Generalization of a Two-Dimensional
Micromagnetic Model to Non-Uniform Thickness

D. G. Porter and M. J. Donahue
National Institute of Standards and Technology,
Gaithersburg, MD 20899

Abstract—A two-dimensional micromagnetic model is extended of a two-dimensional model to approximate the effects of-non
to support simulation of films with non-uniform thickness. yniform thickness of the film. This extension allows a two-
Zeeman and crystalline anisotropy energies of each cell scale with dimensional model to be used to simulate a broader class

the cell thickness, while the exchange energy of a pair of neighbor - . - . . .
cells scales by a weight dependent on the thicknesses of both ceIIs(.)f devices that otherwise might require a three-dimendiona

The self-magnetostatic energy is computed by scaling the momentModel. It can also be used to explore the impact that thicknes
of each cell by its thickness, and adding a local correction to the variations may have on the properties of thin-film devices.
g“ltEJOf'pl'g”e Iiﬂgl'atTehi Chae'%‘i?t:g”Sﬁgvbmeté“zgnﬁtgfgagcﬂ?;?ef%r In Section Il we describe the representation of variable
X X . . . .
the non-uniform thicknrz)ess model than by a uniform thicknessy thickness in _each of the energy terms of our two dlmensuonal
model. With the extended model a530 x 130 x 10 nm film in  Model. Section Il records the extended model's improved
the shape of a truncated pyramid with tapering over the1l5 nm ability to represent the magnetostatic fields of an elligsoi
nearest the edges is shown to have smaller switching field andSection IV presents some simulation results indicating &ha
different reversal mechanism compared with uniform thickness  fjjm with a tapered edge has a significantly different reviersa
films of similar size and shape. mechanism and switching field when compared with uniform
thickness films of similar size and shape.

I. INTRODUCTION

Micromagnetic simulation of thin-film devices frequently Il. ENERGY TERMS
makes use of a two-dimensional micromagnetic model. A two-
dimensional model requires less memory and less demandingVe began with the two-dimensional model within the
calculations than a three-dimensional model. The magné@OMMF public micromagnetic code [5] and extended the
zation patterns computed by a two-dimensional model c&ipressions of each of its energy terms to account for a
also be more easily visualized and interpreted. So long ¥&'ation in thickness from one cell to the next. In the araji
the variation of magnetization through the thickness ofra filmodel, the cells lie on a regular rectangular mesh where each
can be neglected, two-dimensional models can represent @8 has dimension& x A x T'. In the modified model, each
magnetic behavior of thin films acceptably well. cell i has thicknesd;, or relative thickness; = T; /T ax-

Any two-dimensional model is capable of solving only a Neither the applied field nor the crystalline anisotropydiel
limited set of micromagnetic problems that are consistete dependent on the magnitude of magnetic moment in the
with the constraints of the model. More sophisticated medetell, so field calculations are unmodified. The Zeeman energy
can expand the limits of those constraints while retainingnd the anisotropy energy in the cell are proportional to the
the two-dimensional nature of the model. In previous workolume of the film in that cell, so when calculating these
[1] we considered a more sophisticated calculation of trenergy terms, the energy of cellis scaled by the relative
effective magnetostatic fields of a two-dimensional moddhicknesst;. This is a simple adjustment to the calculation of
Rather than computing the magnetostatic field at a singlkese energy terms.
sample point in the center of each computational cell, we In our uniform thickness model, the total exchange energy
computed the average magnetostatic field over the entite c& computed using an eight-neighbor cosine scheme [6].dn th
using known formulas [2]. Using averaged values instead w@driable thickness model, we weight the contribution taltot
sampled values of the magnetostatic field, we were able @gchange energy from each pair of neighbor celéd i by
use a two-dimensional model to reproduce the accuracy oftee quantityw(t;,tx),
three-dimensional model [3] in the solution@f1AG standard
problem 2 [4]. | | Eun = e ST S (b ) (my — ). (D)

In this paper we consider another extension of a two- 3 p
dimensional micromagnetic model as an alternative to three
dimensional modeling. All two-dimensional models negledilere A is the exchange stiffness constant, and= M; /M
the variation of magnetization through the thickness of thie the normalized magnetization of céllThe weights reflect
film. Most two-dimensional models also assume the film haise lesser exchange energy contribution from cells of tesls
uniform thickness. In this paper we present a simple ex¢ensiless tharil},,... The corresponding expression for the exchange

kEnn;



energy density in cell is
Eex,i = 3% m? Z u}(tz—;tk)(mz - mk) (2)
kEnn;

