
Head to head domain wall structures in thin magnetic strips

R. D. McMichael and M. J. Donahue
National Institute of Standards and Technology,

Gaithersburg, MD 20899

Abstract—We present calculations of head to head domain
wall structures in magnetic strips of permalloy with widths, w,
ranging from 75 to 500 nm and thicknesses, t, from 1 to 64 nm.
Neglecting magnetocrystalline and magnetostrictive anisotropy
energies, minimization of exchange and magnetostatic energy
leads to one of two types of domain wall structures: ‘transverse’
walls with magnetization at the center of the wall directed trans-
verse to the strip axis and ‘vortex’ walls where the magnetization
forms a vortex at the center of the wall. Calculation of the do-
main wall energies leads to a proposed phase diagram for head
to head domain walls where transverse walls have lower energy
when dimensions are less than tcritwcrit � 130A=�0M
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I. I NTRODUCTION

In recent years, the ability to fabricate submicron features in
magnetic films has opened a new field of experimental micro-
magnetics, with considerable interest in submicron magnetic
strips [1], [2]. A carefully calculated phase diagram of domain
wall structures in thin magnetic strips has been published by
Ramstöck et al. describing the low-energy domain wall con-
figurations for domain walls running parallel to the length of
the strip [3]. In that calculation, the magnetization was con-
strained to be uniform along the length of the strip.

The lowest energy state in an infinitely long magnetic strip
is a uniformly magnetized state. The next highest energy stable
state will be a configuration having two semi-infinite uniform
domains and a localized head-to-head domain wall with an as-
sociated finite total energy. In contrast, a two-domain state
with a 180◦ domain wall running parallel to the strip edges will
have infinite energy, due to the finite energy per unit length of
the domain wall.

From a practical standpoint, head-to-head domain walls play
a role in magnetization reversal in thin strips where the re-
manant state has domain structures at the ends of the strip
[4]–[7], and magnetization switches through propagation of
head-to-head domain structures from the ends through the sam-
ple [1], [6].

In this paper we calculate head-to-head domain structures
that form at the boundary between two oppositely directed,
semi-infinite domains in magnetic strips.
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II. CALCULATION METHOD

Our calculation involves solution of Brown’s equations by
finite-differences on a 2D square grid. At the grid points, the
magnetization is represented by 3D vectors,mi, having unit
length. Only the magnetostatic energy and the exchange en-
ergy are taken into account. Other anisotropy terms (magne-
tocrystalline, magnetostrictive, etc.) are set to zero. Because
only magnetostatic and exchange energy terms are considered,
the relevant length scales that are involved in the problem are
the the thickness,t, of the film, the width,w, of the pat-
terned strip of film, and the magnetostatic exchange length,
δ = (A/µ0M

2
s )1/2.

A general solution to this problem would be best described
in terms of the dimensionless variablesw/δ and t/δ. How-
ever, for concreteness, the calculations were performed using
parameters appropriate for permalloy,A = 1.3 × 10−11J/m
andMs = 8.0 × 105A/m.

We discretize the infinite strip using a square grid over a
region with a length,l = 4w, as illustrated in Fig. 1. Inside
the discretized region, the magnetization is constrained to be
uniform through the thickness of the film. Outside the gridded
region, the magnetization is constrained to lie along the length
of the strip, directed inward towards the gridded region. The
magnetostatic fields of the semi-infinite strip ends are replaced
by fields due to plates of positive magnetostatic charge at each
end of the gridded region.

