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A recent article [1] presents a semi-analytical method to solve the Landau-Lifshitz (LL) equation.
Spin motion is computed analytically as precession about the effective field H, where H is assumed
fixed over the time step. However, the exchange field dominates at short range and varies at the
time scale of neighbor spin precessions, undermining the fixed field assumption. We present an axis
corrected version of this algorithm. We add a scalar multiple of m to H (preserving torque and
hence the LL solution) to produce a more stable precession axis parallel to the cross product of
the torques m X H at two closely spaced time steps. We build a predictor-corrector solver on this
foundation. The second order convergence of the solver enables calculation of adjustable time steps

to meet a desired error magnitude.

I. INTRODUCTION

At the heart of many micromagnetic simulation tasks
is the computation of magnetization dynamics via nu-
merical integration of the Landau-Lifshitz equation,
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where v = —221 kHz/(A/m) is the gyromagnetic con-
stant, « is a dimensionless phenomenological damping
parameter, m is a unit vector in the magnetization direc-
tion, and H is the effective field representing the effect of
all energies included in the simulation. Solution schemes
of increased efficiency are sought to permit simulations
of larger objects over longer time intervals.

Some properties of (1) are noteworthy. Magnetization
trajectories that solve the equation are norm-preserving.
The equation computes varying magnetization direction
with time, while the magnetization magnitude remains
fixed. Also, the change in magnetization direction m in
response to the effective field H is entirely a function of
m x H. That is, the trajectory is determined by the
torque, not by the field itself. Consequently, so long as
we preserve torque, we are free to modify the value of H
as needed to pursue other goals. Finally, we note that
each of the two terms of (1) can be described by its effect
on the trajectory. When the damping parameter « is
near zero, the influence of the damping term fades, and
the precession term dominates.

Many general numerical integration algorithms are
not tailored to computing norm-preserving trajectories.
When these algorithms are applied to (1) in micromag-
netic simulation work, it is common practice to augment
them with renormalization from time to time during the
computation. Different renormalization schemes com-
bined with various numerical integration algorithms give
rise to different systematic computational errors.

Motivated by these factors, alternative numerical inte-
gration schemes have been proposed [1-4] that directly
account for the norm-preserving nature of (1). Some of
these schemes take simulation steps made up of rota-
tions rather than straight-line increments. Such schemes

are expected to better track trajectories when precession
dominates, offering the hope of acceptably accurate re-
sults even when employing larger time steps. The result
is increased simulation efficiency. In this paper, we ex-
amine the scheme of [1] and offer improvements to it.

II. ANALYSIS

The fast semi-analytical scheme presented in [1] begins
with the observation that so long as H remains fixed, the
trajectory of m can be computed analytically. Because
H is a function of m, we cannot expect it to truly remain
fixed, but so long as time steps are kept small enough, the
error created by this approximation can be kept accept-
ably low. For a typical simulation, it was reported that
compared to solver schemes such as the Euler and Heun
methods, full trajectory simulations to equilibrium could
be completed using longer time steps, and consequently
fewer total calculations.

In simulations where exchange energy plays a leading
role, we expect the assumptions of the semi-analytical
scheme to be undermined. With a significant portion of
H arising from the other spins in the simulation, and each
of those spins also in motion, we expect an assumption
of fixed H over a time step to become invalid for shorter
time steps. To illustrate this effect, we simulated a two
spin system with exchange energy as the only contributor
to H. Permalloy parameters (Exchange energy constant
A =13 nJ/m, magnetization magnitude M = 800 kA /m,
and o = 0.01) and spins a distance A = 5 nm apart were
assumed. The initial spin directions were oriented 20 deg
apart. We find that the simple single step semi-analytic
scheme [1] fails to converge with time steps of 0.2 ps or
longer.

For this simple two-spin, exchange-only system, we can
analytically demonstrate an alternative scheme that per-
forms better. The exchange field at spin 1, H;, due to the
magnetization of spin 2, ms, is conventionally expressed,
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Recall that the dynamics of spin 1 are determined only
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by the torque mi x H; however. This means we may add
any scalar multiple of m; to H; without changing the
dynamics. With this in mind, let

N 24
H=H =H,= —*_
LT O MA?

(my +ma), 3)
and we see that both spins in the system may have their
dynamics computed as in response to a common field
value. We may further examine how a common field value
defined in this manner evolves in time.
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where 6 is the angle between m and msy. The derivation
comes from substituting (1) for the dm/dt terms. Note
that both H and dH /dt are in the direction of m; +
ma, so we conclude the value H increases in magnitude,
but has fixed direction. Its maximum value is reached
as 6 reaches 0, corresponding to a maximum precession
frequency of
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Computing dynamics according to the common field
value H more closely fulfills the fixed field assumption,
and permits larger time steps without divergence, or loss
of accuracy beyond specified bounds. In effect, we have
replaced the effective field with a different one directed
along a corrected axis, for which the efficiency gains are
greater. We find that when we apply our axis-corrected
semi-analytic scheme to our example problem, solutions
continue to converge to the proper equilibrium state for
time steps up to 6 ps, a significant increase over the 0.2
ps achieved by the uncorrected scheme.

