer Market Survey and PRL Audit

- Base survey: 144 respondents (~17% response rate)
- PRL Audit: 35 in-depth telephone interviews conducted by CERTS engineers
- Questions on cust. characteristics, enabling technologies, load curtailment strategies, & barriers to DADRP participation

Customer Segment	Base Survey	PRL Audit (sub-set)
EDRP only	58	19
EDRP/ICAP	16	6
DADRP	11	10
Informed Non-Part.	59	0
Total	144	35

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTION

Primary Stated Reason for Not Participating in DADRP

> Organizational/institutional

- Low program awareness levels
- Inability to shift usage (36%)
- Inadequate knowledge of requirements (17%)
- Concerns about occupant comfort

- Economic/Program-design Related
 - Potential benefits don't justify risks (30%)
 - High bid price thresholds (5%)
 - Short payback periods for DR investments

Barriers

Enabling Technologies for Demand Response

- Long-term persistence and sustainability of customer load curtailments depends on:
 - Automated load response with "Permission-based" control by customer
 - "Clean, environmentally acceptable" on-site generation
- Web-based near-real time load monitoring seen as very useful
- Multiple notification channels facilitate timely response

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

Few Customers Utilize Automated Load Curtailment Strategies

- 60% of customers relied on manual approaches during load curtailments
- Most manual control without logging, suggesting no integration into O&M procedures
- Semi-automated LR more prevalent at larger facilities (>1 MW)

Customers want "Permission-based" load control

Significance: Impacts on NYISO

Improved DR Program Design and Rules

- ICAP/SCR program called before EDRP and receive energy payment if called to curtail
- Eliminated 10% penalty provision for DADRP
- Expanded customer outreach/information program (with NYSERDA and NYPSC)
 - Subscribed Load increased by 15% in 2003 in ICAP/SCR and EDRP (~1780 MW)
- Improved confidence in Load As A Resource among NYISO System Operators
 - 2003: DR Programs called to help restore grid after Northeast blackout (Aug. 15 and 16)
 - Over 850 MW of load curtailed on Aug. 15 (ICAP/SCR ~360 MW; EDRP ~497 MW)
 - Market impacts: ~\$53M in reliability benefits vs. ~7.5M in payments

Significance: Impacts on NYSERDA

Targeting of public benefits funding

- More emphasis on customer training and education (e.g., bidding strategies, load curtailment plans)
- Priority for DR projects serving certain geographic zones (NYC/LI) and smaller customer markets
- Emphasize role of Load Aggregators: assess DR "business models"

Program integration, marketing and strategy

- Integrate DR with EE program strategies in various market segments
- Develop long-term DR strategy (getting beyond "crisis")

Significance: Implications for DOE Transmission Reliability Program

> DR enabling technologies: Role and Design Criteria

- Role: Necessary but not sufficient condition to elicit sustained customer participation
- Large Industrial: process controls already in place; EIS/notification technologies provide incremental value
- Comm'l/institutional bldgs: DR needs to be automated, seamless, energymanager friendly, with minimal impact on occupant comfort

Institutional, market and information barriers also need to be targeted and overcome

- Institutional/Organizational: most customers not yet comfortable bidding into "economic" DR program but will respond to system emergency defined by ISO
- Market:
 - Load aggregators: DR products are non-standard
 - Customers: wary of investments with long paybacks, DR is not their "core business" and reluctant to undertake behavioral changes

Information: Many customers have *limited information* on load curtailment potential, optimal DR strategies, methods to value DR investments, and "spill over" benefits of DR enabling technologies

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTION

Deliverables

> Publications:

- Neenan Associates and CERTS (2003), "How and Why Customers Respond to Electricity Price Variability: A Study of NYISO and NYSERDA 2002 PRL Program Performance," LBNL-52209.
- Goldman, C. *et al*, (2002), "Do 'Enabling Technologies' Affect Customer Performance in Price-Responsive Load Programs?" LBNL-50328.

> Technical Briefings

- Technical briefing to NYISO Price-Responsive Load Working Group (Nov. 2002).
- Technical Briefings to NYISO and NYSERDA on DR program evaluation results (Nov. & Dec. 2002).

