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Abstract—We present calculations of head to head domain Il. CALCULATION METHOD
wall structures in magnetic strips of permalloy with widths, w,
ranging from 75 to 500 nm and thicknesses, ¢, from 1 to 64 nm. Our calculation involves solution of Brown’s equations by

Neglecting magnetocrystalline and magnetostrictive anisotropy  finite-differences on a 2D square grid. At the grid points, the
energies, minimization of exchange and magnetostatic energy ~ Mmagnetization is represented by 3D vectars, having unit
leads to one of two types of domain wall structures: ‘transverse’  length. Only the magnetostatic energy and the exchange en-
walls with magnetization at the center of thewall directed trans- ~ €rgy are taken into account. Other anisotropy terms (magne-
versetothestrip axisand ‘vortex’ wallswherethe magnetization ~ tocrystalline, magnetostrictive, etc.) are set to zero. Because
forms a vortex at the center of the wall. Calculation of the do-  Only magnetostatic and exchange energy terms are considered,
main wall energies leads to a proposed phase diagram for head ~ the relevant length scales that are involved in the problem are
to head domain walls where transverse walls have lower energy  the the thicknesst, of the film, the width,w, of the pat-
when dimensionsare lessthan terit werit &~ 130A/ po M2. terned strip of film, and the magnetostatic exchange length,

8 = (A/uM2)2.

A general solution to this problem would be best described
I. INTRODUCTION in terms of the dimensionless variablegé and¢/5. How-
ever, for concreteness, the calculations were performed using

In recent years, the ability to fabricate submicron features iR@rameters appropriate for permalloy, = 1.3 x 10~*'J/m
magnetic films has opened a new field of experimental micr@ndM; = 8.0 x 10°A/m.. _
magnetics, with considerable interest in submicron magnetic \We discretize the infinite strip using a square grid over a
strips [1], [2]. A carefully calculated phase diagram of domaifi€gion with a length] = 4w, as illustrated in Fig. 1. Inside
wall structures in thin magnetic strips has been published g€ discretized region, the magnetization is constrained to be
Ramsttck et al. describing the low-energy domain wall condniform through the thickness of the film. Outside the gridded
figurations for domain walls running parallel to the length of€9ion, the magnetization is constrained to lie along the length
the strip [3]. In that calculation, the magnetization was conf the strip, directed inward towards the gridded region. The
strained to be uniform along the length of the strip. magnetostatic fields of the semi-infinite strip ends are replaced

The lowest energy state in an infinitely long magnetic stri;?y fields due to plates of positive magnetostatic charge at each

is a uniformly magnetized state. The next highest energy stabEfQd qf the grid_deq region. L L
state will be a configuration having two semi-infinite uniform, This discretization scheme has a range of validity that is lim-

domains and a localized head-to-head domain wall with an a}é@d by the requirement that the energy of vortices in the thin

sociated finite total energy. In contrast, a two-domain sta gm strips be galculated correctly. Therefore, (1) the discretiza-
with a 180 domain wall running parallel to the strip edges willtion E“JSt be fl_ntla (ar_\okugh that vort;:x corelsl, can behrers]oIV(;d, _and
have infinite energy, due to the finite energy per unit length d¢) the material thickness must be small enough that having
the domain wall. uniform magnetization through the strip thickness is not overly

. . . restrictive. The first limitation is felt most strongly in calcula-
From a practical standpoint, head-to-head domain walls pl% ns of wide strips, where a large number of cells is needed
a role in magnetization reversal in thin strips where the re- . ' : ; '
and calculations proceed very slowly. In thick strips, the calcu-

manant state has d_om?'” strqctures at the ends of the Stl%?lons may proceed at a reasonable pace, but the second limi-
[4]-[7], and magnetization switches through propagation o

head-to-head domain structures from the ends through the sam-===""f N

ple [1], [6]. - \----
In this paper we calculate head-to-head domain structures M. \\<M—

that form at the boundary between two oppositely directed, - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘\l-“

semi-infinite domains in magnetic strips.

