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We report results for uMAG standard problem no. 4, a 500
nm X 125 nm X 3 nm rectangle of material with properties
to mimic Permalloy. Switching dynamics are calculated for
fields applied instantaneously to an initial s-state: Field 1 at
170° and Field 2 at 190° (-170°) from the positive long axis.
Reversal in Field 1 proceeds by propagation of end domains
toward the sample center. Reversal in Field 2 involves rota-
tion of the end domains in one direction while the center of the
particle rotates in the opposite direction, resulting in collaps-
ing 360° walls with complex dynamics on fine length scales.
Approaching the static coercivity, H., in small field steps, we
find that the ring down frequency, f, and susceptibility, x
are in approximate agreement with a single-spin model that
predicts f o< (H. — H)Y/* and x o< (H. — H)™*/2. We show
a correlation between the modes of oscillation that become
unstable at the critical field and the switching behavior.

I. INTRODUCTION

Dynamic micromagnetic computations are increasingly
important for rate-sensitive applications such as mag-
netic memory. There has been an increasing use of nu-
merical micromagnetics to investigate the normal modes
of oscillation in micromagnetic structures' 3. Standard
problem no. 4 was proposed? as a benchmark for solu-
tions of the Landau-Lifshitz equations of motion that
involves calculating the switching dynamics of a rectan-
gle of magnetic material with material parameters set to
mimic Permalloy. The material parameters and dimen-
sions are selected to test the dynamics encountered in
switching of MRAM elements, but thermal fluctuations,
defects and other forms of disorder are not included.

In section I, we present solutions for two applied fields
on standard problem no. 4 for comparison with other
solutions? ® and we note that for Field 2 the switching
dynamics are much more complicated than for Field 1.
In section III we use Landau-Lifshitz dynamics to char-
acterize the approach to critical fields. We conclude by
noting correlations between the switching behavior and
the modes that become unstable at the critical fields.

II. SWITCHING CALCULATIONS

The dimensions and field orientations for standard
problem no. 4 are shown in Fig. 1. The initial state is an
equilibrium s-state at zero applied field, and the switch-
ing is induced by instantaneous application of one of two
fields:

Field 1 poH = (—24.6,4.3,0.0) mT,

Field 2 yi0H = (—35.5,—6.3,0.0) mT.

These fields are 170° and 190° from the +z-axis, approxi-
mately double the static critical fields in these directions.

We used the OOMMF public micromagnetic code”
to compute solutions to standard problem no. 4. The
mesh was a 2D square grid with 3D spins interact-
ing through the exchange interaction and magnetostatic
fields. Magnetostatic energy was computed under the
assumption that the magnetization was uniform within
each cell, and the magnetostatic field is averaged over
each cell volume®®. Two exchange energy representa-
tions were used, an “eight-neighbor dot product” repre-
sentation and a “four-neighbor angle” representation'®.
The material parameters used were saturation magneti-
zation M, = 8.0 x 105 A/m, exchange stiffness parame-
ter A = 1.3 x 1071 J/m, and zero magneto-crystalline
anisotropy.

The dynamics of the magnetization were calculated fol-
lowing the Landau-Lifshitz equations of motion,

dM

= —[v'|(M x Heg) — 1\23 M x (MxHg)) (1)

with |9/| = 2.21 x 10° m/As and A = 0.02]y/|.

The maximum time step was set at 0.2 ps, but smaller
time steps were taken as necessary to keep the error
within certain bounds!'!. We use the maximum angle be-
tween neighboring spins as an indication of how closely
our discretized computation approximates Brown’s con-
tinuum micromagnetics.

For Field 1, the dynamic response and magnetization
pattern during reversal are shown in Fig. 2a. The magne-
tization rotates counterclockwise everywhere in the par-
ticle, most rapidly at the ends, then in the middle as do-
main walls propagate toward the middle and annihilate.
With a 2.5 nm cell size, and eight-neighbor dot product
exchange, the maximum angle between neighboring spins
was 22.3°.
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FIG. 1. Dimensions and coordinate system of standard

problem no. 4 with the initial s-state displayed and directions
and relative magnitudes of the applied fields.
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FIG. 2. Spatially averaged magnetization responses and
transient magnetization patterns (insets) captured as <My;>
passed through zero for a) Field 1 at 0.138 ns and b) Field 2
at 0.137 ns.

For Field 2, the dynamic response and magnetization
pattern during reversal are shown in Fig. 2b. The magne-
tization initially rotates counterclockwise near the ends,
but clockwise in the middle resulting in 360° domain
walls and complex dynamics on fine length scales as the
360° walls collapse. We initially used 2.5 nm cell size
and the eight-neighbor dot product exchange representa-
tion. The maximum angle between neighboring spins was
71.9° at 0.571 ns. Finally, the results shown in Fig. 2b
are from a calculation done with 3.125 nm cells using a
“four-neighbor angle” exchange energy representation'”
where the maximum angle between spins was reduced to
48.1°. Under this representation, the exchange energy is
proportional to the square of the angle between neigh-
boring spins. Unlike the dot product representation, the
four-angle has the property of providing an increasingly
stronger aligning torque as the angle between spins in-
creases up to 180°.

III. CRITICAL BEHAVIOR

The behavior of the magnetization near the critical
fields in micromagnetic systems has been discussed by
several authors including Hubert'2. In many situations,
the critical point is accompanied by a divergence in the
susceptibility which can be used to extrapolate calculated
results to a critical point. It is shown below that the
“slowing down” of the vibrational response that occurs
as torques become small near the critical point can also
be used to extrapolate the critical field.

