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Abstract—For a uniformly magnetized rectangular particle

with dimensions in the ratio 5 : 1 : 0.1, the coercive and 0.065 ‘ ‘ ‘ ‘ ‘
switching fields in the (1,1,1) direction are determined to be 2 OOMMF 1.0 ©
H./M, = 0.057069478 and H,/M, = 0.057142806. Previous A Diaz et al. *
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micromagnetic computations of coercive and switching fields that SEES OOMMF1.1H v
did not approach these values for small particles are analyzed. It o Theory—pmgy T T S Streibl et al. 0
is shown that the disagreement was primarily due to a disparity = Vvvv;' . Shig
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When solutions to the firggMAG standard problem failed di

to show good agreement, [1] a simpler standard problem was
designed to examine the details of how different numerical
techniques vyield different solutions. The secQridAG stan- Fig. 1. Coercive {.) and switching {) fields of standard problem 2 as a
dard problem considers a rectangular particle with dinmmsi function of particle size as computed by several micromagrstizilations.

. . New results are labeled OOMMF 1.1.
L :d:tinthe ratio 5:1:0.1. Only exchange and magneto-
static energy terms are considered. The coercive field along
the (1,1,1) direction is to be calculated as a function of thénfluences on the physical behavior of small magnetic pagic
ratio of particle size to exchange length = (2A4/10M2)'/2.  are neglected by our model.
Here A is the exchange stiffness coefficient in J/m ab{ In our model, as the particle size decreases, the exchange
is the saturation magnetization in A/m. Published soliorenergy becomes dominant to the point that magnetization is
[2], [3], [4] show much better agreement than the resultmiform throughout the particle. In this limit, exchangeyniee
from the first problem. It was expected that for a smatteated as a constraint that the magnetization is unifond, a
enough particle size, exchange energy would dominate, athlysis of magnetic reversal need consider only energyster
the coercive field predicted by all calculations would cagee due to demagnetizing and external fields. Analysis is siiegli
to the coercive field of a uniformly magnetized particle. Apy normalizing all field and magnetization guantities to the
seen in Fig. 1 however, significant differences were obskrveaturation magnetization of the particld,, and all energy
for small simulated particles. In this paper we provide gfi@l densities to the quantityyM 2.
values of the coercive and switching fields in the small plati A uniformly magnetized ellipsoid has a uniform demag-
limit. Our previous calculations [3] (labeled “OOMMF 1.0" netizing field, hqy = —Dm, wherem is a column vector
in Fig. 1) are examined in detail to determine and correcf the components of normalized magnetization along the
the sources of error when simulating small particles. Neprincipal axes of the ellipsoid, anB) is a diagonal matrix

ex

solutions are computed by a corrected solver. [5] of demagnetizing factors.
The demagnetizing energy density of the ellipsoid is
Il. SMALL PARTICLE THEORY 1 7
. . . . eq = ;m" Dm. 1)
In this section we analyze the equations of our micromag- 2

netic model in the small particle limit. The intent is to exam For rectangular particles, uniform magnetization does not
whether the numerical methods used in our micromagnetiesult in a uniform demagnetizing field. However, the demag-
simulations behave properly in this limit, not to predicethnetizing energy density has the same form as (1). For the
physical behavior of small magnetic particles. Many imaott standard problem, the demagnetizing factors BXg o) =
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0.021829576, D10 = 0.11522396, and D1y =
0.86294646. [6] The quantity Dm is the average demag- 11 Lo .
netizing field over the volume of the particle. Because the 1.0 oo .
AN : i . iy U Eesas e ¢
magnetization is uniform, the average field value is sufficie
to compute the total demagnetization energy. = 09} o 1
Analysis of magnetization reversal considers the total en- <& 08l e |
ergy density under the influence of an applied fiald &
1 ¢ o7, S 1
¢ = ;m’Dm —hm. %) e e oy
0.6 | ¥ Hsampled, m=(0,1,00 T i
The coercive field,H., is defined relative to a unit vector o 1 eamped. Moy

in the direction of the applied fieldi. After saturation by a 0.5
large field in the direction ofa, H, is the largest value of
H for which an applied field of- H1 yields a magnetization
with @”m > 0. The switching field,d,, is the magnitude of
applied field at which a local minimum of (2) disappears. Ifig. 2. Computed demagnetization energy as a function of ¢l for

: _ a uniformly magnetized 5:1:0.1 rectangular particle. Caless expressed
many circumstancesy. and f/; are equal, because’m = 0 relative to particle thickness The energy is calculated using either sampled

only during a switching event. When solving standard problegamagnetizing fields (open symbols) or averaged demagnefieig (solid
2 for uniformly magnetized patrticles, howevéf, and H, are diamonds).

