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In magnetic random access memory (MRAM), power con-
sumption depends on the coercivity of the magnetic elements
in the memory cells. In this paper a new method is described
that uses a “domain wall trap” element shape to reduce both
the coercivity and the dependence of coercivity on element
size in submicron magnetic elements. Micromagnetic simula-
tions of a shaped Permalloy element show coercivity less than
one tenth the coercivity calculated for a rectangular Permal-
loy element of the same size. The switching times for the
domain wall traps are shown to be comparable to those of
rectangular elements.

I. INTRODUCTION

A low switching field and reproducible switching be-
havior are desirable properties of MRAM cells. The low
switching field reduces the power consumed and dissi-
pated by the cell, and the reproducible switching behav-
ior simplifies writing and read back of information stored
in the cell.

In rectangular cells it has been found that magnetiza-
tion reversal occurs by expansion of domains that form at
the ends of the cell. Because of the symmetry of the rect-
angle, the end domains can be in a number of different
magnetization states in zero field. Therefore, the switch-
ing field may be history-dependent!. The miniaturiza-
tion of rectangular cells also faces the problem that the
coercivity of rectangular cells is inversely proportional to
width?:3.

To overcome the problem of irreproducible switching in
rectangular cells, cells with tapered ends have been pro-
posed that nucleate reversals in the middle rather than
at the ends of the cells. Although the tapered-cells are
found to allow more reliable switching than the rectangu-
lar cells, it is found that the tapered-cells have a higher
coercivity than the rectangular cells?.

Because reversal in both rectangular and tapered-end
strips often involves propagation of domain walls, the
equilibrium properties of head-to-head walls in thin mag-
netic strips may provide insight into the switching be-
havior of rectangles and other shapes. Micromagnetic
calculations of head-to-head walls show that the energy
of transverse and vortex head-to-head domain walls both
increase with with increasing strip widthS.

In this paper, the width-dependence of the energy of
transverse head-to-head domain walls is used to construct
a domain wall trap. The following describes the impor-
tant design features and computed switching fields and

switching times for domain wall traps, including com-
putational demonstrations of the dramatically reduced
switching field and comparable switching times of do-
main wall traps when compared to rectangular elements.

II. THE DOMAIN WALL TRAP

The domain wall trap geometry, illustrated in Fig. 1,
consists of a narrow central section connected to wider
end sections by sections tapered asymmetrically about
the z-axis. The outer ends of the end sections may be
similarly asymmetrically tapered, or a series of domain
wall traps may be attached end-to-end. The asymmetry
of the tapered sections enables initialization of a single
head-to-head wall in the center section of the trap when
a large initialization field is applied in the plane of the
film perpendicular to the long axis of the element. Be-
cause the magnetostatic energy is locally minimized when
the magnetization lies parallel to edges, the magnetiza-
tion will be directed inward (outward) as the initializa-
tion field is reduced from large values in the +y (—y)
direction, leaving a domain wall in the center section.
The case of outward directed magnetization is shown in
Fig. 2a.

For the calculations described below, we have masked
the effects of the element ends by embedding the domain
wall trap in an infinitely long strip. See Fig. 1c. We an-
ticipate that the effects of finite ends can be accounted for
by superposing the magnetostatic fields due to the end
structures. Furthermore, we have found that isolated do-
main wall traps having tapered ends have behavior that
is qualitatively similar to the embedded domain wall trap
behavior.

Under the influence of a relatively small applied field,
the initialized domain wall can be made to move through
the center section of the trap. Because the domain wall
energy increases with strip width, the tapered sections
provide a force that can prevent the domain wall from
propagating off the end of the element. If this force is not
exceeded by the force due to the applied field, the domain
wall will be preserved for switching to the opposite end
of the element.

As will be described below, the minimum energy posi-
tions of the domain wall in the trap are at the ends of the
center region, so that a finite field is required to switch
the magnetization.
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FIG. 1. a) The shape of a stand alone domain wall trap.
b) A series of domain wall traps connected as a long magnetic
strip. ¢) The dimensions of the domain wall trap used in much
of the paper.

III. CALCULATION TECHNIQUE

Calculations were done using a micromagnetic model,
OOMMEF, developed at NIST®. The model includes the
effects of the exchange energy, characterized by the ex-
change stiffness constant, A, the magnetostatic energy,
characterized by the spontaneous magnetization, Mg, and
an applied field energy. For most calculations in this
paper, A and M, were taken to mimic NiggFeyy with
A=13x10"" J/m and M, = 8.0 x 10° A/m. Mag-
netocrystalline anisotropy is neglected. The in-plane cell
size was 5 nm x 5 nm for all calculations and out-of-plane
thicknesses of 5 nm and 2.5 nm were used.

We have assumed that the magnetization is uniform
across the thickness of the film to allow the use of a two-
dimensional grid. The spins are free to rotate in three
dimensions, but the large magnetostatic energy required
to tilt the spins out of the plane results in predominantly
in-plane spin configurations. Coupled with a domain wall
width that is much greater than the thickness of the sam-
ple, the result is good conformity with the assumption of
a uniform magnetization across the thickness of the film.

