An Evaluation Framework for DER

talk presented at the

Joint CPUC-CEC Workshop on Cost and Benefit Methods for DG

SACRAMENTO CA

5 May 2004 by

Chris Marnay

<u>C_Marnay@lbl.gov</u> - +1.510.486.7028 - <u>der.lbl.gov</u>

coauthors: Etan Gumerman, Ranjit Bharvirkar, Kristina Hamachi LaCommare

FFFFFFFF

research supported by the Distributed Energy Program of the U.S. Dept of Energy (and the California Energy Commission)

Environmental Energy Technologies Division

Outline

- I. Introduction
- II. Benefits Taxonomy
- III. Consumer Price Protection
- IV. Reliability & Security
- V. Conclusion

California Electricity Use

Motivation for Study

- 1. lay out a global framework for estimating DER benefits on a common basis
- 2. show that because a benefit is incalculable doesn't mean its value is zero
- 3. emphasize estimates have to be around a certain common point
- 4. identify areas of public policy interest

Benefit Rating System

benefit rating	1 or 1	2 or 2	3 or 3
economic size	small	medium	large
market	public policy intervention	partially	largely
likelihood		internalized	internalized
tractability	hard to	possibly	readily
	quantify	calculable	estimated

green for positive benefits red for negative benefits, a.k.a. costs

— Environmental Energy Technologies Division

Benefits (& Costs) of DER 1

Benefit/Cost		Economic Size	Market Liklihood	Tracta- bility
1	Lower Cost of Electricity	2-3	3	3
2	Consumer Electricity Price Protection	1-2	3	2
3	Enhanced Electricity Price Elasticity	1-2	1	1
4	Reliability & Power Quality (DER adopter) (other customers)	2 & 1-2	3 & 1	2 & 1
5	Reduced Security Risk to Grid	2	1	1
6	Combined Heat and Power/Efficiency	3	3	3
7	Noise Disturbance	1	1	2
8	T & D Deferral and Congestion Relief	3	2	2
9	Capacity Deferral/Standed Assets	<mark>2</mark> -2	1	2
~	Cupacity Derenal Standed Assets		-	-

Benefits (& Costs) of DER 2

	Benefit/Cost		Market Liklihood	Tracta- bility
10	Reduced T&D Losses	1	1	2
11	Voltage Support to Electric Grid	1-2	1	1
12	Consumer Control	1	3	1
13	Indoor Emissions	1	1	2
14	Airborne or Outdoor Emissions	<mark>2</mark> -2	1	2
15	DER Fuel Delivery Chall enges	1-2	2	2
16	NIMBY – BANANA – Environmental Equity	1	1	1
17	Land Use Effects.	1	1	2

The DER Adopter Can Lower Bills

- DER adopter will likely only be motivated if there are bill savings
- lowered total cost of purchased energy will be captured
- ability to optimally trade might be restricted

The DER Adopter Can Lower Volatility

DER Can Provide Price Response

- DER owners will be able to respond to prices
- enhanced elasticity will tame markets
- will volatility be reduced?

Effect of Inelastic Electricity Demand

Environmental Energy Technologies Division

The Complex Reliability Picture

- DER adopter
 - DER Adopter will capture the benefit
 - reliability likely to be a big driver of DER
- power grid effects are another story...
 - power systems comprised of a larger number of small sources are inherently more reliable

The Optimal Societal Level of ¹³ Electricity Supply Reliability

Environmental Energy Technologies Division

1999 California Electricity Consumption by End-Use

Reduced Grid Security Risk

- the power grid is a attractive and vulnerable target
- providing for sensitive loads locally lowers the security risk of grid failure
- lower grid dependence reduces it's attractiveness as a target

Conclusion

- A comprehensive and consistent approach is needed for DER benefits estimation.
- It's important to not lose sight of the big picture.
- Some issues are complex and fundamental e.g. power grid effects.
- Can the consequences of a paradigm shift actually be estimated?

http://eetd.lbl.gov/ea/EMS/EMS_pubs.html#DER