Fig. 1. Schematic of discretization scheme for head-to-head domain walls in
Manuscript received Jan 30, 1997. an infinite strip. The shaded area represents a ribbon of magnetostatic charge
Contribution of the U. S. Government. Not subject to copyright. used to represent the magnetostatic effects of the infinitely long ends of the
R. D. McMichael, e-mail rmcmichael@nist.gov strip.
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tation leads to concern about the validity of results.
Minimization of the energy is achieved by following heavily
damped Landau-Lifshitz-Gilbert equations of motion,
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This ODE is solved numerically using a second order
predictor-corrector technique. The step sizg,is adjusted as
necessary to insure that the total energy decreases at each stes)ﬁ
The iteration is continued until the maximum torque over all of b
the spins in the system is below a threshold value. Atthis pOirEig. 2. a) ‘Transverse’ domain structure for a head-to-head wall calculated in
the spins are given random perturbations, and the ODE itefgg nm thick, 250 nm wide strip of permalloy, and b) ‘vortex’ domain structure
tion is restarted. The process of perturbation and ODE solvirigr a head-to-head wall calculated in a 32 nm thi_ck, 250 nm wide strip of
is repeated until successive solutions yield energies Within‘pé‘rlrrézllllogl.ociach arrow represents the magnetization of a subsample from a
given tolerance. '

Magnetostatic fields are calculated separately for fields i§ymain bounded on two sides by a “V” configuration4sf
the z-y plane of the sample and for fields directed out of th@ae| walls oriented diagonally to the strip axis.

plane of the sample in the direction. For fields in the-y The vortex structure has a two-fold rotational symmetry

plane, we calculate the ngnﬁltoséat?hcharg&, —V- M about its center point, and bears a striking resemblance to the
assuming constaptover grid cells [8]. The magnetostatic po- g ctyre observed experimentally in a cobalt strip [1]. In the
tential is calculated at the center of the cells by approxmaﬂr@

; e wider strips, the dominant feature of the vortex wall is a
the constant charge cells by a number of line charges extendsyo Neel wall running diagonally across the strip, with a vor-

ing through the thickness of the material. The potential is thet'éx at it's center. For the thickest films, and depending on initial

calculated with a fast Fourier transform technique using Storec%nditions, we have occasionally observed two vortices and a
values of analytical expressions for the potential due to the "'Tﬁoss—tie wall in the central region of the vortex wall
charges. To isolate the calculation region from periodic ‘im- )

ages’ (induced by the cyclic nature of FFT-based convolution),. . . ) ;
the 'sample’ grid is embedded in 22 larger grid. Finally, %hdlng the domain wall to one end of the gridded region. To

e ) ; i . revent this, the domain walls were stabilized by the applica-
magnetic fields are determmed by numerical differentiation (ﬁon of a field to a few spins in the central region of the sample
th(_e”r]n agnetostatic F:Otﬁ?]tlal' tostatic field i lculated d.either transverse or perpendicular to the strip for transverse or

€z-component ofthe magnetostatic held 1S calculated agq ey ywajl calculations respectively. Because Zeeman field
rectly from the values ofn, on the grid. The magnetostatic

energies were calculated usiieceman = Mq|H|(1 — cosb),

imated by a number of discrete charges, and the field is calc?&%llgrs]g%?"el to the magnetization did not contribute to the to-

lated with a Fourier transform technique using stored values o .
q 9 We have calculated domain wall energy for the two types

lytical ions for the fiel intch . . . . .
analytical expressions for the field due to point charges u%fewalls as a function of film thickness for a number of strip

do-tr-h?o?jxucchtailrr:?eer:cr:gr?z\\:vv;r? gail?s"z'ﬁi:2?%522::2?%2? }/]v_|dths, and the results are presented in Fig. 3. Calculations
P P 9 9 ere carried out as a function effor w = 75, 125, 250 and

bor sites [9]. This form of the exchange energy is equivale 0 nm. For each value af, the domain configuration for the
to assuming that the magnetization in a cell is determined frop} ) ’

the values ofn on arid points at the corners of the cell throu ol st value oft was determined by initial conditions. For further
. . gnap MNalues oft, the initial condition was the final magnetization of
a bilinear interpolation.

