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Abstract—A two-dimensional micromagnetic model is extended
to support simulation of films with non-uniform thickness.
Zeeman and crystalline anisotropy energies of each cell scale with
the cell thickness, while the exchange energy of a pair of neighbor
cells scales by a weight dependent on the thicknesses of both cells.
The self-magnetostatic energy is computed by scaling the moment
of each cell by its thickness, and adding a local correction to the
out-of-plane field. The calculation of the magnetostatic field for
a 10 × 10 × 1 oblate spheroid is shown to be more accurate by
the non-uniform thickness model than by a uniform thickness
model. With the extended model a530 × 130 × 10 nm film in
the shape of a truncated pyramid with tapering over the15 nm
nearest the edges is shown to have smaller switching field and
different reversal mechanism compared with uniform thickness
films of similar size and shape.

I. I NTRODUCTION

Micromagnetic simulation of thin-film devices frequently
makes use of a two-dimensional micromagnetic model. A two-
dimensional model requires less memory and less demanding
calculations than a three-dimensional model. The magneti-
zation patterns computed by a two-dimensional model can
also be more easily visualized and interpreted. So long as
the variation of magnetization through the thickness of a film
can be neglected, two-dimensional models can represent the
magnetic behavior of thin films acceptably well.

Any two-dimensional model is capable of solving only a
limited set of micromagnetic problems that are consistent
with the constraints of the model. More sophisticated models
can expand the limits of those constraints while retaining
the two-dimensional nature of the model. In previous work
[1] we considered a more sophisticated calculation of the
effective magnetostatic fields of a two-dimensional model.
Rather than computing the magnetostatic field at a single
sample point in the center of each computational cell, we
computed the average magnetostatic field over the entire cell,
using known formulas [2]. Using averaged values instead of
sampled values of the magnetostatic field, we were able to
use a two-dimensional model to reproduce the accuracy of a
three-dimensional model [3] in the solution ofµMAG standard
problem 2 [4].

In this paper we consider another extension of a two-
dimensional micromagnetic model as an alternative to three-
dimensional modeling. All two-dimensional models neglect
the variation of magnetization through the thickness of the
film. Most two-dimensional models also assume the film has
uniform thickness. In this paper we present a simple extension

of a two-dimensional model to approximate the effects of non-
uniform thickness of the film. This extension allows a two-
dimensional model to be used to simulate a broader class
of devices that otherwise might require a three-dimensional
model. It can also be used to explore the impact that thickness
variations may have on the properties of thin-film devices.

In Section II we describe the representation of variable
thickness in each of the energy terms of our two dimensional
model. Section III records the extended model’s improved
ability to represent the magnetostatic fields of an ellipsoid.
Section IV presents some simulation results indicating that a
film with a tapered edge has a significantly different reversal
mechanism and switching field when compared with uniform
thickness films of similar size and shape.

II. ENERGY TERMS

We began with the two-dimensional model within the
OOMMF public micromagnetic code [5] and extended the
expressions of each of its energy terms to account for a
variation in thickness from one cell to the next. In the original
model, the cells lie on a regular rectangular mesh where each
cell has dimensions∆×∆× T . In the modified model, each
cell i has thicknessTi, or relative thicknessti = Ti/Tmax.

Neither the applied field nor the crystalline anisotropy field
are dependent on the magnitude of magnetic moment in the
cell, so field calculations are unmodified. The Zeeman energy
and the anisotropy energy in the cell are proportional to the
volume of the film in that cell, so when calculating these
energy terms, the energy of celli is scaled by the relative
thicknessti. This is a simple adjustment to the calculation of
these energy terms.

In our uniform thickness model, the total exchange energy
is computed using an eight-neighbor cosine scheme [6]. In the
variable thickness model, we weight the contribution to total
exchange energy from each pair of neighbor cellsi andk by
the quantityw(ti, tk),

Eex =
A · Tmax
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w(ti, tk)(mi − mk). (1)

HereA is the exchange stiffness constant, andmi = Mi/Ms

is the normalized magnetization of celli. The weights reflect
the lesser exchange energy contribution from cells of thickness
less thanTmax. The corresponding expression for the exchange
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energy density in celli is

Eex,i =
A

3∆2
m

T
i

∑

k∈nni

w(ti, tk)

ti
(mi − mk). (2)

The choice of weighting functions must satisfy the follow-
ing properties:

w(t1, t2) = w(t2, t1) (3)

min(t1, t2) ≤ w(t1, t2) ≤
2t1t2

t1 + t2
(4)

Our model’s representation of exchange energy assumes the
exchange energy contribution from cellsi and k is the min-
imum exchange energy of any magnetization interpolation
consistent withmi and mk. The lower bound in (4) asserts
that starting with two cells of equal thickness, increasingthe
thickness of one must increase the exchange energy. The upper
bound in (4) is the minimum exchange energy among all
magnetization interpolations meeting the constraint thatm

varies only along the direction fromi to k. The minimum
exchange energy over all unconstrained interpolations must
be no greater.

For simulations reported in this paper, the minimum weight-
ing function w(t1, t2) = min(t1, t2) was used, but other
weighting functions satisfying these constraints might also be
considered.

Finally, we consider the self-magnetostatic energy of the
film. The magnetization in each cell is assumed to be uniform,
so magnetic charges on the cell boundaries are the sources
of the magnetostatic field. The average magnetostatic field
over each cell is computed [1]. Due to the regular mesh,
the magnetostatic field convolution integral can be efficiently
evaluated using FFT techniques.

Adapting the model to properly include cells of variable
thickness would destroy the regularity of the mesh, preventing
the use of efficient FFT techniques. We consider instead a way
to retain efficiency, yet reasonably approximate the effectof
variable thickness on the magnetostatic energy.

