DOE UltraScienceNet - Update

Experimental Network Testbed for High-Performance Network technologies and Applications

Nagi Rao, Bill Wing, Steven Carter, Qishi Wu, Susan Hicks Computer Science and Mathematics Division Oak Ridge National Laboratory {raons,wrw,scarter,wuqn}@ornl.gov

https://www.usn.ornl.gov

Sponsored by High-Performance Networks Program Mathematics, Information and Computational Science Division Office of Advanced Scientific Computing Research U.S. Department of Energy

Contents Background and Overview Data-Plane Control-Plane Experimental Results

DOE UltraScience Net: Need, Concept and Challenges

The Need

- DOE large-scale science applications on supercomputers and experimental facilities require high-performance networking
 - Moving petabyte data sets, collaborative visualization and computational steering (all in an environment requiring improved security)
- Application areas span the disciplinary spectrum: high energy physics, climate, astrophysics, fusion energy, genomics, and others

Promising Solution

- High bandwidth and agile network capable of providing on-demand dedicated channels: multiple 10s Gbps to 150 Mbps
- Protocols are simpler for high throughput and control channels

Challenges: Several technologies need to be (fully) developed

- User-/application-driven agile control plane:
 - Dynamic scheduling and provisioning
 - Security encryption, authentication, authorization
- Protocols, middleware, and applications optimized for dedicated channels

DOE-Funded Support Application Projects

Lambda-Station

- FNAL-developed analysis "station" for high-energy physics
- Peering and Terascale Supernova Initiative
 - Collaborative visualization
 - Interdomain peering with NSF CHEETAH
- ESnet MPLS Tunnels
 - MPLS signaling to setup on-demand and in-advance circuits
- Remote Microscopy and Genomics Applications
 - PNNL developed remote-user control of confocal microscopy

USN Architecture: Separate Data-Plane and Control-Planes

Secure control-plane with: Encryption, authentication and authorization On-demand and advanced provisioning

×

Dual OC192 backbone: SONET-switched in the backbone Ethernet-SONET conversion

DOE UltraScience Net: Data Plane

Connects Atlanta, Chicago, Seattle and Sunnyvale:

 Dynamic and in-advance provisioned dedicated dual 10Gbps links at 50 Mbps resolution – SONET or Ethernet

JT-BATTELL

USN Data-Plane: Node Configuration

In the Core:

- Two OC192 switched by Ciena CDCIs
- At the Edge
 - 10/1 GigE provisioning using Force10 E300s

Node Configuration

Data Plane User Connections: Direct connections to: core switches –SONET &1GigE MSPP – Ethernet channels Utilize UltraScience Net hosts

USN Data-Plane: User Ports

User connections

- Ciena CDCI
 - SONET ports on CDCI
 - GigE ports on CDCI
- Force10 E300
 - 10GigE ports on E300
 - GigE ports on E300

GigE ports must match at the connection end points

Secure Control-Plane

- Netscreen ns-50 at ORNL
 NS-5 at each node
- Centralized server at ORNL
 - bandwidth scheduling
 - singnalling

Need for Secure Control Plane

Security of control plane is extremely important

- USN switches (Ciena, Force10, Turin, Sycamore, Whiterock) do not support IPSec – do not know of any that do
- TL1/CLI and GMPLS commands sent in the "clear"
 - Can be sniffed to profile the network
 - Can be injected to "take over" the control
- Following cyber attacks could be easily launched
 - Hijack the dedicated circuits; sustain a DOS flood to prevent recovery
 - Takeover/flood UltraScienceNet end hosts and switching gear
- USN control-plane is out-of-band and secure
 - Uses VPN-based control channels and firewalled enclaves

Control Plane

- Phase I
 - Centralized VPN connectivity
 - TL1/CLI-based communication with CoreDirectors and E300s
 - User access via centralized web-based scheduler
- Phase II
 - GMPLS direct enhancements and wrappers for TL1/CLI
 - Inter-domain "secured" GMPLS-based interface
 - Webservices interface for OSCARS

Web Interface

- Allows users to logon to website
- Request dedicated circuits
- Based on cgi scripts written in c and c++

User Bandwidth Reservation

Bandwidth Scheduler

- Computes path with target bandwidth
 - Is currently available?
 - Extension of Dijkstra's algorithm using interval sequences
 - Provide all available slots
 - Extension of closed semi group structure to sequences of reals
 - Both are solvable by polynomial-time algorithms
 - Implementation first part almost complete; needs interface
- Notes:
 - GMPLS does not have this capability
 - Control-plane engineering taskforce interested in using it.
 - Not an NP-Complete problem

Peering: UltraScience Net – NSF CHEETAH

- Peering: data and control planes
 - Coast-to-coast dedicated channels
 - Access to ORNL supercomputers

Peering at ORNL: Data plane: 10GigE between SN16000 and e300 Control-Plane: VPN tunnel

Current Status: Data-Plane

- Data-Plane Connections:
 - Chicago-Sunnyvale
 - May 2005: 10GigE WAN-PHY between E300
 - August 2005: 2 x OC192 links between CDCIs
 - ORNL-Chicago
 - August 2005: 2 x OX192 links between CDCIs
 - Atlanta will be connected after SC2005
- User-connections
 - August 2005
 - PNNL, FNL, CalTech, ESnet
 - November 2005
 - SLAC
 - February 2006
 - Atlanta node installation

Current Status: Control-Plane

- ORNL, Chicago, Seattle, Sunnyvale nodes are setup
 - VPN, console servers are setup
 - signaling modules being integrated
 - Bandwidth/channel reservation system being integrated with signaling system
- SC2005 node will be moved to Atlanta

.

USN at Supercomputing2005

- Extended USN to exhibit floor: eight dynamic 10Gbps longhaul connections over time
- Moved and re-created USN-Seattle node on

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

PNNL, FNL, ORNL,

ESnet Related Issues

- Port Assignments:
 - 10GigE port each on E300 in Sunnyvale and Chicago
 - multiple 1GigE ports assigned on E300 in Sunnyvale and Chicago
- Cross-connects
 - 1 SM and 4 MM cross-connects in Level(3) POP in Sunnyvale and in Starlight in Chicago
- Control-Plane Issues are being addressed

OSCARS and USN Control-Plane Integration I

- Composition Front End: User
 - Back-end interaction with OSCARS and USNCP
 - Website and webservice: authentication + encryption
 - User request:
 - Scheduling
 - decomposed into OSCARS and USNCP requests
 - combine the responses and compose the path
 - Signaling
 - Pieces of paths are signaled separately

Drawbacks: VLANs need to be supported separately

OSCARS and USN Control-Plane Integration II

VLAN transitioning

- Scheduler explicitly allows for VLAN setup requests
 - Front end sends separate requests and handles boundaries

Signaling

- Wrappers to OSCARS and USNCP to accept VLAN signaling
- Uniform wrapper formats needed WDSL+SOAP(?)
- Authentication and Encryption

MPLS-GMPLS Integration

- Advanced Reservation:
 - Open issue within MPLS and GMPLS
 - Reservation front-end:
 - Scheduling a priori
 - Send MPLS-GMPLS messages for immediate setup/tear down
- Signaling
 - GMPLS wrapper for USNCP
- Scheduling Extensions of GMPLS and MPLS
 - Need to work with standards

Conclusions

USN Deployment Data-Plane – Complete Control-Plane – almost Complete

Request for USN Collaborations USN channels/circuits USN hosts – transport, middleware Locate your hardware at USN nodes

Thank you https://www.usn.ornl.gov

