

Facts and Wishful Thinking about the Future of Supercomputing

Horst D. Simon

Director, NERSC Center and Computational Research

Divisions

Scicomp 6, Berkeley, California, USA

August 2002

Welcome to NERSC and LBNL

- Located in the hills next to University of California, Berkeley campus
- close collaborations between university and NERSC in computer science and computational science

NERSC - Overview

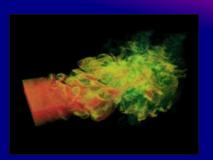
- the Department of Energy, Office of Science, supercomputer facility
- unclassified, open facility; serving >2000 users in all DOE mission relevant basic science disciplines
- 25th anniversary in
 1999 (one of the oldest supercomputing centers)

NERSC at Berkeley: six years of excellence in computational science

1997: Expanding
Universe is
Breakthrough of
the year

1998: Fernbach and Gordon Bell Award

1999: Collisional breakup of quantum system


2000: BOOMERANG data analysis= flat universe 2001: Most distant supernova

1996

National Energy Research Scientific Computing Center

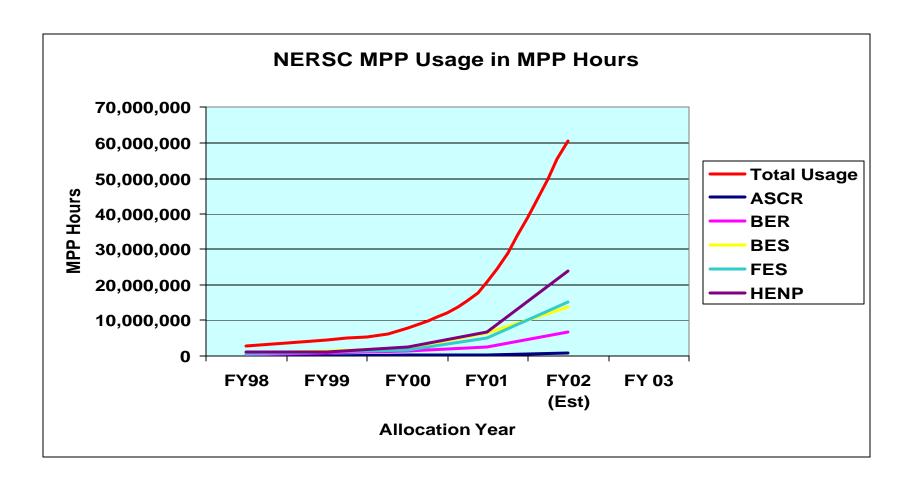
Outline

- Where are we today?
 - NERSC examples
 - current status of supercomputing in the US
- The 40 Tflop/s Earth Simulator and the "Computenik" effect
- Business as usual won't work
- Technology Alternatives

TOP500 – June 2002

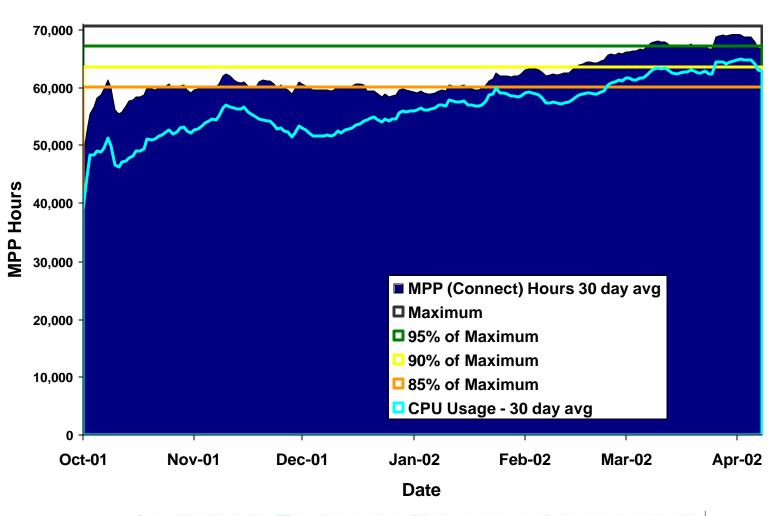
	10		1			1	-	-			
Rank	Manufacturer	Computer	Rmax	Installation Site	Country	Year	Area of	# Drog	Rpeak	Nmax	N1/2
1	NEC	Earth-Simulator	35860	Earth Simulator Center Kanazawa	Japan	2002	Research	5120	40960	1075200	266240
2	IBM	ASCI White, SP Power3 375 MHz	7226	National Laboratory Livermore	USA	2000	Research Energy	8192	12288	518096	179000
3	Hewlett-Packard	AlphaServer SC ES45/1 GHz	4463	Pittsburgh Supercomputing Center Pittsburgh	USA	2001	Academic	3016	6032	280000	85000
4	Horriott Doolsond	AlphaServer SC ES45/1 GHz	3980	Commissariat a l'Energie Atomique (CEA)	France	2001	Research	2560	5120	360000	85000
5	ВМ	SP Power3 375 MHz 16 way	3052	NERSC/LBNL Berkeley	USA	2001	Research	3328	4992	371712	102400
6	Hettilett-Packardi	AlphaServer SC ES45/1 GHz	2916	Los Piamos ITadoma Laboratory Los Alamos	USA	2002	Research	2048	4096	272000	
7	Intel	ASCI Red	2379	Sandia National Laboratories Albuquerque	USA	1999	Research	9632	3207	362880	75400
8	IBM	pSeries 690 Turbo 1.3GHz	2310	Oak Ridge National Laboratory Oak Ridge	USA	2002	Research	864	4493	275000	62000
9	BM	ASCI Blue-Pacific SST, IBM SP 604e	2144	Lawrence Livermore National Laboratory Livermore	USA	1999	Research Energy	5808	3868	431344	8
10	IBM	pSeries 690 Turbo 1.3GHz	2002	IBM/US Army Research Laboratory (ARL) Poughkeepsie	USA	2002	Vendor	768	3994	252000	
		SD Damer 3 375 MHz		Atomic Wespons				i -			

