Does RTP Deliver Demand Response?: Case Studies of Niagara Mohawk RTP and ~43 Voluntary Utility RTP Programs

Charles Goldman

Lawrence Berkeley National Laboratory

Mid-Atlantic Demand Response Initiative Meeting Baltimore, MD December 10, 2004

Outline of Talk

- Case Study of NMPC RTP Tariff
 - Customer Satisfaction and Choices
 - Does RTP deliver demand response?
 - How do RTP and DR programs interact?
 - Policy Implications
- Review of Voluntary RTP Programs

Voluntary vs. Default Service RTP: Overview of Key Design Issues

	Voluntary	Default
Objectives	Customer retention, load growth, DSM	Encourage switching; minimize risk for default service provider
Tariff Design	Two-part with CBL; day-ahead price quotes	RTP for commodity with unbundled T&D charges; real- time price quotes
Marketing	Targeted to largest customers, often through account reps	N/A
Customer Education	Occasionally offered by utilities (e.g., workshops or meetings with account reps)	Incorporated into more general informational campaigns about retail choice
Financial Hedging Options	CBL and/or utility-sponsored financial risk mgmt. products	Potentially offered by competitive retailers
Tech. Assistance & DR Technologies	Occasionally offered by utilities	Potentially offered by competitive retailers

Project Objectives

- Characterize customer response to and satisfaction with a RTP tariff in a retail competition environment
- Quantify price response
- Assess interactions between RTP and ISO/utility DR programs
- Provide input to CA and NY regulators/stakeholders developing DR and RTP options

NMPC Market Situation

- RTP is the default tariff for the "SC-3A" class (large C/I customers >2MW) since late 1998
- Unbundled charges for T&D, CTC, etc.
- Customer Choices for Electric Commodity Service
 - NMPC Option 1: RTP indexed to NYISO DAM default option
 - NMPC Option 2: fixed rate contract one-time availability at program inception (now expired)
 - Competitive retail supplier (ESCO)
- Several ISO-based DR programs
 - Emergency Demand Response Program (EDRP): pay-for performance
 - Installed Capacity (ICAP): reservation payment
 - Day-Ahead Demand Response Program

Survey Respondent and Population Characterization

Customer Characte	ristics	Survey Respondents (53 customers; 60	All SC-3A Customers (130 customers; 149
		accounts)	accounts)
Business	Industrial	40%	32%
Туре	Commercial	21%	23%
	Government/ educational	40%	46%
Average monthly maximum demand		3.0 MW	3.4 MW
Option 2		9%	18%

The survey response rate was about 40%.

Industrials are over-represented in the survey sample; institutional customers are under-represented.

Declining Volatility, Increasing Average Prices

 Similar trends in all NMPC load zones; although prices are somewhat higher in Capital zone (Central zone shown here)

*On-Peak defined as 7am-11pm on weekdays

Customers Have Seen Occasional High Prices

- 137 hours over 4 summers with prices above \$0.15/kWh
- Prices exceeded \$0.50/kWh for 16 hours

Customer Satisfaction and Choices

Survey Respondents' Satisfaction

Customer Satisfaction with 1998 Redesign of SC-3A

- Customers are relatively satisfied with the tariff
- Interviews reveal greater disappointment with limited offerings by competitive retailers

Supply Choices of SC-3A Population (December 2002)

- 53% of SC-3A customers indicated that they had taken competitive supply at some time since 1998
- But does switching mean hedged?

Customer Survey: Competitive Supply Arrangements

	ISO Market Opening (winter 1998/99)	Summer 2001 (after first price spikes)	Current (summer 2003)		
Number of customers reporting	44	44	44		
Number of contracts that are					
HEDGED:					
Flat Rate	7	3	4		
TOU	6	6	6		
Volumetric Collar	2	3	1		
TOTAL HEDGED	15	12	11		
NOT HEDGED:					
Price Index	2	5	9		
NMPC SC-3A(Option1)	27	27	24		
TOTAL NOT HEDGED	29	32	33	T-	
Percent of contracts that are hedged	34%	27%	25%	fro	en om
Percent with Financial hedge	15%	29%	30%	su	pp.

Trend is away from physical supply hedges

Trend toward financial hedges

Key Findings: Hedging

- In 2003, at least 65% of customers were fully exposed to RTP
- Why do customers not hedge more? Possible explanations:
 - Customers are sophisticated they understand risks and still choose not to hedge
 - Customers are discouraged retail market offers are hard to find or too expensive
 - Customers are not fully aware of the risks declining volatility in recent years
 - Customers have chosen not to choose default RTP service
- Tariff Design and Retail Competition
 - Unbundled RTP tariff design is appropriate for a competitive market structure, so long as there is a robust market for hedges
 - A utility-offered hedge (e.g., Option 2) is an appropriate transition strategy

Does RTP Deliver DR?