the previoug-step. Calculations of vortex wall energies started
at larget, and calculations of transverse wall energies started
I1l. RESULTS at lowt. For each strip width there is a considerable range of
thickness for dual stability, but it is not clear how much of this
Our calculations have resulted in two predominant types ¢&nge is due to our domain stabilization scheme.
head-to-head domain walls in magnetic strips, a ‘transverse’ The crossover points in Fig. 3 are plotted in Fig. 4 in terms
wall, illustrated in Fig. 2a, and a ‘vortex’ wall illustrated in of the dimensionless strip thicknes& and widthw/6 in a
Fig. 2b. phase diagram for head to head walls in thin magnetic strips.
The transverse wall has a reflection symmetry about a linBansverse domain walls have lower energy than vortex walls
perpendicular to the strip axis, and a lack of symmetry abofr low values oft andw, and the crossover critical dimensions
the center line of the strip. Note that in Fig. 2a, that the wall apsuggest a phase boundary of the form
pears wider at the top edge of the strip than at the bottom edge.
This asymmetry is less prominent in the narrowest strips; In t-w=Cs%. (2)
the widest strips, the asymmetry is quite prominent, so that the
transverse wall appears as a triangular, transversely orienfBde dashed line in Fig. 4 corresponds to C = 128.

In some instances, the system obtained a lower energy by
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walls, and to a much lesser degree in vortex walls. Mqgver-
pendicular to the strip edge, the resulting magnetostatic field
has a maximum magnitude époMs at the edge, and falls to
T1oM; at a distance of/2 from the edge. Taking this half-
maximum value of the field as an average value in the region
within a distance of the edge, and integrating over a volume
whith a length~ w, The magnetostatic energy from edge di-
rected magnetization is then estimated to be

1 1
(Evortex - Etrans)ms N —= / MOH - M = ——/LoMSQtQ’U).
5 )y 8
(4)

To find the phase boundary, the sum of the exchange and
magnetostatic energy differences given in (3) and (4) is set

Fig. 3. Domain wall energy as a function of film thickness for head-to-hea@qu'al to zero. The resulting expression for the phase bound-
walls with transverse (open symbols) and vortex structures (filled symbols) @&ry IS

strips of permalloy with widths of 75, 125, 250 and 500 nm.

100 | ™~
- Vortex walls

Tmax A
wt = 167 In (Tmin> P YER (5)
The maximum and minimum dimensions of the vortex,
andry,;,, are determined by the material parameters and per-
haps by sample geometry. However, given the weak logarith-
mic dependence on these parameters, in the limited range of
parameter space addressed in the computations, the agreement
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Fig. 4. Partial phase diagram of head to head domain wall structures in thin 3
magnetic stripsé is the magnetostatic exchange length. (3]

IV. DiscussIioN 4]

The energy associated with both the transverse and vortexs]
walls comes predominantly from magnetostatics, but in a vor-
tex domain wall the exchange energy contribution is more sig—[6]
nificant. For example, in @=250 nm =8 nm strip, where the
total energies are very nearly equal, the transverse wall energy
is 93% magnetostatic and 7% exchange, while the vortex walll’]
energy is 78% magnetostatic and 22% exchange.

The phase boundary can be estimated by considering the dif-8
ferences in the exchange and magnetostatic energies of featuréé
that appear in the calculated domain patterns. An estimate of
the exchange energy difference is the energy of a vortex, whicHe!
appears in the vortex wall but not in the transverse wall.

(Evortex - Etrans)ex ~ 27TtA hl <:mi> ) (3)
wherery,.x is the outer radius of the vortex, on the order of a
Néel wall width or the strip width, and,,;,, is the radius of the
vortex core, on the order of

An estimate of the magnetostatic energy difference is the
magnetostatic energy associated with magnetization oriented
perpendicular to the strip edge, which occurs in transverse

with the compuational results in (2) is quite good.
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