NERSC-3 Vital Statistics

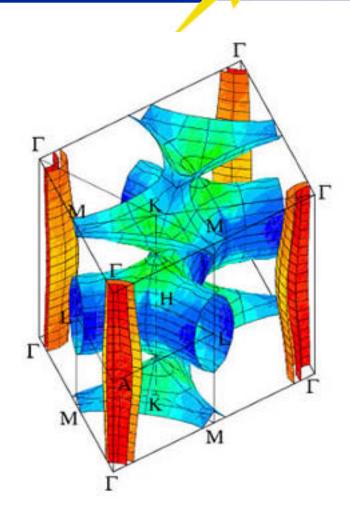


- 5 Teraflop/s Peak Performance 3.05 Teraflop/s with Linpack
 - 208 nodes, 16 CPUs per node at 1.5 Gflop/s per CPU
 - "Worst case" Sustained System Performance measure .358 Tflop/s (7.2%)
 - "Best Case" Gordon Bell submission 2.46 on 134 nodes (77%)
- 4.5 TB of main memory
 - 140 nodes with 16 GB each, 64 nodes with 32 GBs, and 4 nodes with 64 GBs.
- 40 TB total disk space
 - 20 TB formatted shared, global, parallel, file space; 15 TB local disk for system usage
- Unique 512 way Double/Single switch configuration

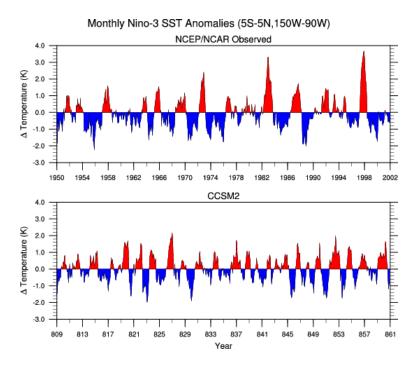
The Demand for Supercomputing Cycles is Urgent and Growing


The growth is dramatically evident at NERSC.

NERSC-3, Installed in 2001, is Already Fully Utilized

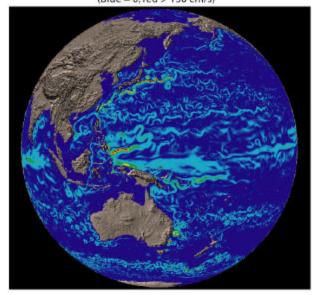

Seaborg MPP Usage and Charging FY 2002

Computational Science at NERSC: Explaining HT Superconductivity


ERSC

- Published August 15, 2002 in Nature by Marvin Cohen and Steven Louie of Berkeley Lab's Materials Sciences Division, and UC Berkeley
- Calculated the properties of the unique superconductor MgB2 from first principles, revealing the secrets of its anomalous behavior, including more than one superconducting energy gap.
- MgB2 becomes superconducting at 39 degrees Kelvin, one of the highest known transition temperatures (Tc) of any superconductor.
- The theorists report that MgB2's odd features arise from two separate populations of electrons -- nicknamed "red" and "blue" -- that form different kinds of bonds among the material's atoms.

Computational Science at NERSC: A 1000 year climate simulation


- Warren Washington and Jerry Meehl, National
 Center for Atmospheric Research; Bert Semtner,
 Naval Postgraduate School; John Weatherly, U.S.
 Army Cold Regions Research and Engineering Lab
 Laboratory.
- A 1000-year simulation demonstrates the ability of the new Community Climate System Model (CCSM2) to produce a long-term, stable representation of the earth's climate.
- •760,000 processor hours by July

Computational Science at NERSC: High Resolution Global Coupled Ocean/Sea Ice Model

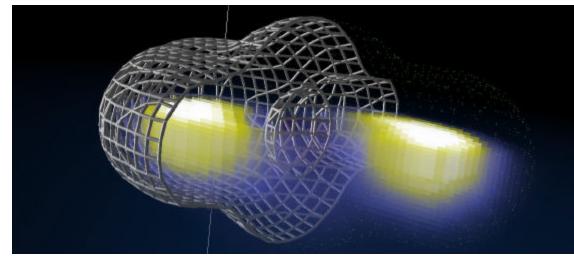
- Mathew E. Maltrud, Los Alamos National Laborátory;
 Julie L. McClean, Naval Postgraduate School.
- The objective of this project is to couple a highresolution ocean general circulation model with a high-resolution dynamic-thermodynamic sea ice model in a global context.
- •Currently, such simulations are typically performed with a horizontal grid resolution of about 1 degree. This project is running a global ocean circulation model with horizontal resolution of approximately 1/10th degree.
- •Allows resolution of geographical features critical for climate studies such as Canadian Archipelago

1/10 Degree Global POP Ocean Model Currents at 50m Depth (blue = 0:red > 150 cm/s)