The primary effect of a reduction in the thickness of a
cell on the magnetostatic field is caused by the corresponding
reduction in the magnetic moment of that cell. This suggestsan
adjustment to the magnetostatic field calculation that replaces
Mi with tiMi as the source of magnetostatic field from cell
i. In the far field, this approximation is reasonably accurate.
However, errors in the near field produce incorrect results in
an important limiting case and need correction.

Consider a uniformly magnetized thin film of infinite extent.
The correct magnetostatic field isHd,z = −Mz ẑ out-of-
plane andHd,xy = 0 in-plane. Assume our full thickness
model properly calculates that field. When the thickness of the
entire film is reduced to a fractiont of its original thickness,
our variable thickness model will compute the out-of-plane
magnetostatic field to beHd,z = −tMz ẑ. This error can be
corrected if at each celli the quantity−(1−ti)Mi,z is added to
the out-of-plane component of the magnetostatic field. The in-
plane field is computed correctly, so any single-cell correction
to the in-plane field will increase errors. A single-cell local
correction, added after FFT calculations, does not significantly
hinder efficiency.

A.

B.

Fig. 1. Comparison of the in-plane magnetostatic field of a uniformly
magnetized10×10×1 oblate spheroid as calculated by a uniform thickness
model (A) and a variable thickness model (B). Grey scale indicates divergence
of the magnetostatic field.

Note the effect of this correction on the demagnetization
factors of a single calculation cell. Our original approximation
represents a reshaping of the cell by a rescaling of its magne-
tization. Reshaping the cell should change its demagnetizing
factors. By adding the out-of-plane correction, we do change
the out-of-plane demagnetizing factor, and this change restores
the property that the demagnetization factors sum to 1.

III. M AGNETOSTATIC FIELD ERRORS

As a measure of the improved ability of the extended model
to represent films with non-uniform thickness, we computed
the demagnetization factors of the best representation of a
10×10×1 oblate spheroid using the original model (Fig. 1 A)
and the extended model (Fig. 1 B). For this spheroid the
correct demagnetization factors are 0.0696 in-plane and 0.8608
out-of-plane. The calculated values are respectively 0.1026
and 0.7947 using the uniform thickness model, and 0.0635
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and 0.8730 using the extended model. In Fig. 1 A, the in-
plane relative RMS error is 118%, compared to 29.1% in
Fig. 1 B. In Fig. 1 A, the out-of-plane relative RMS error is
15%, compared to 3.6% in Fig. 1 B. In Fig. 1 B the errors are
concentrated at the edge. Within the central region extending
to a 90% radius, the in-plane RMS error is 12.7%.

We also compared our variable thickness model to a three-
dimensional model. Our variable thickness model is limited
in its ability to accurately compute magnetostatic fields due
to approximations in the interest of efficiency. Our three-
dimensional model is also limited in its ability to accurately
compute magnetostatic fields due to its limited discretization
through the thickness of the oblate spheroid. Our three-
dimensional model requires a discretization of at least 10
layers to obtain magnetostatic field errors comparable to our
variable thickness two-dimensional model, at a cost of 10
times the memory and more than 10 times the amount of
computation.

IV. SIMULATION RESULTS

To explore the effects of thickness variations at the edges
of thin films, we computed magnetization reversal curves for
two variations onµMAG standard problem 2 [4], [7]. Standard
problem 2 considers magnetic reversal of a thin film with
dimensions in ratio5 × 1 × 0.1 with applied fields along
the [1, 1, 1] axis. We specify the dimensions of the film as
500 × 100 × 10 nm, and material parameters representing
Permalloy. This yields a ratio of film width to exchange length
d/lex ≈ 19. All simulations used a cell size∆ = 2 nm.
From the standard problem 2 results, we know the long axis
component of magnetizationMx switches when the applied
field magnitudeµ0H is about54.5 mT.

For comparison, we also simulated the reversal of a Permal-
loy film with dimensions530 × 130 × 10 nm. We found for
the larger film thatMx switches whenµ0H is about44 mT.
The 20% drop in the switching field is due to the larger size
and different aspect ratio of the second film

Finally, using the extended model, we simulated the reversal
of a film in the shape of a truncated pyramid. The base
dimensions of the film were530 × 130 nm and the top
dimensions of the film were500 × 100 nm. The maximum
thickness of the film was10 nm with a linear tapering to zero
thickness over the outer15 nm of the film. Simulations of
reversal in this film found thatMx switches whenµ0H is
about37 mT. This drop of about 30% in the switching field
compared to standard problem 2 exceeds that which can be
explained by the change in film size and aspect ratio.

Examination of the reversal curves reveals clues about the
difference. Fig. 2 A shows the reversal ofMx. Fig. 2 B shows
the reversal ofMy. For both uniform thickness simulations,
the reversal takes place in two stages, as we have observed
before [7]. The end domains switch at a small reversed field
magnitude, then at a larger applied field the end domains
propagate inwards and annihilate, completing the reversal.
The two-stage reversal is most apparent in Fig. 2 B, where
My shows two discontinuities in opposite directions. The
hysteresis loop for the film with a truncated pyramid shape
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Fig. 2. Components of average magnetization along the long in-plane axis,
Mx (A), and along the short in-plane axis,My (B), as a function of reverse
applied field magnitude, for three simulated films. The films modeled with
uniform thickness exhibit a two-stage reversal. The truncated pyramid film
has only one switching event in its reversal.

shows no evidence of such a two-stage reversal. Simulation
of the truncated pyramid with our three-dimensional model
confirmed these results.
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