The exchange field was calculated using an eight-
neighbor cosine scheme” and the magnetostatic field was
calculated using a technique that assumes a constant
magnetization within grid cells and calculates the mag-
netostatic field at the center of each cell due to surface
charges at the cell boundaries®. The semi-infinite ends of
the strip are simulated by adding magnetostatic charge at
the ends of the calculation region to represent the charge
at the ends of the uniformly magnetized semi-infinite re-
gions, effectively canceling the magnetostatic charge on
the ends of the calculated region. The geometry of the
embedded domain wall trap is shown in Fig. lc.

The magnetization was relaxed according to Landau-
Lifshitz damping, dM/dt = —||(M x Hegr) — 5 M x
(M x Hegr ), where Hegr includes the demagnetizing field,
the applied field and the exchange field. The damping
parameter, A\/v = 0.02. The magnetization was allowed
to precess until the maximum value of (M x Heg)/M2
for all cells was less than 1.0 x 107°.
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FIG. 2. Spin configurations at zero applied field. a) Un-
stable state after initialization in the —y direction. b) and c)
show stable conFigurations after application of a field in the
+ax and —x directions, respectively.
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FIG. 3. A hysteresis loop for an embedded domain wall
trap. The central region of the trap is 125 nm x 400 nm X
2.5 nm thick. The switching field for the domain wall in the
trap is 1.1 mT and the domain wall is pushed out of the trap
with a field of 3.2 mT.

IV. RESULTS

Zero-field spin configurations for the embedded domain
wall trap are shown in Fig. 2, which shows an unstable
configuration following initialization, and two stable con-
figurations with the domain wall at either end of the trap.

Reduction of exchange energy of the domain wall when
it is at either end of the trap plays a large role in sta-
bilizing the wall at the trap ends. In the unstable con-
figuration in Fig. 2a, the spins along the lower edge of
the center region form a 180° domain wall. In contrast,
the spins along the lower edge in Figs. 2b) and c¢) turn
through only 135° when the domain wall rests at the in-
terior corner of the trap.

The hysteresis loop for the shaped element is shown in
Fig. 3. After initialization, the element has < M, >=0
with the wall unstably located in the center of the sample
(Fig. 2a). When a small field is applied in the +2 direc-
tion, the domain wall propagates to the left end of the
trap, increasing the size of the domain oriented in the +x
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FIG. 4. The effect of size on coercivity for a domain wall
trap and for a rectangular element sized to fit in the center
region of the domain wall trap. In the case of the domain
wall trap, the element width refers to the width of the center
region. The coercive field for the rectangular element is an
order of magnitude higher.

direction. Once the domain wall has arrived at its energy
minimum location at the end of the trap, a field of -1.1
mT is required to move the domain wall to the other end
of the trap. The field required to move the domain wall
out of the trap is 3.2 mT. The susceptibility indicated by
the nonzero slope of the hysteresis loop is due to motion
of the domain wall in the local energy minima at the trap
ends.

For comparison with the domain wall trap, a rectangu-
lar element was chosen with the same size as the central
region of the domain wall trap, referred to below as a
“central rectangle.” The central rectangle is chosen be-
cause it defines the region that is reversed in the domain
wall trap and is the active region of the cell. The coer-
cive fields of domain wall traps and the central rectangles
are shown in Fig. 4. The switching fields of the domain
wall traps are much smaller than the coercivities of the
central rectangles. Even comparing the largest rectangle
with the smallest domain wall trap, which have about
the same overall size, the rectangle has a coercivity about
sixteen times the coercivity of the domain wall trap.

The large reduction in switching field achieved by the
domain wall trap is very significant for applications that
would benefit from low power consumption. For exam-
ple, assuming that the applied fields are generated by
current flowing in a nearby wire with constant resistance,
a tenfold reduction in switching field requires 10% of the
current, and only 1% of the power to switch.

The switching speed may also be important for a num-
ber of applications. Switching times for a shaped element
and a central rectangle are compared in Fig. 6. The field
is applied instantaneously; the switching time, tg, is de-
fined as the time required for < M, > to pass through
zero. There is an additional ‘ring-down’ time for both
the domain wall trap and rectangular element that is on
the order of 1 ns. The switching times are the same or-
der of magnitude, but the domain wall trap switches with
much less applied field. Both the rectangle and the do-
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FIG. 5. Switching times for the domain wall trap (filled
circles) and the central rectangle (open circles) versus applied
field. The switching time, to, is the time required for the
average magnetization to pass through zero. The solid lines
are fits to to = a/[uo(H — Ho)]*/?. The arrows indicate the
applied fields used for the plots of < M (t) > shown in the
inset.

main wall trap switch faster with increased applied field,
but the domain wall trap switching speed is limited by
the fact that with too much field, the domain wall can be
ejected from the trap. Such a limitation may be avoid-
able with pulsed applied fields, timed to turn off before
the wall reaches the end of the trap.

The switching times fit curves of the form ¢y =
a/[uo(H — Ho)]'/?, with a = 0.79 ns/(mT)"/2, puoHy =
1.1mT for the domain wall trap and a = 049
ns/(mT)'/2, poHy = 24.2mT for the rectangle. For a
given amount of field in excess of the critical field, the
rectangle switched almost twice as fast as the domain
wall trap. It is interesting to note that the dynamic re-
versal patterns of the rectangle involve motion of two do-
main walls compared to the motion of only one domain
wall in the reversal of a domain wall trap.
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