Computational Science at NERSC: Supernova Explosions and Cosmology

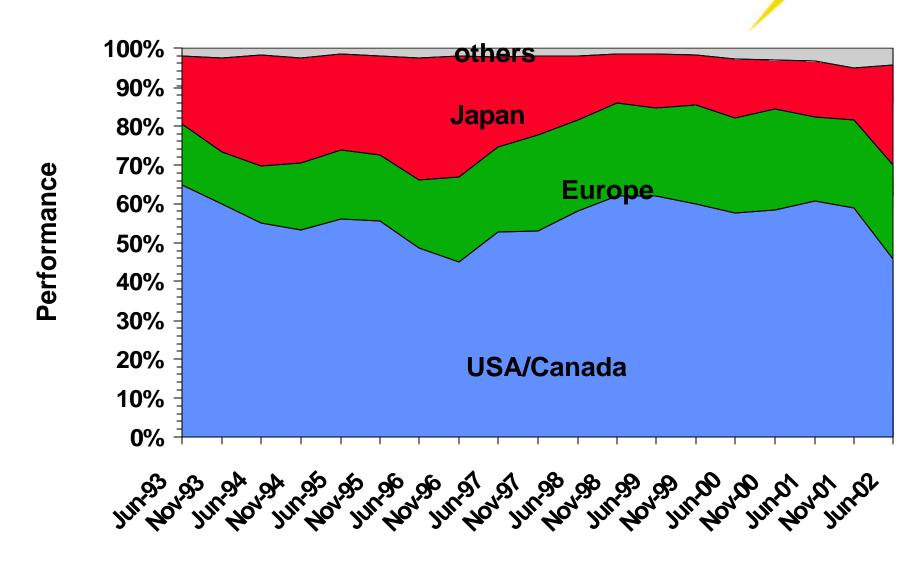
Peter Nugent and Daniel Kasen, Lawrence Berkeley National Laboratory;
Peter Hauschildt, University of Georgia; Edward Baron, University of
Oklahoma; Stan Woosley and Gary Glatzmaier, University of California,
Santa Cruz; Tom Clune, Goddard Space Flight Center; Adam Burrows,
Salim Hariri, Phil Pinto, Hessam Sarjoughian, and Bernard Ziegler,
University of Arizona; Chris Fryer and Mike Warren, Los Alamos
National Laboratory; Frank Dietrich and Rob Hoffman, Lawrence
Livermore National Laboratory

 First 3-D supernova explosion simulation, based on computation at NERSC. This research eliminates some of the doubts about earlier 2-D modeling and paves the way for rapid advances on other questions about supernovae.

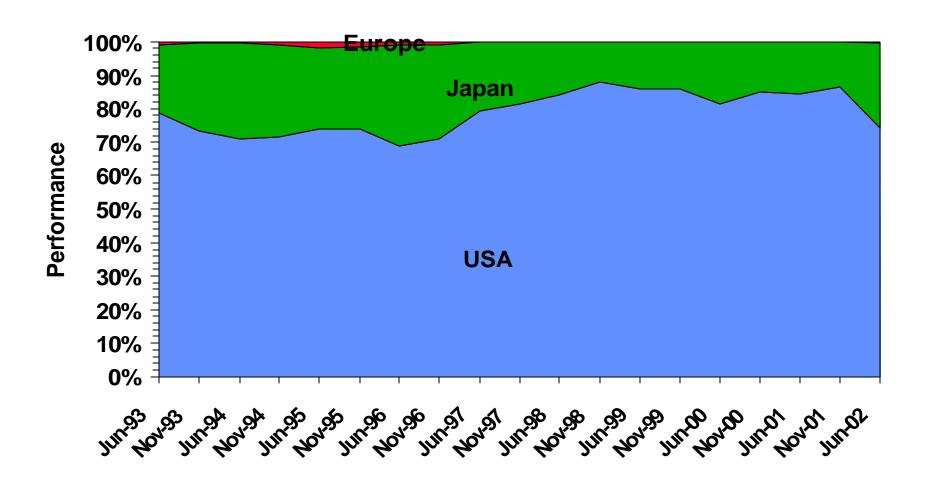


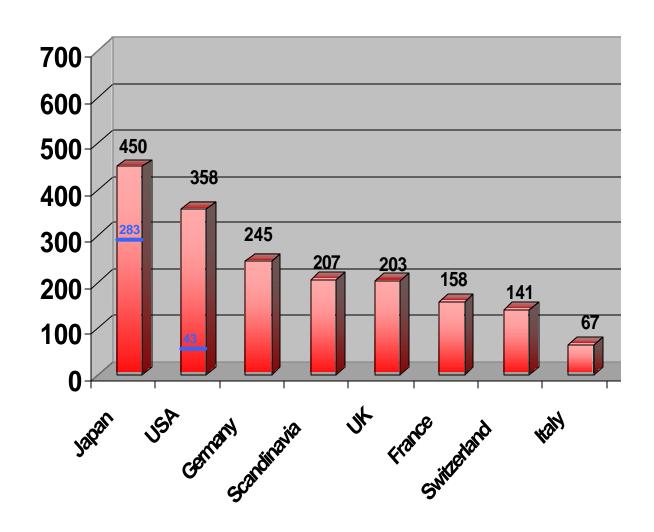
Computational Science at NERSC: Black Hole Merger Simulations

- Ed Seidel, Gabrielle Allen, Denis Pollney, and Peter Diener, Max Planck Institute for Astrophysics; John Shalf, Lawrence Berkeley National Laboratory.
- Simulations of the spiraling coalescence of two black holes, a problem of particular importance for interpreting the gravitational wave signatures that will soon be seen by new laser interferometric detectors around the world.
- Required 1.5
 Tbytes of memory and was run on the large 64 Gbyte nodes


Outline

- Where are we today?
 - NERSC examples
 - current status of supercomputing in the US
- The 40 Tflop/s Earth Simulator and the "Computenik" effect
- Business as usual won't work
- Technology Alternatives


TOP 500: Continents - Performance


TOP 500: Producers - Performance

TOP 500: Kflops per Inhabitant

Current Status of Applications Software

There is a large national investment in scientific software that is dedicated to current massively parallel hardware Architectures

- Scientific Discovery Through Advanced Computing (SciDAC) initiative in DOE
- Accelerated Strategic Computing Initiative (ASCI) in DOE
- Supercomputing Centers of the National Science Foundation (NCSA, NPACI, Pittsburgh)
- Cluster computing in universities and labs

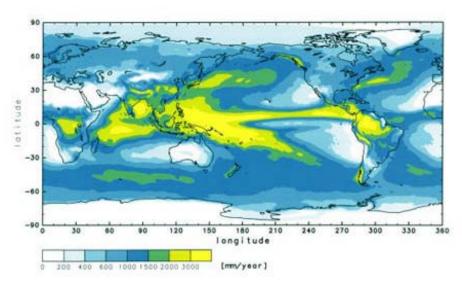
This is a strong a vibrant field. Computational Simulation is well established in the US as the third "leg" of science.