not equal. The magnetization of the particle rotates past th

plane perpendicular to the applied field direction before th

switching event. Lagrange multiplier analysis yields @gr  Fig. 2 displays the computed demagnetization energy as
sions form andh, in terms of Lagrange multiplieA. The a function of cell size for several directions of uniform
stationary points of (2) correspond to the roots of a rationghagnetization. For each direction, the demagnetizati@nggn
function which is sixth order irk. At coercivity, the constraint is plotted normalized to the analytical value computed from
thath!' m = 0 corresponds to a rational function that is third1). It is clear that the formulation in (3) suffers from enso
order in \. Solving the system of equations yields a value fahat are not eliminated by refinement of the two-dimensional
H.. At the switching fieldH,, one of the stationary points grid.

of (2) disappears. Solving for the applied field magnitude at\yhen the magnetization is in the plane of the film (the
which one of the roots of the sixth order rational functiorhea”y overlappingn = (1,0,0) andm = (0,1,0) curves),
disappears yields a value fdf,. The values ofH. and H,
in the small particle limit areH./M, = 0.057069478 and
H,/M, = 0.057142806.
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the field at distance from a charged edge drops off roughly
proportional totan—! (¢/(2a)). Because this is concave up, a
field sample taken at the center of a cell will underestimate
the average in-plane field strength, resulting in the loweal
[11. SIMULATION ANALYSIS for the energy at coarse discretization seen in Fig. 2. This

Our previous solutions [3] were computed using a digfror can be reduced by refining the discretization. However
cretization of the particle into a two-dimensional grid obecause the sample grid is two dimensional, the field samples
square cells. The magnetization was assumed to be unifcdways come from the center of the film, where the field is
within each cell, represented by a single spin. A sequeng#onger than near the top or bottom surfaces. Therefore, fo
of external fields was applied to the spin assembly. For ea¢gry small cell sizej, the energy is overestimated. Analogous
applied field value, the evolution of the system of spins wa&®nsiderations explain the discrepancies in the= (0,0,1)
computed by the Landau-Lifshitz equation until the maximurplot.
torque on all spins fell below a threshold value, indicating Fortunately, these errors can be removed without requiring
an equilibrium magnetization for the applied field had beethree-dimensional discretization. Each sampled valuehef t
reached. In the following sections, we examine severalildetedemagnetizing field in (3) may be replaced with the average
of these computations for small particles, seeking theoress value of the demagnetizing field over the entire cell. The

they do not approach the values predicted by Section Il. expressions necessary for calculation of the demagnagtizin
fields averaged over each cell are known. [6] They are consid-
A. Demagnetization Energy erably more complex than the expressions for the sampletl fiel

. - . galues, but they may still be expressed as convolution iateg
In reference [3] (open circles in Fig. 1), the normalize . : "
o ) ; . so fast Fourier methods are available, and the additional
demagnetization energy density of the simulated partisle 1 . : N
complexity only contributes to the initialization phase af
computed as ) ; )
1 . simulation. (Due to the large number of terms, rounding rerro
€d = o557 E m; hq;, (3) can be significant, so the demagnetization tensor should be
i computed using a technique such as doubly compensated
where the sum is over th& cells in the grid, and the valuessummation. [7]) As seen in Fig. 2, the demagnetization gnerg
hg; are the demagnetizing field sampled at the center potgmputed using cell-averaged demagnetizing fields does not

of each cell. depend on discretization and agrees with the analytic tresul
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B. Rounding Errors in Exchange Energy Calculation the difference in energy between the relaxation startinigtpo
In reference [3], the normalized exchange energy densityd8d the desired equilibrium point is not more thAth <
computed using an eight-neighbor cosine scheme: [8] |Ah,|. This means that if an energy minimum is prematurely
A lost, it must be shallower thafAh,| = 0.0000276. If we
€exi = =33 Z (1 —m!'my), (4) compare to a particle of equal volume at finite temperature,
3po Mg A ke obeyingt = to exp(AE/kT) with attempt period, = 1079 s,

observation time& = 60 s, and NiFe material parameters, then

where A is the exchange stiffness constafit,s the cell size, )
andk sums over the nearest and next-nearest neighbors on FeSnergy well of this depth would be unstable at temperature

square 2D grid. When the anglebetween neighboring SpinsT > 0.006(d/lex)? K. For the largest particle considered here,
is small,1 — m’m;, ~ 1 — (1 - 62/2) and the?/2 term is d/lex = 30, corresponding td" = 160 K. .
lost in rounding, i.e., in floating point arithmetic-62/2 = 1. Qn the other hand, the simulation wil report an equilibrium
In this case the outer subtraction from 1 does not contribu&'StS \_/v_hen the torquém x h| _at al SPInsS 1S _Ie_ss than
to the error, but only exposes what has already been lost. a specified threshold value. This test is insufficient if the
If one coijld regroup the expression- (1 — 02/2) as(1— €neray surface is very flat, resulting in an overestimatehef t

