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This paper presents a magnetization interpolation method
for micromagnetic exchange energy calculations using a varia-
tional procedure to relax spins on a supplemental (refined) lat-
tice. The approximations implicit in standard micromagnetic
discretization schemes fail when angles between neighboring
spins in the model become large, but the proposed approach
effectively reduces the angle between neighboring spins, al-
leviating many of the associated problems. Moreover, this
method does not introduce excessive discretization-induced
vortex pinning observed with some large angle exchange en-
ergy formulations. This paper includes details on proper post-
interpolation exchange torque calculation, bounds on nearest
neighbor angles for interpolated lattices, a simple model pre-
dicting discretization induced Néel wall collapse, and an ex-
ample of a collapsed (1 cell wide) domain wall that can be
restored by the proposed technique.

I. INTRODUCTION

Many difficulties arise in micromagnetic simulations
when angles between neighboring spins become large.
Nonetheless, computational limitations often prevent
many interesting micromagnetic problems from being
discretized at a scale fine enough to resolve all the details
of the magnetization structure. In particular, models of
thin magnetic films often contain vortices and crossties
with unresolved cores measuring only a few nanometers
across. As discussed below, such undersampled core re-
gions can collapse during model evolution into one cell
wide 180° domain walls, even in settings where the Néel
wall width is many cells wide. Once formed, these struc-
tures are stable, because they tend to be supported by
magnetostatic and crystalline anisotropy fields, and the
usual exchange energy formulation provides zero torque
across 180° spins. One can introduce an exchange en-
ergy formulation modified for large angles, but simple
approaches result in strong artificial pinning of vortices
to the computation grid [1].

One solution to these problems is to base the exchange
energy formulation on a continuous interpolation of the
magnetization that respects the constraint that the re-
duced magnetization ||m| = 1. In this paper, an in-
terpolatory “supplemental” lattice is introduced, and a
variational procedure is used to relax the spins on this
lattice to achieve a smooth interpolation. It is shown
that a simple half-step interpolation suffices to avoid the
aforementioned one cell wide 180° domain walls, without
introducing excessive false pinning of vortices.

II. NEEL WALL COLLAPSE

Figure 1 shows an example of a situation where an un-
derresolved structure produces errors at a larger scale.
This is a simulation of the first uMag standard prob-
lem [2], a 20 nm thick, 1 gm x 2 pm rectangle of
NiggFego (Ms = 8.0 x 10° A/m, A = 1.3 x 1071 J/m,
K, =500 J/m3). The weak uniaxial magneto-crystalline
anisotropy is directed along the long axis of the film. The
computation cells are 25 nm squares, 20 nm thick, with
3D spins. The exchange energy is given by the 8-neighbor
dot product formula E; = (A/3) Zizl(l —m; - My,), de-
tailed in [1], though similar results are obtained using
the more common 4-neighbor expression. The magneto-
static fields are calculated via an FFT-based scalar po-
tential method on an offset grid, described in [3]. The
magnetization is relaxed using heavily damped Landau-
Lifshitz-Gilbert equations of motion. For more details on
the calculation technique, see [4].

The configuration in Fig. 1 is the relaxed state just
past the coercive point, after saturation to the left along
the long axis of the film. The 180° domain wall in the
lower righthand portion of Fig. 1 was formed in an inter-
mediate (non-relaxed) state as part of a vortex + crosstie
pair. The vortex drifted upward (behind the inset, but
symmetric with the vortex in the opposite corner), and
the crosstie flattened out into the observed 1-cell wide
domain wall. It is difficult to predict how wide this wall
should be, given the restricted spatial dimensions and
the complicated magnetic structure, but one certainly
expects it to be wider than a single 25 nm cell.

Figure 2 presents a simple illustrative 1D model of a
coarsely discretized Néel wall. (See [5,6] for more on 1D
wall models, and [7] for a numerical study of 2D wall
structures.) In this 4 cell model, each cell is a con-
stant magnetization region, infinite along the y-axis, with
width a as shown, and a thickness ¢ small enough to
force the spins to lie in the zy-plane. Material parame-
ters are saturation magnetization M and exchange con-
stant A. Magneto-crystalline anisotropy is ignored. The
outer spins m; and my are held fixed and anti-parallel as
shown, while the inner spins mo and mg are allowed to
rotate, with 6 denoting the angle between the inner spins
and their outside neighbor. We make the simplifying as-
sumption that the inner spins are symmetric about the
midpoint, as illustrated, because then there are no free
poles along the center line, greatly reducing the magneto-
static energy. (This alignment of the center of a Néel wall
between discretization nodes is observed in practice.) We
also assume that 6 < 90°.

Magnetic poles collect along the infinite strip between



the 2 leftmost cells, and between the 2 rightmost cells.
This produces a field at spin my that acts against the ex-
change torque produced on msy from mg. If we include the
exchange torque at mso from mg, and solve for 0 torque,
we find a unique energy minimum at
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provided the righthand side is > 1. Note that as a —
0, 8 — 60° as expected. If the righthand side is < 1,
then the anti-parallel state (6 = 0) is the only stable
configuration, and the Néel wall collapses completely. If
M, A and t are fixed, then for a sufficiently large the
wall will collapse. For a NiggFeyy film with ¢ = 20 nm,
this works out to a larger than about 7.1 nm, lending
credence to the conjecture that a mechanism of this sort
is responsible for the wall collapse observed in Fig. 1.

It seems likely that the under-resolved crosstie formed
during the evolution to the relaxed state of Fig. 1 pro-
duces a local condition not unlike that modeled in Fig. 2,
and seeds the collapse of the entire wall. A similar situ-
ation can also arise through grid refinement.