Current Trends in Computer Science Research in the US

The attention of research in computer science is not directed towards scientific supercomputing

- —Primary focus is on Grids and Information Technology
- —Only a handful of supercomputing relevant computer architecture projects currently exist at US universities; versus of the order of 50 in 1992
- —Parallel language and tools research has been almost abandoned
- —Petaflops Initiative (~1997) was not extended beyond the pilot study by any federal sponsors

Outline



- Where are we today?
 - NERSC examples
 - current status of supercomputing in the US
- The 40 Tflop/s Earth Simulator and the "Computenik" effect
- Business as usual won't work
- Technology Alternatives

The Earth Simulator julian

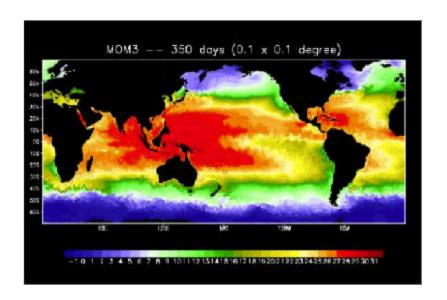
- Linpack benchn
 TF/s = 87% of 40
- Completed Apr
- Driven by clima earthquake simulation
- Built by NEC

http://www.es.jamstec.go.jp/esrdc/eng/menu.html

		:み込み帯 ubduction zone	
下降液 Descent style		巨大海绵 Ocean un	
対流 Convection			南太平洋 ホットスポット群 South Pacific hot spot group
内核 Inner Core	外核 Outer Core H.C.S. 斯格元素 Parents nuclear element 元素分配 Element allocation	上昇流 Rise style	中央海猫 Central ridge

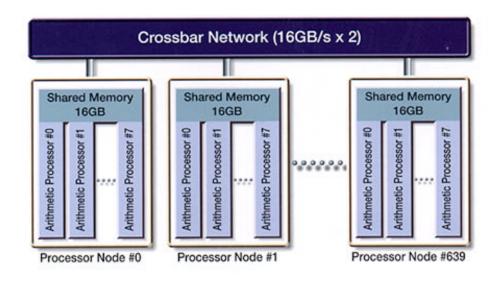
Understanding and Prediction of Global Climate Change	<u>Understanding of Plate</u> <u>Tectonics</u>
Occurrence prediction of meteorological disaster	Understanding of long-range crustal movements
Occurrence prediction of El Niño	Understanding of mechanism of seismicity
Understanding of effect of global warming	Understanding of migration of underground water and materials transfer in strata
Establishment of simulation technology with 1km resolution	

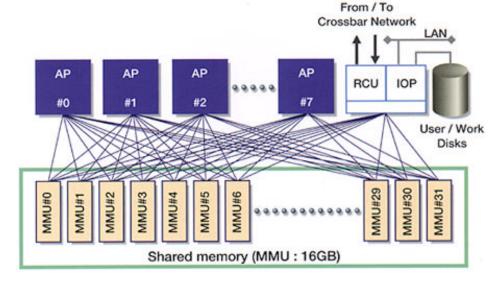
Earth Simulator – Configuration of a General Purpose Supercomputer


- 640 nodes
 - 8 vector processors of 8 GFLOPS and 16GB shared memories per node.
 - Total of 5,120 processors
 - Total 40 Tflop/s peak performance
 - Main memory 10 TB
- High bandwidth (32 GB/s), low latency network connecting nodes.
- Disk
 - 450 TB for systems operations
 - 250 TB for users.
- Mass Storage system: 12 Automatic Cartridge Systems (U.S. made STK PowderHorn9310); total storage capacity is approximately 1.6 PB.

Earth Simulator Performance on Applications

ERSC


Test run on global climate model reported sustained performance of 14.5 TFLOPS on 320 nodes (*half the system*): atmospheric general circulation model (spectral code with full physics) with 10 km global grid. The next best climate result reported in the US is about 361 Gflop/s – a factor of 40 less than the Earth Simulator

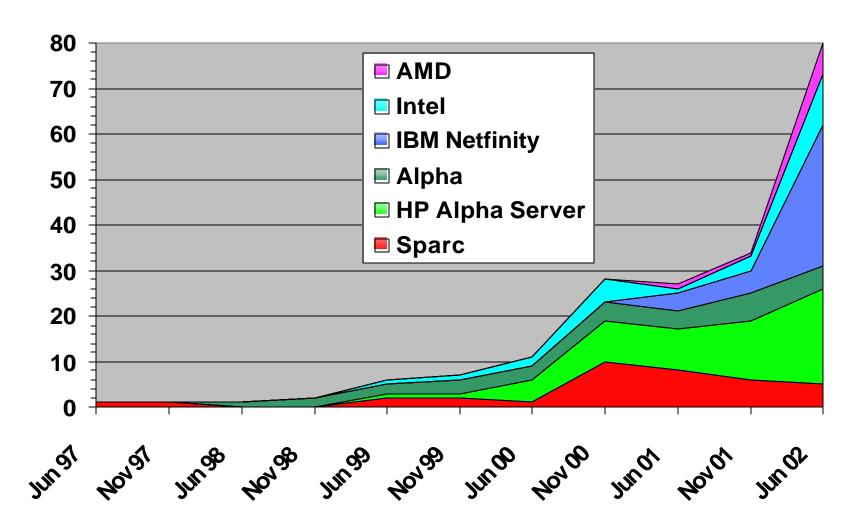

MOM3 ocean modeling (code from GFDL/Princeton). The horizontal resolution is 0.1 degrees and the number of vertical layers is 52. It took 275 seconds for a week simulation using 175 nodes. A full scale application result!

