# Community Wind Power Development

The Challenge of Applying the European Model in the United States, and How States are Addressing that Challenge

> Mark Bolinger (MABolinger@lbl.gov) Lawrence Berkeley National Laboratory

Global WINDPOWER 2004, Chicago, Illinois March 30, 2004



**Environmental Energy Technologies Division** • Energy Analysis Department

# Defining "Community Wind"

- Locally Owned: One or more members of local community have a direct financial stake in the project, other than through land lease or tax revenue
- Utility-Scale Turbines: 600 kW threshold for new projects, lower for older projects
- On Either Side of Meter: Power sales to the grid *or* offsetting end-use consumption (or both)

## **NOT** referring to:

- \* home-sized (10 kW) projects
- \* municipal utility projects
- \* standard US commercial wind development



## Experience in Northern Europe (2000)

|         | Total Wind<br>Capacity<br>(MW) | Community-<br>Owned Wind<br>Capacity (MW) | %<br>Community-<br>Owned | Number of<br>Household<br>Investors |
|---------|--------------------------------|-------------------------------------------|--------------------------|-------------------------------------|
| Germany | 6,161                          | ~5,400                                    | 88%                      | ~100,000                            |
| Denmark | 2,268                          | ~1,900                                    | 84%                      | ~175,000                            |
| Sweden  | 240                            | ~30                                       | 13%                      | ~15,000                             |
| The UK  | 414                            | ~3                                        | 1%                       | ~2,000                              |
| Total   | 9,083                          | 7,333                                     | 81%                      | 292,000                             |



**Environmental Energy Technologies Division** • Energy Analysis Department

# **Historical Community Wind Drivers**

|                                   | Denmark      | Sweden       | Germany      | UK           | US |
|-----------------------------------|--------------|--------------|--------------|--------------|----|
| Feed-in laws                      | $\checkmark$ | $\checkmark$ | ~            |              |    |
| Standardized interconnection      | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |    |
| Tax-free production income        | $\checkmark$ | $\checkmark$ |              |              |    |
| Energy/CO <sub>2</sub> tax refund | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |    |
| Flow-through depreciation         |              |              | $\checkmark$ |              |    |
| Wind turbine mfg. industry        | $\checkmark$ |              | $\checkmark$ |              |    |
| Ownership restrictions            | $\checkmark$ |              |              |              |    |



# Why Community Wind in the US?

- Supplement and Stabilize Farmer Income
  - \* Preserve farming communities
  - \* Preserve rural landscapes, values, way of life
- Local Economic Development Benefits
- Difficulty Siting Large Projects (some areas)
- Take Responsibility for Energy Consumption



## Minnesota – Policy Support

#### **Create Demand:**

- Xcel Wind Mandate: 1,125 MW by 2010 (at least 160 MW of this from projects ≤ 2 MW)
- **Renewable Energy Objective:** 1% of retail sales by 2005, increasing to 10% by 2015
- Xcel Small Wind Tariff and Standard PPA: similar to "feed-in law" for projects ≤ 2 MW (3.3¢/kWh for 20 years)

## **Encourage Supply:**

- Cash Production Incentive: 1.5¢ per kWh sold over initial 10 years (for projects ≤ 2 MW that meet ownership criteria)
- **Grants:** Xcel Renewable Development Fund, State Energy Office, USDA



## Minnesota – Results

- At least **132 MW** of "small" projects already built, with another **68 MW** in the pipeline
- Financing/Ownership Structures:
  - \* Commercially financed (53 MW)
  - \* Local personal wealth (35 MW)
  - \* "Flip" structure (30 MW)
  - \* Municipal utility (9 MW)
  - \* LLCs of local investors with tax appetite (4 MW)
- Flips & local LLCs more common in next 68 MW
- 100 MW Trimont project an emerging model?



## lowa

### **Drivers**:

- Historically no size limit on net metering (now 500 kW)
- Single-part tariffs not uncommon for large end-users
- Alternate Energy Revolving Loan Program loans half of required funds (up to \$250,000) at 0% interest

## **Results:**

- Large, behind-the-meter projects dominate
- 8 school districts host 10 turbines (50-750 kW) totaling
  3.6 MW the most school-based turbines of any state

## Future?



## Wisconsin

#### "Wisconsin Community-Based Windpower Project Business Plan" (September 2003)

- Funded by Wisconsin Focus on Energy
- Prepared by Cooperative Development Services
- Detailed (though generic) business plan for a variant of the "flip" structures seen in Minnesota
- Financial modeling suggests that community wind may be possible in WI without state incentives

# Independently, 2 small MN-style "flip" projects appear to be moving forward



# Illinois

### **2003:** Two projects funded with various grants

#### 1) Bureau Valley School District (750 kW, behind the meter)

- \$20,000 grant for feasibility study (ILCECF)
- \$375,000 construction grant (ILCECF)
- Has applied for a grant from RERP

#### 2) Illinois Rural Electric Cooperative (1.65 MW, supply mix)

- \$175,000 up-front 10-year REC purchase (ILCECF)
- \$250,000 grant (RERP)
- \$438,544 grant (USDA)

**2004:** ILCECF considering a wind monitoring program targeted at sites with strong community interest. More construction grants also possible.



## Massachusetts

#### MTC's "Community Wind Collaborative" (Sept. 2003)

- Born out of contrast between Cape Wind and Hull
- Targets projects <5 MW on public land, on either side of meter, and owned or facilitated by municipalities
- MTC (with help of consultants) acts as developer on behalf of community up until build/no-build decision
- If build, community can access MTC "preferred partners"
- Status:
  - \* 40 communities have expressed interest
  - \* Wind monitoring underway in 6 communities (10 by June)
  - \* MTC establishing consultant pool and preferred partners



# Other

**New York:** Recent NYSERDA solicitation may support community wind, but primarily intended to prepare communities for *large-scale* wind development (from RPS)

- **Oregon & Washington:** Funding analysis of various ownership structures and relative local economic benefits of community wind
- **California:** 1 MW net metering size limit and 50% cost buydown driving at least one project (Palmdale Water District)
- **Idaho:** \$500,000 USDA grant for rancher-owned 3 MW project, will sell output to Utah Power
- **Tribal turbines:** Rosebud Sioux 750 kW turbine in SD, a few other projects either built or under development in ND, MT, ID



## Conclusions

- There is growing interest in community wind
- States providing different forms of support, which leads to different project types
- Tax-based federal incentives require innovative ownership arrangements to maximize value
- Increasingly good information on replicable models may be pushing community wind past a "tipping point"