The choice of weighting functions must satisfy the follow-
ing properties:

U}(tl,tg) = ’U)(tg,t1> (3)
. 2t1ta

mln(tl,tQ) S ’U)(tl,tg) S tl n t2 (4)
Our model’s representation of exchange energy assumes the
exchange energy contribution from celland & is the min-
imum exchange energy of any magnetization interpolation |
consistent withm,; and my. The lower bound in (4) asserts
that starting with two cells of equal thickness, increasing
thickness of one must increase the exchange energy. The uppe
bound in (4) is the minimum exchange energy among &l
magnetization interpolations meeting the constraint that
varies only along the direction from to k. The minimum
exchange energy over all unconstrained interpolationst mus
be no greater.

For simulations reported in this paper, the minimum weight-
ing function w(t;,t;) = min(¢y,t2) was used, but other
weighting functions satisfying these constraints miglsbabe
considered.

Finally, we consider the self-magnetostatic energy of the
film. The magnetization in each cell is assumed to be uniform,
so magnetic charges on the cell boundaries are the sources
of the magnetostatic field. The average magnetostatic field
over each cell is computed [1]. Due to the regular mesh,
the magnetostatic field convolution integral can be effityen
evaluated using FFT techniques.

Adapting the model to properly include cells of variable
thickness would destroy the regularity of the mesh, preagnt
the use of efficient FFT techniques. We consider instead a wBy
to r_eta'n efﬂuency, yet reasonably apPrOX'mate the eftect Fig. 1.  Comparison of the in-plane magnetostatic field of a anify
variable thickness on the magnetostatic energy. magnetizedi0 x 10 x 1 oblate spheroid as calculated by a uniform thickness

The primary effect of a reduction in the thickness of &wodel (A)and avariab_le thickness model (B). Grey scale iridicdivergence
cell on the magnetostatic field is caused by the correspgndifi e magnetostatc field.
reduction in the magnetic moment of that cell. This suggasts
adjustment to the magnetostatic field calculation thataegs

M; with ¢;M; as the source of magnetostatic field from cell, ., o ¢ single calculation cell. Our original approxzition

7 In the far f'eldt this approximation Is regsonably accurat?epresents a reshaping of the cell by a rescaling of its magne

Hoyvever, errors In the near field produce m_correct resuits lization. Reshaping the cell should change its demagngtizi

an important I|m_|t|ng case and_need correction. factors. By adding the out-of-plane correction, we do clang
Consider a uniformly magnetized thin film of infinite extent,, | out-of-plane demagnetizing factor, and this changenes

The correct magnetos_tatlc field B, = —M.z ogt—of— the property that the demagnetization factors sum to 1.
plane andH, ., = 0 in-plane. Assume our full thickness

model properly calculates that field. When the thickness ef th
entire film is reduced to a fractiohof its original thickness,
our variable thickness model will compute the out-of-plane As a measure of the improved ability of the extended model
magnetostatic field to b&l,, = —¢tM.Z. This error can be to represent films with non-uniform thickness, we computed
corrected if at each cellthe quantity—(1—¢;)M, ., is added to the demagnetization factors of the best representation of a
the out-of-plane component of the magnetostatic field. Tihe i10 x 10 x 1 oblate spheroid using the original model (Fig. 1 A)
plane field is computed correctly, so any single-cell caioec and the extended model (Fig. 1 B). For this spheroid the
to the in-plane field will increase errors. A single-cell &c correct demagnetization factors are 0.0696 in-plane a3608.
correction, added after FFT calculations, does not sigamifly  out-of-plane. The calculated values are respectively 2510
hinder efficiency. and 0.7947 using the uniform thickness model, and 0.0635
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Note the effect of this correction on the demagnetization