Earth Simulator Architecture: Optimizing for the full range of tasks

Parallel Vector Architecture

- High speed (vector) processors
- High memory bandwidth (vector architecture)
- Fast network (new crossbar switch)

Rearranging commodity parts can't match this performance


Outline

- Where are we today?
 - NERSC examples
 - current status of supercomputing in the US
- The 40 Tflop/s Earth Simulator and the "Computenik" effect
- Business as usual won't work
- Technology Alternatives

Number of NOW Clusters in TOP500

What about PC Clusters? Contributions of Beowulf

- An experiment in parallel computing systems
- Established <u>vision of</u> low cost, high end computing
- Demonstrated effectiveness of PC clusters for some (not all) classes of applications
- Provided networking software
- Conveyed findings to broad community (great PR)
- Tutorials and book
- Design standard to rally community!
- Standards beget: books, trained people, software ... virtuous cycle

Adapted from Gordon Bell, presentation at Salishan

Commercially Integrated Tflop/s Clusters Are Already Happening

- Shell: largest engineering/scientific cluster
- NCSA: 1024 processor cluster (IA64)
- Univ. Heidelberg cluster
- PNNL: announced 9.1 Tflops (peak) IA64 cluster from HP with Quadrics interconnect
- DTF in US: announced 4 clusters for a total of 13 Teraflops (peak)

... But make no mistake: Itanium and McKinley are not a commodity product

Comparison Between Architectures (2001)

	Alvarez	Seaborg	Mcurie
Processor	Pentium III	Power 3	EV-5
Clock speed	867	375	450
# nodes	80	184	644
# processors/node	2	16	
Peak (GF/s)	139	4416	579.6
Memory (GB/node)	1	16-64	0.256
Interconnect	Myrinet 2000	Colony	T3E
Disk (TB)	1.5	20	2.5

Source: Tammy Welcome, NERSC

Performance Comparison(2) Class C NPBs

	Alvarez		Sea	borg	Mcurie		
	64	128	64	128	64	128	
BT	61.0		111.9		55.7		
CG	17.1	13.9	34.0	30.9	9.3	11.8	
EP	3.9	3.9	3.9	3.9	2.6	2.6	
FT	31.3	20.0	61.2	54.6	30.8	30.1	
IS	2.4	2.1	2.1	1.3	1.1	1.0	
LU	26.9	38.7	209.0	133.7	60.4	56.0	
MG	56.6	46.9	133.2	101.7	93.9	80.0	
SP	40.9		100.7		41.8		
per processor	39.0		108.3		48.7		
SSP (Gflops/s)	6.2		318.9		31.3		

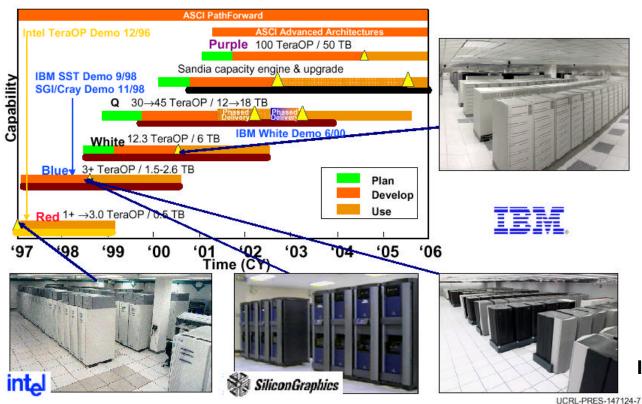
Source: Tammy Welcome, NERSC

Effectiveness of Commodity PC Clusters

ERSC

- Dollars/performance based on peak
 - —SP and Alvarez are comparable \$/TF
- Get lower % of peak on Alvarez than SP
 - —Based on SSP, 4.5% versus 7.2% for FP intensive applications
 - —Based on sequential NPBs, 5-13.8% versus 6.3-21.6% for FP intensive applications
 - —x86 known not to perform well on FP intensive applications
- \$/Performance and cost of ownership need to be examined much more closely
 - Above numbers do not take into account differences in system balance or configuration
 - —SP was aggressively priced
 - Alvarez was vendor-integrated, not self-integrated

Limits to Cluster Based Systems for HPC



- Memory Bandwidth
 - —Commodity memory interfaces [SDRAM, RDRAM, DDRAM]
 - Separation of memory and CPU implementations limits performance
- Communications fabric/CPU/Memory Integration
 - —Current networks are attached via I/O devices
 - —Limits bandwidth and latency and communication semantics
- Node and system packaging density
 - Commodity components and cooling technologies limit densities
 - Blade based servers moving in right direction but are not High Performance
- Ad Hoc Large-scale Systems Architecture
 - —Little functionality for RAS
 - —Lack of systems software for production environment
- ... but departmental and single applications clusters will be highly successful

 After Rick Ster

Cluster of SMP Approach

- A supercomputer is a stretched high-end server
- Parallel system is built by assembling nodes that are modest size, commercial, SMP servers – just put more of them together

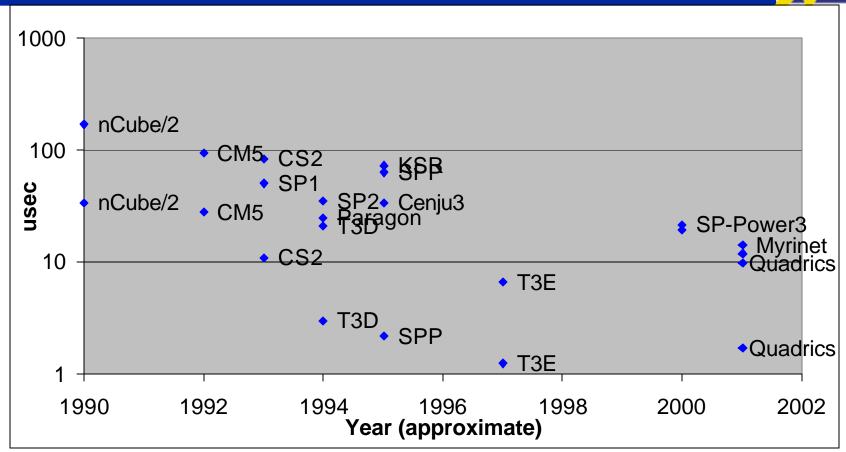
Image from LLNL

Comments on ASCI

- Mission focus (stockpile stewardship)
- Computing a tool to accomplish the mission
- Accomplished major milestones
- Success in creating the computing infrastructure in order to meet milestones
- Technology choice in 1995 was appropriate