Price Response: What Customers Told Us

Unresolved

Do customers make a distinction between RTP price response and responding to ISOdeclared curtailment events?

- 31% say they FOREGO usage (mainly govt/education customers)
- $\sim 15\%$ say they can SHIFT from on-peak to off-peak
- 54% of survey respondents claim they CANNOT CURTAIL
 - but 30% of them were enrolled in NYISO DR programs
- Customers may make a distinction:
 - RTP is price response
 - ISO programs are a call to keep the lights on (civic duty)

Price Response: Estimated Substitution Elasticities

- Large range in average customer elasticities:
 - Gov't/educational customers are most price responsive
 - Industrial sector response is moderate
 - Commercial sector is unresponsive

How do RTP and DR Programs Interact?

NYISO Demand Response Program Enrollment (2001-2003)

NYISO DR Program	Survey Respondents	All SC-3A Customers
	(53 customers; 60 accounts)	(130 customers; 149 accounts)
EDRP (emergency)	38%	28%
ICAP/SCR (reliability-capacity)	13%	9%
DADRP (economic)	4%	1%

Survey respondents were 30-40% more likely to participate in NYISO DR programs than the SC-3A study population

Estimated Aggregate Demand Response: RTP and EDRP

- DR potential of SC-3A customers is ~100MW about 18% of their total maximum demand
- SC-3A customers in NYISO Emergency DR program, mainly industrials, provide ~15MW of load curtailment

Do Enabling Technologies Help?

Customer Survey: Technology Adoption

Technology Investments

- Technology adoption prior to 1998 was heavily efficiency oriented reflecting aggressive NMPC DSM expenditures
- 45% of customers have invested since 1998 emphasis toward load management-oriented devices – reflecting NYSERDA program incentives
- Customers are not fully aware of response strategies, even when they have equipment

Actions Taken in Response to High Prices

Actions Taken by 24 Customers with	Ν	Stated F	ited Response Capability	
Response Capability		Shift	Forego	Both
None	3		•	
Started onsite/backup generation	1		0	
Asked employees to reduce usage	17	•	•	•
Turned off or dimmed lights	10		•	•
Reduced/halted air conditioning	15	0	•	0
Reduced/halted refrigeration/water heating	2		0	
Reduced plug loads (e.g., office equipment)	3	0	0	
Shut down plants or buildings	3		0	0
Halted major production processes	2		0	0
Altered major production processes	4	0	0	0
Shut down equipment	12	0	•	•
Other	7		•	

- Relatively low-tech responses, mostly shutting off equipment or asking users to reduce usage
- Only one customer indicated using onsite generation

Key Findings

- Customers are generally satisfied with default dayahead RTP
 - Despite views expressed by some that hedging options are expensive relative to perceived risks
 - ~45% of customers remained on default RTP; many others fully or partially exposed to day-ahead prices
- Price response is modest overall
 - Government/educational customers are most responsive
 - Average elasticity (0.15) comparable to other studies' results
 - Aggregate DR potential is ~100MW at high prices
 - Most response involves reducing discretionary loads technology has a limited impact
- ISO DR programs complement RTP
 - Industrial customer response to DR programs is greater than for RTP

Implications for Other States

- Results challenge conventional wisdom about which customers are most likely to respond
 - Institutional customers can provide significant price response
 - Some customers respond to *day-ahead* hourly prices
- RTP is best implemented as part of a portfolio of options
 - Emergency DR programs can complement RTP
 - Ensure adequate hedging options exist, at least initially
- Targeted customer education and technical assistance are needed to realize customers' inherent price response potential
 - Many customers are not aware of available price response technologies and strategies
 - Even more important if RTP is extended to smaller customers

Implications for Other States (cont'd)

- It will take time to develop RTP price response
 - Initial response for most customers is discretionary (not shifting), which limits:
 - The number of customers willing to participate
 - The amount of peak demand participants will curtail
 - How many customers already have the capability to shift load? At what price?
- Probably quicker to build DR capability with utility or ISO DR programs
 - Limited, voluntary exposure is a big plus to many customers
 - Easier to sell because of public duty aspect of ISOdeclared events

Survey of Utility Experience with Voluntary RTP Programs

- Summarized 43 voluntary RTP programs offered in 2003
 - "voluntary RTP" defined to exclude default service rates
 - Investor-owned and large publicly-owned utilities
- Interviewed utility program managers and reviewed publicly available sources (program evaluations, tariff sheets, regulatory filings, etc.)
- Identified key trends related to:
 - Utilities' motivations for offering RTP
 - Tariff design features
 - Program participation
 - Participant price response
 - Program status and outlook
- Developed recommendations for policymakers interested in voluntary RTP as a strategy for developing demand response