Regardless of its origins, the observed Néel wall col-
lapse is made possible by the disappearance of the ex-
change torque in the anti-parallel state. One can try a
modified exchange field formulation appropriate for large
angles, but simple attempts yield unacceptably strong
vortex pinning [1]. More sophisticated interpolations of
m between grid points are made difficult by the apparent
importance of the ||m| = 1 constraint, and the need to
produce an interpolation that is consistent across neigh-
boring discretization cells.

A different approach is to interpolate the coarse grid
spins my, ..., my with a differentiable function m(z, y, 2)
that minimizes the variational integral

E(m) = A/(vm)2 F(Vmy)? 4 (Vo) v, (1)

subject to some constraints. A discrete version of this is
developed in the next section. But let us first examine
how large an interpolated spin angle can be. As a simple
estimate, suppose we are trying to align an interpolating
spin m between neighboring spins my, ..., m,. Consider
all of these spins as points in 52, the unit sphere in R3.
If the angle between m and spin m; is to be less than 6,
then m must lie outside the circular disk symmetrically
opposite to m; on S? with diameter 27 — 26. The area of
such a disk is 27(1 4 cos#). This is true for each i, so if
the total area of n such disks is less than the total area
of the sphere, then there exists a /m that is no farther
than 6 from each of the spins mq, ..., m,. Solving for
0 we find 6 < arccos(—142/n). As an example, if we
are trying to fit m between 4 fixed spins, then there is a
direction for /m that is at most arccos(—1 + 2/4) = 120°
from each of the fixed spins.

III. THEORY

We now develop a discrete analog to (1). Given the
coarse grid spins m = (my,...,my), we want to find
interpolating spins m = (7, ...,Mmy) solving

min F(m;m) subject to ®(m) = 0, (2)

where ® = (¢y) is a collection of constraints, k =
1,..., K. (In Section IV we will use ¢ (m) = ||m| —1.)
We will assume that both the objective function F' and
the constraints are differentiable.

Let us assume for the moment that the interpolated
spins m are differentiable with respect to m, and use
the extended discretization set (m,m) to evaluate the
exchange energy F(m) = E (m, m(m)).

To relax our solution over m, whether by integrating
the Landau-Lifshitz-Gilbert equations, or through direct
energy minimization, we need to know 0F/dm:
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We have only an implicit relation for m in terms of m,
so the last term above is difficult to evaluate. However,
suppose we use F as the objective function F' in (2).
It follows from the theory of Lagrange multipliers that
if (0¢r/0m;)k,; has full rank K < N, then at a local
minimum rh we can write JE /O as a linear combination
of O¢y, /O, i.e.,

0B _ OB <N, < 0o iy
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If the constraints ® are independent of m, then the last
sum is zero, and we get the simple relation

OFE(m) _ 8E‘(m,ﬁ1(m))'
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The one difficulty is that we cannot guarantee the dif-
ferentiability of m with respect to m. More work needs
to be done to identify and handle those spin configura-
tions for which differentiability is lost, but in practice
such occurrences appear to be relatively uncommon.

IV. RESULTS AND CONCLUSIONS

To test this interpolation technique, we introduced a
supplemental lattice to the simulation described in Sec-
tion II. The supplemental lattice interpolated the main
grid at half the cell dimension, i.e., with 12.5 nm square
cells. The 8-neighbor dot product exchange energy for-
mulation was minimized to determine the spins on the
supplemental lattice (holding fixed the spins on the orig-
inal lattice), subject to the constraint |m|| = 1 for all



spins. (For this initial study we employed a simple gradi-
ent descent minimization algorithm, which required com-
putation time comparable to that of the demagnetization
calculation. We expect a sophisticated minimization al-
gorithm will be much faster.) The refined lattice is used
only for the exchange energy and exchange torque cal-
culations.

The magnetization configuration in Fig. 1 is not a sta-
ble state under the new scheme, but using it as an initial
state and allowing the simulation to evolve to a new en-
ergy minimum yields Fig. 3. Note that the interpolation
has allowed the crosstie to reform, and the domain wall
is now a resolved Néel wall. These results are similar to
those obtained using the standard exchange scheme and
a “real” refinement with 12.5 nm cells. Conversely, using
the proposed method the Néel wall doesn’t collapse even
with 50 nm cells (and a 25 nm supplemental lattice).

As another test, we repeated the vortex pinning simu-
lations detailed in [1], and found no increase in the vortex
pinning field.

It is important to distinguish this interpolation tech-
nique from a straightforward grid refinement. In the pro-
posed technique the interpolated spins affect only the
exchange energy, and at each step the interpolated spins
are relaxed completely to an exchange energy minimum
(holding fixed the spins on the coarse mesh). Because of
this, the angle between neighboring spins on the refined
mesh cannot collapse to 180°, as described in Section II.
Instead, this technique effectively produces an exchange
energy formulation that does not break down in the case
of large angles between neighboring spins, yet does not
increase vortex pinning.
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Fig. 1: Simulation results of the uMag first standard
problem, using 25 nm square, 20 nm thick calculation
cells (4 x 4 subsample). This is a relaxed state with an
applied field of puoH = 4.5 mT directed towards the
right. The inset displays all the calculation spins in
the dashed box region, showing a collapsed Néel wall.
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Fig. 2: Illustration of a simple 1D model to study dis-
cretization induced Néel wall collapse. The outer spins
m; and my are fixed and anti-parallel.
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Fig. 3: Simulation results using the described inter-
polation technique, with Fig. 1 as the initial state
(toH = 4.5 mT). The collapsed wall in that figure
has expanded into a crosstie and a resolved Néel wall.