IBM's Response to the Earth Simulator

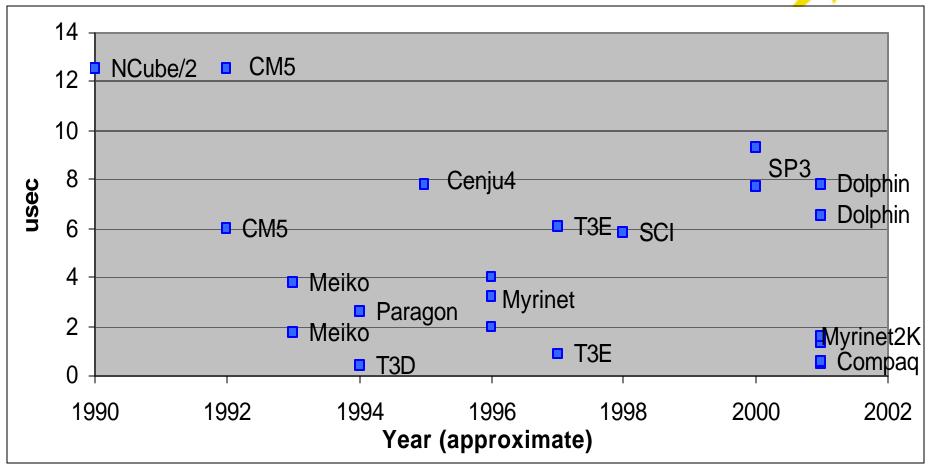
- White paper circulated in Washington in July 2002 states: "... we could construct a supercomputer in 12 to 18 months that would deliver 25 50 Tflops of sustainable performance on climate modeling codes ... using IBM's next generation interconnect, memory subsystem and processor ..."
- "We could do that in a heartbeat and we could do that for a lot less money", Peter Ungarro, IBM as quoted by AP


The IBM Response Ignores Key Issues

ERSC

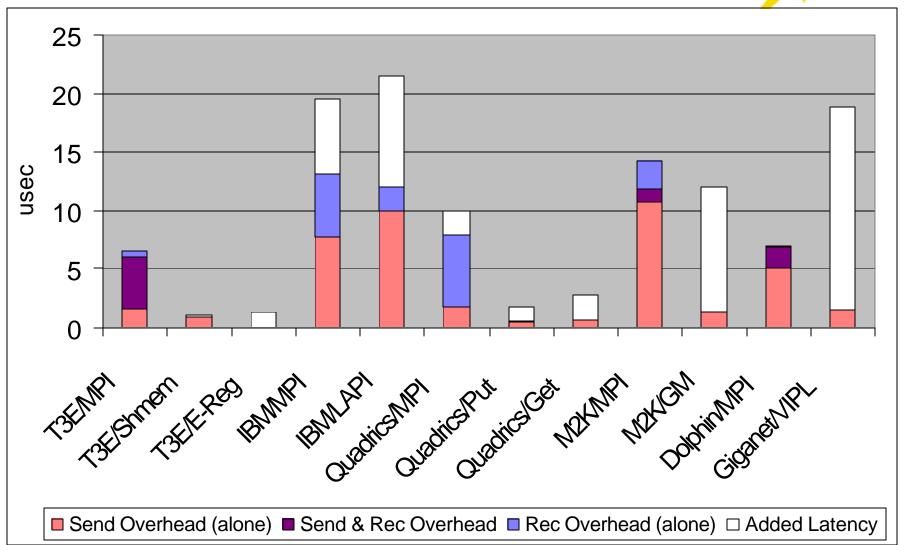
- Interconnect performance
- Memory contention on SMP nodes
- Processor performance
- System Size and Cost

End to End Latency Over Time



- Latency has not improved significantly
 - —T3E (shmem) was lowest point
 - —Federation in 2003 will not reach that level 7 years later!

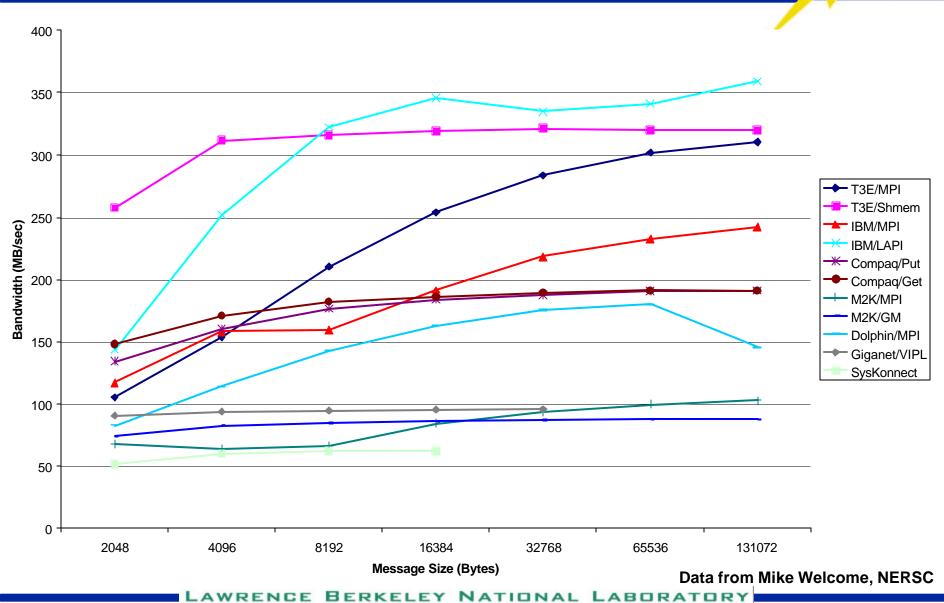
Send Overhead Over Time



- Overhead has not improved significantly; T3D was best
 - —Lack of integration; lack of attention in software