For other two-spin simulations with other energies in
addition to exchange, such a common field value does not
arise, but the same strategy of adding a scalar multiple
of m to H to get an effective field that changes direction
less rapidly is still effective. At each time step, we are
computing the torque m x H. Given the value of m x H
at time ¢t = —7 and at time ¢t = 0, an axis is determined
by

a = (mx H)(~7) x (m x H)(0) (7)

At t = 0, we add the appropriate scalar multiple of m
to the effective field H to produce a corrected H that is
parallel to that axis. That is, we solve

H = (H + Am)(0) = Ba (8)

for suitable scalar values of A and 8. Consider the inner
product

H-(mx H xm). (9)
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FIG. 1: Comparison of relative error vs time step length for
the original semi-analytic predictor-corrector solver, and the
proposed axis-corrected alternative.

Make the substitutions H = H 4+ Am and H = fa in
turn, simplify and compare to see that

H-(mx Hxm)=8a-(mx H xm). (10)
Solving for g,

BZH-(mxme)7 (11)

a-(mxHxm)

we have all we need to determine A and fI . The analytic
LL solution assuming the fixed value H over the next
time interval then yields the value of m at time ¢t = 7.
When we employ this scheme to the exchange only case,
we compute the common H field detailed above. This
strategy applies when other energies are represented as
well.

III. PREDICTOR-CORRECTOR SOLVERS

In [1] the semi-analytic step was used as a founda-
tion to construct a predictor-corrector solver. The axis-
corrected semi-analytic scheme also supports a predictor-
corrector extension. To determine the effectiveness of
our axis correction, we simulated a two spin system with
exchange, demagnetization, and cubic anisotropy ener-
gies. First we used several runs of a 5/4 Runge-Kutta-
Fehlberg solver [5] at various time steps to compute a
converged baseline solution over a 10 ps interval. Then
the predictor-corrector solver from [1] and our axis cor-
rected predictor-corrector solver were used to compute
solutions over the same interval, using a variety of time
steps for both. The error at ¢ = 10 ps relative to the
baseline solution was taken as a figure of merit. Figure
1 displays the results. The axis-corrected solver yields
about an order of magnitude less error compared to the
referenced predictor-corrector scheme. Equivalently, the
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FIG. 2: Comparison of effectiveness of adjustable time step
determination applied to the original semi-analytic predictor-
corrector solver, and to the proposed axis-corrected alterna-
tive. Magnetization components m, and m, as a function
of time are plotted against the scale on the left. Time step
lengths as a function of time are plotted against the scale on
the right. Note the scaling of the third curve for sake of vis-
ibility makes values appear one hundred times greater than
they are.

axis-corrected solver achieves the same magnitude of er-
ror with three times smaller time steps.

IV. ADJUSTABLE TIME STEP SOLVERS

Figure 1 clearly demonstrates that both solution al-
gorithms exhibit second order convergence. This means
they are suitable foundations for the construction of ad-
justable time step algorithms that dynamically grow and
shrink the time step duration to keep the overall calcu-
lation within a desired error magnitude.

Figure 2 illustrates the results of the adjustable time
step solvers based on the two predictor-corrector solvers.

Again a two-spin system is simulated, this time with ex-
change, demagnetization, cubic anisotropy, and Zeeman
energies in the simulation. The z and y components of
m for one of the spins is displayed, showing its precession
and approach to convergence to an equilibrium direction
after 5 ns of simulated time. The same system was simu-
lated using the Runge-Kutta-Fehlberg solver with a fixed
time step of 1 fs to produce a baseline solution. In Fig 2
both solvers compute results with errors less than 2x10~6
relative to the baseline solution. However, the required
time steps to achieve that error level are quite distinct.

Note that the time step duration as a function of time
for the original semi-analytic predictor-corrector solver
is displayed with a magnification of one hundred times.
In this case, the time step adjustments never produce a
time step even as long as 2 fs. In contrast the time step
adjustments applied to the axis-corrected version of the
semi-analytic predictor-corrector solver are able to reach
time steps of more than 200 fs by the end of the 5 ns
simulation interval, and the time steps appear to still be
lengthening at that point.

Because the axis corrected solver over time takes longer
and longer time steps while maintaining the same error
level, it is able to achieve the same computational results
with thirty times fewer calculations.

V. SUMMARY

In this article, three new developments have been pre-
sented. First, we have described an axis correction that
improves on a previously published Landau-Lifshitz so-
lution technique, and demonstrated its benefits. Second,
we have analyzed the convergence of these solution tech-
niques and demonstrated that they exhibit second or-
der convergence. Third, we have taken advantage of the
second order convergence property of these solution tech-
niques to implement adjustable time step algorithms that
permit even more striking demonstration of the advan-
tage of axis correction.
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