I11. M AGNETOSTATICFIELD ERRORS



and 0.8730 using the extended model. In Fig. 1 A, the in-
plane relative RMS error is 118%, compared to 29.1% in
Fig. 1 B. In Fig. 1 A, the out-of-plane relative RMS error is
15%, compared to 3.6% in Fig. 1 B. In Fig. 1 B the errors are
concentrated at the edge. Within the central region extendi
to a 90% radius, the in-plane RMS error is 12.7%. s
We also compared our variable thickness model to a three- =
dimensional model. Our variable thickness model is limited
in its ability to accurately compute magnetostatic fielde du
to approximations in the interest of efficiency. Our three-
dimensional model is also limited in its ability to accutgte 830 nm x 130 &
compute magnetostatic fields due to its limited discreitizat puncated pyramid—<—
through the thickness of the oblate spheroid. Our three-
dimensional model requires a discretization of at least ¥9
layers to obtain magnetostatic field errors comparable to ou
variable thickness two-dimensional model, at a cost of 10
times the memory and more than 10 times the amount of
computation.

05+

IV. SIMULATION RESULTS i
To explore the effects of thickness variations at the edges
of thin films, we computed magnetization reversal curves for
two variations oruMAG standard problem 2 [4], [7]. Standard
problem 2 considers magnetic reversal of a thin film with 230 hm % 130 hm—e—
dimensions in ratio5 x 1 x 0.1 with applied fields along 1o runcated pyamd—— ‘
the [1,1,1] axis. We specify the dimensions of the filim as 2 30 40 50 60

500 x 100 x 10 nm, and material parameters representing. bt (D)

Permalloy. This yields a ratio of film width to exchange IdrngtFig. 2. Components of average magnetization along the lopine axis,

d/lex ~ 19. All simulations used a cell siz& = 2 nm. 7 (), and along the short in-plane axiaf, (B), as a function of reverse
From the standard problem 2 results, we know the long axisplied field magnitude, for three simulated films. The fims matietéth

component of magnetizatioM switches when the applied uniform thickness exhibit a two-stage reversal. The triedgpyramid film
field magnitudeu His about5i 5 mT has only one switching event in its reversal.
0 . .
For comparison, we also simulated the reversal of a Permal-

loy film with dimensions530 x 130 x 10 nm. We found for shows no evidence of such a two-stage reversal. Simulation
the larger film thath/, switches whenu !l is aboutd4d mT. of the truncated pyramid with our three-dimensional model
The 20% drop in the switching field is due to the larger sizgynfirmed these results.
and different aspect ratio of the second film

Finally, using the extended model, we simulated the reVersa REFERENCES
of a film in the shape of a truncated pyramid. The base ) )
dimensions of the film weres30 x 130 nm and the top ™ 'gh;;]s' 8D7°rg%r'2%e'(2%b8' Porter, R. D. McMichael, and J. EickeAppl.
dimensions of the film weré00 x 100 nm. The maximum [2] A. J. Newell, W. Williams, and D. J. Dunlop, Journal of Géggical
thickness of the film wa$0 nm with a linear tapering to zero _ Researctdg, 9551 (1993).
thickness over the outel’ nm of the fim. Smulations of 5 & S'e0LT, Sl 410 . Fider 3 spot, P so1s (1999,
reversal in this film found thaM,; switches WhenuoH IS http://www.ctcms.nist.gov/"rdm/mumag.html> .
about37 mT. This drop of about 30% in the switching fieldl5] M. J. Donahue and D. G. Porter, NISTIR 6376, National itnt¢ of
compared to standard problem 2 exceeds that which can [ae,\sﬂt_a?.dggjnsaﬁzg ;ﬁﬁhg‘?'g@.’{hg&?cﬁ:éia;h?gi‘gzg;'tzhfzrs(%ﬁg%ésgg'
explained by the change in film size and aspect ratio. [7] R. D. McMichael, M. J. Donahue, D. G. Porter, and J. EickeAppl.

Examination of the reversal curves reveals clues about the Phys.85 5816 (1999).
difference. Fig. 2 A shows the reversal f,. Fig. 2 B shows
the reversal ofM,. For both uniform thickness simulations,
the reversal takes place in two stages, as we have observed
before [7]. The end domains switch at a small reversed field
magnitude, then at a larger applied field the end domains
propagate inwards and annihilate, completing the reversal
The two-stage reversal is most apparent in Fig. 2 B, where
M, shows two discontinuities in opposite directions. The
hysteresis loop for the film with a truncated pyramid shape