This discretization scheme has a range of validity that is lim-
ited by the requirement that the energy of vortices in the thin
film strips be calculated correctly. Therefore, (1) the discretiza-
tion must be fine enough that vortex cores can be resolved, and
(2) the material thickness must be small enough that having
uniform magnetization through the strip thickness is not overly
restrictive. The first limitation is felt most strongly in calcula-
tions of wide strips, where a large number of cells is needed,
and calculations proceed very slowly. In thick strips, the calcu-
lations may proceed at a reasonable pace, but the second limi-
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Fig. 1. Schematic of discretization scheme for head-to-head domain walls in
an infinite strip. The shaded area represents a ribbon of magnetostatic charge
used to represent the magnetostatic effects of the infinitely long ends of the
strip.



tation leads to concern about the validity of results.
Minimization of the energy is achieved by following heavily

damped Landau-Lifshitz-Gilbert equations of motion,

dm
dt

= −γ(m× Heff) − γλm × (m × Heff). (1)

This ODE is solved numerically using a second order
predictor-corrector technique. The step size,dt, is adjusted as
necessary to insure that the total energy decreases at each step.
The iteration is continued until the maximum torque over all of
the spins in the system is below a threshold value. At this point,
the spins are given random perturbations, and the ODE itera-
tion is restarted. The process of perturbation and ODE solving
is repeated until successive solutions yield energies within a
given tolerance.

Magnetostatic fields are calculated separately for fields in
thex-y plane of the sample and for fields directed out of the
plane of the sample in thez direction. For fields in thex-y
plane, we calculate the magnetostatic charge,ρ = −∇ · M,
assuming constantρ over grid cells [8]. The magnetostatic po-
tential is calculated at the center of the cells by approximating
the constant charge cells by a number of line charges extend-
ing through the thickness of the material. The potential is then
calculated with a fast Fourier transform technique using stored
values of analytical expressions for the potential due to the line
charges. To isolate the calculation region from periodic ‘im-
ages’ (induced by the cyclic nature of FFT-based convolution),
the ‘sample’ grid is embedded in a 2× 2 larger grid. Finally,
magnetic fields are determined by numerical differentiation of
the magnetostatic potential.

Thez-component of the magnetostatic field is calculated di-
rectly from the values ofmz on the grid. The magnetostatic
charge on the top and bottom surfaces of the sample is approx-
imated by a number of discrete charges, and the field is calcu-
lated with a Fourier transform technique using stored values of
analytical expressions for the field due to point charges.

The exchange energy was calculated using equal magnitude
dot-product interactions with spins at the eight nearest neigh-
bor sites [9]. This form of the exchange energy is equivalent
to assuming that the magnetization in a cell is determined from
the values ofm on grid points at the corners of the cell through
a bilinear interpolation.

III. R ESULTS

Our calculations have resulted in two predominant types of
head-to-head domain walls in magnetic strips, a ‘transverse’
wall, illustrated in Fig. 2a, and a ‘vortex’ wall illustrated in
Fig. 2b.

The transverse wall has a reflection symmetry about a line
perpendicular to the strip axis, and a lack of symmetry about
the center line of the strip. Note that in Fig. 2a, that the wall ap-
pears wider at the top edge of the strip than at the bottom edge.
This asymmetry is less prominent in the narrowest strips; In
the widest strips, the asymmetry is quite prominent, so that the
transverse wall appears as a triangular, transversely oriented

a)

b)

Fig. 2. a) ‘Transverse’ domain structure for a head-to-head wall calculated in
a 2 nm thick, 250 nm wide strip of permalloy, and b) ‘vortex’ domain structure
for a head-to-head wall calculated in a 32 nm thick, 250 nm wide strip of
permalloy. Each arrow represents the magnetization of a subsample from a
4x4 cell block.

domain bounded on two sides by a “V” configuration of45◦

Néel walls oriented diagonally to the strip axis.
The vortex structure has a two-fold rotational symmetry

about its center point, and bears a striking resemblance to the
structure observed experimentally in a cobalt strip [1]. In the
the wider strips, the dominant feature of the vortex wall is a
180◦ Néel wall running diagonally across the strip, with a vor-
tex at it’s center. For the thickest films, and depending on initial
conditions, we have occasionally observed two vortices and a
cross-tie wall in the central region of the vortex wall.