The Geography of Voluntary RTP

- Voluntary RTP offered by:
 - Most IOUs in the Southeast and TVA
 - All IOUs in Illinois and NY, per statutory/ regulatory requirement
 - First Energy-owned utilities in OH (4) and PA (3)
 - Several other Midwestern IOUs: Cinergy, Xcel, KCPL
 - All CA IOUs in 2003, but two programs since cancelled
- Voluntary RTP not offered by many utilities in:
 - The West
 - New England

Timeline of RTP Program Offerings

- <u>Mid-1980s</u>: RTP introduced by several utilities as novel DSM strategy
- <u>1990s</u>: RTP adopted by many utilities in Southeast and Midwest
 - Interest subsided in late-90s, as restructuring takes center stage
- <u>2000-2003</u>: RTP "rediscovered" as a tool for DR and a remedy for ailing electricity markets

Utility Motivations for RTP

thus, percentage values for all categories add to more than 100%

- Concern about customer satisfaction/retention driven by competitive pressures in the early- and mid-90s
 - Competition from other utilities (electric and gas), onsite generation, unregulated suppliers
 - Give large customers "early access" to the market
- Reducing peak demand rarely the <u>sole</u> motivation
 - Often an alternative to interruptible rates, allowing customers to "buy through"
- Load growth achieved by providing low prices in off-peak periods <u>AND</u> by allowing customers to add load without incurring additional demand charges

RTP Program Outlook

- ~34% of utilities report continuing active commitment to voluntary RTP
- Many programs "just coasting" or on their way out
 - Many programs never actively pursued
 - For others, outlook reflects lack of customer interest and/or changes in utility role associated with industry restructuring (e.g., divestiture)

Voluntary RTP: Participation Levels

- 2,700 non-residential customers and 11,000 MW enrolled in 2003
- Although several programs have achieved a significant level of participation, most have not.
 - Three programs account for 80% of customers and 80% of load enrolled
 - One-third of programs had no participants, and another third had fewer than 25

Voluntary RTP: Market Penetration Rates

(Includes only programs without an enrollment cap)

- Low market penetration for most programs: only two have >25% of eligible customers enrolled
- RTP tariffs typically restricted to non-residential customers larger than a specified size
 - -50% of programs restricted to customers > 500 kW
- Most programs not pro-actively marketed, or targeted to narrow sub-set of eligible customers (typically largest industrials)

Percentage of Participants that Respond to Prices

- Among programs with >10 participants, typically <60% of participants are price responsive
- Many customers enrolled expecting to save on their energy costs without responding on a daily basis
 - Arguably a consequence of marketing strategies and program goals

Maximum Load Reductions

- Among programs with >20 participants, most have achieved maximum load reductions of 12-22% of participants' combined load
 - Higher prices did not necessarily correspond to larger percentage load reductions across RTP programs
- Aggregate load reductions are modest for nearly all RTP programs
 - Only two programs (Duke and Georgia Power) reported load reductions > 100 MW
 - All other programs with load reduction data had < 60 MW enrolled

Prospects for Voluntary RTP as a Strategy for Developing Demand Response

- Two essential elements to success:
 - Customers must enroll
 - And must respond "significantly" in aggregate
- Several programs have successfully enrolled a sizeable number of customers, <u>but most have not.</u>
 - This could be indicative of customers' calculated choices: too much risk for the potential benefit
 - But customer acceptance not yet thoroughly tested
- Existing programs have also demonstrated that, in aggregate, customers on RTP can drop their load by 20-30%
- Difficult to extrapolate from demonstrated levels of price response:
 - Small populations of quite large industrial customers
 - On-site generation a significant fraction of load response in most programs
 - Low-tech response strategies
 - Many customers enrolled without intending to monitor or respond to hourly prices

Recommendations for Improving Design and Implementation of Voluntary RTP

- Sufficient resources must be devoted to developing and implementing a customer education program
- Customers need help understanding and managing price risk (e.g. risk management products, two-part CBL)
- Coordinate RTP implementation with other demand-side activities
- Include provisions for rigorous analysis of customer acceptance and price response

Aligning Policy Objectives and RTP Program Design

- Utilities interests must be aligned with program goals
- Costs and benefits of obtaining incremental amounts of price responsive load from RTP must be weighed against those of other types of DR programs.
- Account for the potential environmental and market impacts of the increased use of on-site generation resulting from RTP