Data from Kathy Yelick, UCB and NERSC

Results: EEL and Overhead



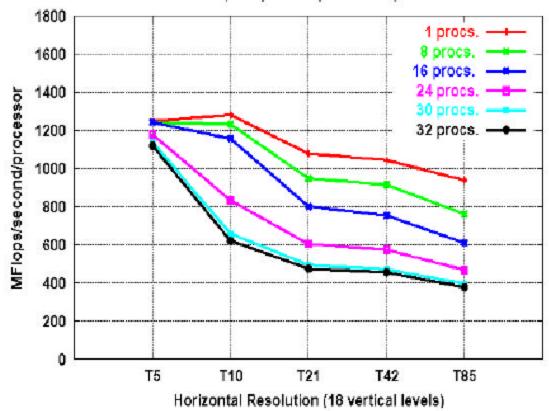
Data from Mike Welcome, NERSC

Bandwidth Chart

PSTSWM Description

- The Parallel Spectral Transform Shallow Water Model
 represents an important computational kernel in spectral global
 atmospheric models. As 99% of the floating-point operations are
 multiply or add, it runs well on systems optimized for these
 operations. PSTSWM exhibits little reuse of operands as it
 sweeps through the field arrays; thus it exercises the memory
 subsystem as the problem size is scaled and can be used to
 evaluate the impact of memory contention in SMP nodes.
- These experiments examine serial performance, both using one processor and running the serial benchmark on multiple processors simultaneously. Performance is measured for a range of horizontal problems resolutions for 18 vertical levels.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


From Pat Worley, ORNL

PSTSWM Sensitivity to Contention

 Performance degradation is a "smooth" function of number of processes.

Performance of Spectral Shallow Water Model (IBM p690 experiments)

Process scaling on IBM p690

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

For the Next Decade, The Most Powerful Supercomputers Will Increase in Size

And will get bigger

Power and cooling are also increasingly problematic, but there are limiting forces in those areas.

- Increased power density and RF leakage power, will limit clock frequency and amount of logic [Shekhar Borkar, Intel]
- So linear extrapolation of operating temperatures to Rocket Nozzle values by 2010 is likely to be wrong.

The Oakland Facility Machine Room

"I used to think computer architecture was about how to organize gates and chips – not about building computer rooms"

Thomas Sterling, Salishan, 2001

NERSC Analysis

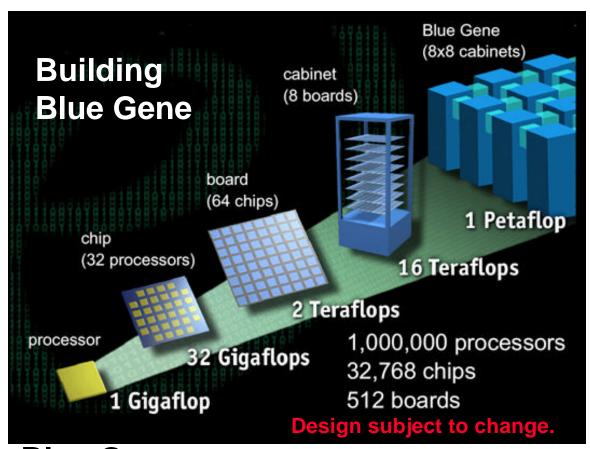
- A system of 512 Power4 nodes, with a 1024-way
 Federation switch (2 adapters per node), would have
 a tough time achieving 5 Tflop/s without extensive
 optimization.
- Even assuming a 2X speedup from tuning, maybe IBM could hit 10 Tflop/s.
- 20 Tflop/s or more would require "miracles" of tuning, or, more likely, a significantly larger (and more expensive) system.
- Such a system would cost \$200 million or more and require 40,000 sqft floor space or more
- ... and we still would be in second place

Quoted from David Bailey

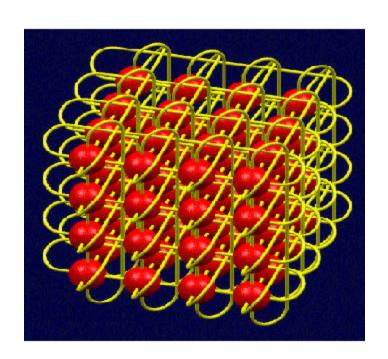
Outline

- Where are we today?
 - NERSC examples
 - current status of supercomputing in the US
- The 40 Tflop/s Earth Simulator and the "Computenik" effect
- Business as usual won't work
- Technology Alternatives

Cray SV2: Parallel Vector Architecture


- 12.8 Gflop/s Vector processors
- 4 processor nodes sharing up to 64 GB of memory
- Single System Image to 4096 Processors
- 64 CPUs/800 GFLOPS in LC cabinet

CMOS Petaflop/s Solution



- IBM's Blue Gene
- 64,000 32 Gflop/s PIM chips
- Sustain O(10⁷) ops/cycle to avoid Amdahl bottleneck

Characteristics of Blue Gene/L

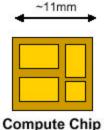
- Machine Peak Speed 180 Teraflop/s
- Total Memory 16 Terabytes
- Foot Print 2500 sq. ft.
- Total Power 1.2 MW
- Number of Nodes 65,536
- Power Dissipation/CPU 7 W
- MPI Latency 5 microsec

Building Blue Gene/L

Building BlueGene/L

Compute Card

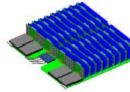
FRU 25mmx32mm


2 compute chips

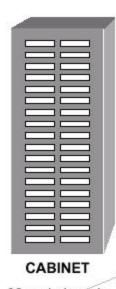
(2x1x1)