As a guide for interpreting the behavior of the mag-
netization near the critical field, we consider a single
domain particle with a field applied along a nearly ar-
bitrary direction, not along one of the symmetry axes of
the particle. As the field is swept along this direction,

the equilibrium position of the magnetization will track
an energy minimum until that minimum disappears at a
critical value of the applied field, H., where the magne-
tization will become unstable in a certain direction. Just
at the point of instability, we assume that the energy will
be of the form

E.=-Un®+ Kv?, (2)

where 7, v, and ¢ are Cartesian components of the nor-
malized magnetization in a coordinate system defined
such that the (-axis is directed along the equilibrium
magnetization direction at the critical field, and the 7-
axis points along the direction of instability. This form of
the energy has the features expected of a critical point.
At the critical point, n = v = 0, and the magnetization is
stationary, since the gradient of F is zero. M is stable in
the v-direction since 0?E,./dv? > 0, but the magnetiza-
tion is not stable in the n-direction since §*E../0n* = 0,
and 93E,./0n® # 0. A plot of E, for U = K = 1 is shown
in the inset to Fig. 3.

As the applied field approaches a critical value, H,, we
define h = H — H, with components (hy, h,,h¢) to be
the difference between the applied field and the critical
applied field value. Adding the additional Zeeman energy
due to h, the energy is

2 2
where higher order terms in the small quantities 1, v and
h are neglected.

The equilibrium value of 7 is given by

oM

12Uh,
flea = “617

he =4[ (h¢)? = ; (4)

and the divergent susceptibility tensor element Y, ,, is

12U
poM

OMeq
oh,,

Xnn = M

= M [h? - hn] o . (5)

In the special case where h,=0, for example when h is
parallel to M at the critical field, the susceptibility is
proportional to hgl. Otherwise, for small |hl, h% <<
12Uh,, /oM and the susceptibility diverges proportional
to hy 12

The frequency of precession about the equilibrium po-
sition depends on the curvature of the energy surface at

the equilibrium position'?:

f VPR [PEPE (B i “
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Using (3) and (4) the precession frequency is

2 2 1/2 1 1/4
VY4 A [ 2K} [h%— 2U hn] NG

2T poM

f=

In the special case where h,=0, the resonant frequency
is proportional to hé/ 2, Otherwise, for small |h|, h% <<
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FIG. 3. a) The inverse susceptibility squared and b) the
fourth power of the resonance frequency calculated from the
magnetization response as the field was stepped toward the
critical fields. Lines are quadratic fits to the data. Inset: the
form of the energy, E.(n,v), for a single spin at the critical
point plotted for U = K = 1.

12Uh,, /oM and the resonant frequency is proportional
to h},/ .

We compared the predictions of this single spin model
to the response of the magnetization to fields stepped
toward the critical field along the directions of Field 1
(170°) and Field 2 (190°). The equilibrium magnetiza-
tion values were used to calculate x and the power spec-
trum of the ringdown response to each field step was used
to determine f.

Plots of the computed inverse susceptibility squared
([dM,/(MsdB)]~2) are shown in Fig. 3a. Susceptibility
following x o (H, — H)~/? would appear as a straight
line on this plot. The solid lines in Fig. 3a are fits to
functions of the form a(H — H.) 4+ b(H — H,.)? with data
weighted to reflect uncertainty as a constant percentage
of the susceptibility value. The fits used only data within
6 mT of the critical field. The fits extrapolate to critical
fields of (16.604+0.02) mT and (24.08+0.02) mT for fields
applied at 170° and 190° respectively. Stated uncertain-
ties indicate the quality of the fit.

The fourth power of the ringdown frequency is plotted
in Fig. 3b. Straight lines are expected for f o< (H,—H)'/*
behavior. For fields applied at 190°, two peaks are
observed in the power spectrum indicating two normal
modes of oscillation. The solid lines in Fig. 3b are
quadratic fits to the frequency data within 6 mT of the
critical fields, weighted to reflect constant uncertainty in
the frequency. This uncertainty is consistent with power
spectrum peak widths that varied slowly with applied
field. The fits to data extrapolate to (16.5424+0.005) mT
for 170° and (23.96440.004) mT and (24.624+0.07) mT

for the low and high f peaks respectively with the field
at 190°.

While it is not clear that a single spin model should
have any predictive power for the behavior of a nonuni-
formly magnetized particle, the single spin may have
more legitimacy as a model for a single normal mode
of the particle. The ratio a/b of the linear and quadratic
fit parameters provides an indication of the range over
which the system follows the predictions of the single spin
model, and these ratios are roughly an order of magni-
tude larger for the frequency fits (Fig. 3b) than they are
for the susceptibility fits (Fig. 3a). While the frequency
data track the response of individual normal modes sep-
arated by frequency, the susceptibility is a superposition
of the response of all the normal modes, and as such is
less likely to behave like a single spin.

Comparing the linear response near the critical field
to the observed switching behavior, we tentatively asso-
ciate the normal modes with the ends and center of the
particle!. Because the switching is initiated by rotation
in the ends of the particle in Field 1, we associate the
oscillations observed for fields at 170° with the ends of
the particle. The low f mode at 190° and the mode at
170° are the same mode at zero field. We therefore also
associate the lower frequency mode for fields along 190°
primarily with the particle ends. For 36.1 mT applied at
190° (Field 2) both of the oscillation modes observed for
190° fields would be unstable. Perhaps as a result of this
dual instability, the switching in Field 2 is more compli-
cated, starting with magnetization rotating in opposite
directions at the ends of the particle with instability of
the low f mode and in the center of the particle with
instability of the high f mode.
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