In some instances, the system obtained a lower energy by
sliding the domain wall to one end of the gridded region. To
prevent this, the domain walls were stabilized by the applica-
tion of a field to a few spins in the central region of the sample,
either transverse or perpendicular to the strip for transverse or
vortex wall calculations respectively. Because Zeeman field
energies were calculated usingEZeeman = Ms|H |(1 − cos θ),
fields parallel to the magnetization did not contribute to the to-
tal energy.

We have calculated domain wall energy for the two types
of walls as a function of film thickness for a number of strip
widths, and the results are presented in Fig. 3. Calculations
were carried out as a function oft for w = 75, 125, 250 and
500 nm. For each value ofw, the domain configuration for the
first value oft was determined by initial conditions. For further
values oft, the initial condition was the final magnetization of
the previoust-step. Calculations of vortex wall energies started
at larget, and calculations of transverse wall energies started
at low t. For each strip width there is a considerable range of
thickness for dual stability, but it is not clear how much of this
range is due to our domain stabilization scheme.

The crossover points in Fig. 3 are plotted in Fig. 4 in terms
of the dimensionless strip thicknesst/δ and widthw/δ in a
phase diagram for head to head walls in thin magnetic strips.
Transverse domain walls have lower energy than vortex walls
for low values oft andw, and the crossover critical dimensions
suggest a phase boundary of the form

t · w = Cδ2. (2)

The dashed line in Fig. 4 corresponds to C = 128.
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Fig. 3. Domain wall energy as a function of film thickness for head-to-head
walls with transverse (open symbols) and vortex structures (filled symbols) in
strips of permalloy with widths of 75, 125, 250 and 500 nm.
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Fig. 4. Partial phase diagram of head to head domain wall structures in thin
magnetic strips.δ is the magnetostatic exchange length.

IV. D ISCUSSION

The energy associated with both the transverse and vortex
walls comes predominantly from magnetostatics, but in a vor-
tex domain wall the exchange energy contribution is more sig-
nificant. For example, in aw=250 nm,t=8 nm strip, where the
total energies are very nearly equal, the transverse wall energy
is 93% magnetostatic and 7% exchange, while the vortex wall
energy is 78% magnetostatic and 22% exchange.

The phase boundary can be estimated by considering the dif-
ferences in the exchange and magnetostatic energies of features
that appear in the calculated domain patterns. An estimate of
the exchange energy difference is the energy of a vortex, which
appears in the vortex wall but not in the transverse wall.

(Evortex − Etrans)ex ≈ 2πtA ln
(

rmax

rmin

)
, (3)

wherermax is the outer radius of the vortex, on the order of a
Néel wall width or the strip width, andrmin is the radius of the
vortex core, on the order ofδ.

An estimate of the magnetostatic energy difference is the
magnetostatic energy associated with magnetization oriented
perpendicular to the strip edge, which occurs in transverse

walls, and to a much lesser degree in vortex walls. ForM per-
pendicular to the strip edge, the resulting magnetostatic field
has a maximum magnitude of1

2µ0Ms at the edge, and falls to
1
4µ0Ms at a distance oft/2 from the edge. Taking this half-
maximum value of the field as an average value in the region
within a distancet of the edge, and integrating over a volume
whith a length≈ w, The magnetostatic energy from edge di-
rected magnetization is then estimated to be

(Evortex − Etrans)ms ≈ −1
2

∫
V

µ0H · M ≈ −1
8
µ0M

2
s t2w.

(4)
To find the phase boundary, the sum of the exchange and

magnetostatic energy differences given in (3) and (4) is set
equal to zero. The resulting expression for the phase bound-
ary is

wt = 16π ln
(

rmax

rmin

)
A

µ0M2
s

. (5)

The maximum and minimum dimensions of the vortex,rmax

andrmin, are determined by the material parameters and per-
haps by sample geometry. However, given the weak logarith-
mic dependence on these parameters, in the limited range of
parameter space addressed in the computations, the agreement
with the compuational results in (2) is quite good.
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