2.8/5.6 GF/s

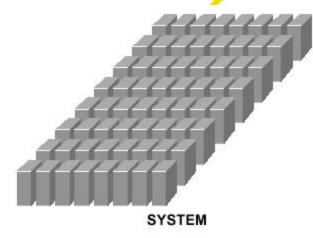
256 MiB* DDR 15 W


(compare this with a 1988 Cray YMP/8 at 2.7GF/s)

2 processors


2.8/5.6 GF/s 4 MiB* eDRAM

UCRL-PRES-147124



Node Board

32 compute chips 16 compute cards (4x4x2) 90/180 GF/s 8 GiB* DDR

32 node boards (8x8x16) 2.9/5.7 TF/s 266 GiB* DDR 15-20 kW

64 cabinets (32x32x64) 180/360 TF/s 16 TiB* ~1 MW 2500 sq.ft.

http://physics.nist.gov/cuu/Units/binary.html

*MiB = 2^{20} bytes = 1,048,576 bytes $\approx 10^6$ + 5% bytes *GiB = 2^{30} bytes = 1,073,741,824 bytes $\approx 10^9$ + 7% bytes *TiB = 2^{40} bytes = 1,099,511,627,776 bytes $\approx 10^{12}$ + 10% bytes *PiB = 2^{60} bytes = 1,152,921,504,606,846,976 bytes $\approx 10^{15}$ + 15% bytes

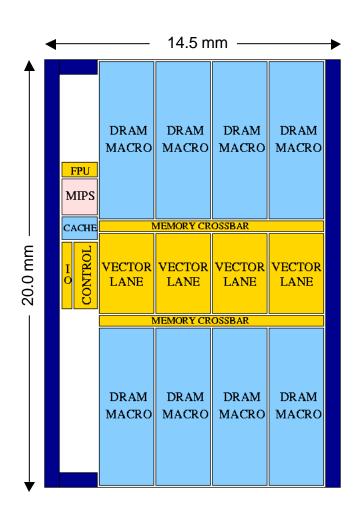

UCRL-PRES-147124-26

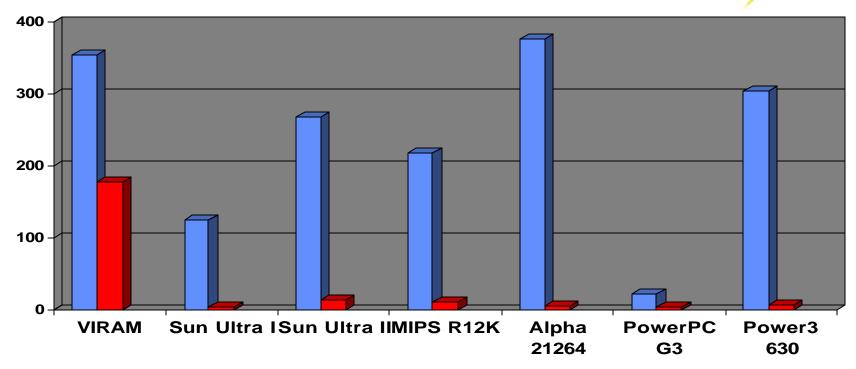
Image from LLNL

LAWRENCE BERKELEY NATIONAL LABORATORY

VIRAM Overview (UCB)

- ∠ Vector unit (200 MHz)

 - ∠ 256b datapaths, (16b, 32b, 64b ops)
- Main memory system
- Peak vector performance


 - ∠ 1.6 Gflops (single-precision)
- - ∠ But for single chip for multi-media

Source: Kathy Yelick, UCB and NERSC

Power Advantage of PIM+Vectors

- 100x100 matrix vector multiplication (column layout)
 - Results from the LAPACK manual (vendor optimized assembly)
 - —VIRAM performance improves with larger matrices!
 - —VIRAM power includes on-chip main memory!

Source: Kathy Yelick, UCB and NERSC, paper at IPDPS 2002

Explore the Design Space

- In between a fully custom HPC system and a COTS cluster, there are many design points where standard components are mixed with custom technology to enhance performance.
- This spectrum ranges from "pick what Dell/IBM/HP/... would do anyhow" to "build the dream machine -- cost is not an issue".
- They key is to decide what are the main performance enhancers: a custom switch, a custom package, etc.
- We seem to always veer toward the two extremes: we have Cray/Tera/... at one extreme (custom microprocessor, custom interconnect, custom package...), and Beowulfs/SPs/... at the other extreme (all commercial server technology).
- No interesting design point is explored in between and no commercial model exists to support something in between.
- We need to explore the design space in collaboration with vendors such as IBM, who have all technology easily available, or can be the integrator

After Marc Snir, UIUC

Options for New Architectures

Cost

Software Impact

Timeliness

Risk Factors

Ontion

Option	Software impact	Cost	rimeimess	RISK FACIOIS
Modification of commodity processors	Minimal	2 or 3 times commodity?	Can be achieved in three years	Partnership with vendors not yet established
U.S. made vector architecture	Moderate	2 or 3 times commodity at present	Deliverable in 2003 and beyond	One small vendor
Processor-in- memory (Blue Gene/L)	Extensive	Unknown, 2 to 5 time commodity?	Only prototypes available now	General purpose applicability unknown
Japanese made vector architecture	Moderate	2.5 to 3 times commodity at present	Available now	Political risk, unknown future availability and growth path
Research Architectures (Streams, VIRAM)	Extensive or unknown	Unknown	Academic research prototypes only available now	Not practical in five years

Two Options are Preferred

- Adapt commercial microprocessors with modifications geared towards scientific applications
 - Goal: Address the memory bandwidth and communications problem
 - Precedent: One of the most successful massively parallel computers was the Cray T3E based on commodity processors with additional special purpose components
 - Practicality: Major vendors now have robust "embedded processor" businesses which can make the parts
 - Method: Partnership and investment with U.S. vendor(s).
- 2. U.S. made Vector-based Massively Parallel architectures
 - Practicality: Design is extension of existing architecture
 - Method: Partnership and investment with the U.S. vendor