1)462 /2, then rounding errors would be significantly reduce&WitChing field. This'proplem can be controlled by making the
This is accomplished by the alternative expression threshol_d small_, which in the present study was set(to
A (normalized units). If we assum@m/dt| ~ v|m x h|Mj,
S L with gyromagnetic ratioy = 2.21 x 10° m/As and (say)
Cox,i = m; (m; — my). (5) ay g oy /
T BuoM2Ar T k;;li L M, = 8 x 10° A/m, then atjm x h| = 10~%, a 1% change in

L . . m requir ns.
Here the subtraction is done before other floating point aper equires about 56 ns

tions, and the dot product is computed between vectors which
are nearly perpendicular, which is numerically better lvela ) ) ] )
If the exchange couplingd/A2 is large, due to either After making the corrections to our micromagnetic solver
large A or small A, then the spins will be nearly a“gnedindicated above, new solutions fpMAG standard problem 2
and roundoff errors can become a significant fraction of ti¥éere computed. Both the coercive and switching fields were
total energy. This can cause a misalignment between @atermined for particles with width from 0.;25 fco 30 times th_
calculated effective field direction and the gradient of th@xchange length. The results are plotted in Fig. 1 along with
energy surface; if we require each simulation step to low#€ previously published results [2], [3], [4]. For a palic
the total energy, then such misalignment forces the siomlat With width 0.25 times the exchange length, we compute
step size to be reduced. This unnecessary stiffening of tHe/Ms = 0.05707 and H, /M, = 0.05713 using a field step
problem is evidenced by some simulations performed for tH¥ |Aha| = 0.0000276. We compute the same results for a

paper, where using (5) in place of (4) reduced the compmtati@artide of width 0.125 times t.he exchange I(_angth, indigati
time by several orders of magnitude. these values are a good estimate for the limitZas— 0.

The theoretical values for both coercive and switching field
C. Uncertainty in Critical Fields for a uniformly magnetized particle from Sec_tior_1 I_I are also
marked on the graph. (The two values are indistinguishable
Our simulations compute the sequence of equilibrium statgg the scale of the graph.) The new simulation results agree
corresponding to a sequence of applied fields. Although &xjih the theoretical solution in the small particle limit ik
trapolation methods have been proposed to determineadritig,e previously published solutions did not.
switching fields from such data [9], we simply report the mid- | the improved micromagnetic solver, the demagnetizing
point of the field step at Whl_ch we qbserve a d_|scont|nU|ty &hergy is completely accurate up to the assumption that the
H;. Thus, we do not determing to finer resolution than the magnetization is uniform in each cell. It is still important
size of the field step which leads to the discontinuity. Irs thinat discretization of the problem be fine enough to resolve
paper, the (reduced) field step sizgh.| near the switching spatial variations of magnetization, but there is no need fo
field was0.0000276. o finer discretization beyond that to resolve spatial vaviagiin
There are additional uncertainties, however. When the gpe demagnetizing field. The averaging of demagnetizingdiel
plied field is stepped, the location of the local energy minsyer uniformly magnetized cells accounts for those vaiati
imum shifts, and it can happen that when the simulation 4&js means that as the magnetization of the particle becomes

subsequently allowed to relax, it falls to a minimum difféfe more uniform, coarse discretizations can compute accurate
from the one being tracked, giving the mistaken impressigag|ts.

that the first minimum has disappeared. This is an important

effect in dynamic studies, [10] but is an error in the qudatis REFERENCES

situation being studied here and results in an underramprti [1] R. D. McMichael and M. J. Donahue,<URL: http://
of the swﬂphmg field. For this to occur, t'he starting poiat f WA, Ot CITS. Ni St . gov/ 9&Er dnd st d1/ pr oblr eport . ht m >
the relaxation procedure (i.e., the equilibrium positioomf the (unpublished). . _

previous field step) must have an energy higher than the gnerf! IésLSngé-ljj_lggé O. Alejos, L. Torres, and J. I. Iniguez, Appl. Phys.
barrier surrounding the minimum pf intere;t. 'I_'he total eyer 3 r.p. Mcl\(/lichat)all, M. J. Donahue, D. G. Porter, and J. EickeAppl.
of the system increases as the switching field is approasioed,  Phys.85, 5816 (1999).

IV. RESULTS



SUBMITTED TO JOURNAL OF APPLIED PHYSICS

[4] B. Streibl, T. Schrefl, and J. Fidler, J. Appl. Phyg5, 5819 (1999).

[5] M. J. Donahue and D. G. PorteslURL: http:// mat h. ni st. gov
[ oommt / > (unpublished).

[6] A. J. Newell, W. Williams, and D. J. Dunlop, Journal of Géggical
Researcid8, 9551 (1993).

[7] N. J. Higham, in Accuracy and Sability of Numerical Algorithms
(SIAM, Philadelphia, 1996), pp. 96-97.

[8] M. J. Donahue and R. D. McMichael, Physica2B3 272 (1997).

[9] A. Hubert and W. Rave, Phys. Stat. Sol. ()1, 815 (1999).

[10] D. G. Porter, IEEE Trans. Magr34, 1663 (1998).



