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Abstract

The dynamic susceptibility of arrays of narrow permalloy stripes (9 mm X
several pm x 200 nm) has been investigated using a single-coil broadband
susceptibility spectrometer. Disagreement is observed between experimental
results and the macroscopic Landau-Lifshitz (LL) model. This model does not
take into account the dipolar interaction between magnetic stripes. We have
performed micromagnetic calculations that include these dipolar interactions,
and have found the resulting frequency dependence of the dynamic suscep-
tibility in the linear regime to be in good agreement with our experimental

data.



I. INTRODUCTION

Fine control of the magnetic susceptibility in the high frequency range (100 MHz — 10
GHz) is required for many industrial applications. For example, obtaining short switching
times for magnetic recording applications requires high cut-off frequencies of the real part of
the dynamic susceptibility. For other applications, such as microwave devices, fine control of
the resonance frequency of the uniform gyromagnetic mode may be needed. There are many
ways to change the gyromagnetic resonance frequency for a given material experimentally,
such as using DC applied magnetic fields, thermomagnetic treatments [1| or patterning
[2,3]. In this work, the last method has been used: laser ablation is used to pattern thin
permalloy films into arrays of long stripes parallel to the easy axis of magnetization. Then,
measurements of the dynamic susceptibility is performed on the patterned films. The main
effect of such a patterning is to raise the resonance frequency by inducing demagnetizing
fields. Usually, the macroscopic Landau-Lifshitz (LL) model is used to explain the results,
with a simple evaluation of the demagnetizing fields. In spite of good qualitative results
obtained by this method, it is unable to take into account either the non-uniformity of
the demagnetizing field in the sample, or the interactions between stripes. The interaction
between stripes could be taken into account with effective medium theory. One can find more
references in [4]. One alternative to this calculations is to use a micromagnetic description
of the problem. In this paper, we have used a micromagnetic calculation to determine the

dynamic susceptibility in the gigahertz range.

II. EXPERIMENTAL DEVICES

A. Material and ablation facility

The films are made of permalloy, grown by rf sputtering with Leybold-Heraus equipment.
They were deposited onto a 9 mm x 9 mm Corning glass substrate. The thickness of the

magnetic layer is 200 nm. B-H loop cycles show a well defined uniaxial anisotropy for the



as-sputtered films. The magnetic properties of the as-sputtered films were determined using
a vibrating sample magnetometer (VSM). The films were patterned into stripes parallel
to the easy axis of magnetization with a simple laser ablation facility described elsewhere
[3]. Several depositions were made in order to realize different patterns. We have made
arrays of 9 mm length (1), 50, 75 and 100 pum width (w), separated by 10 pm, in order to
maintain arrays with a high area packing fraction respectively from 83% up to 90%. There
are between 80 and 150 stripes, depending on the width. The thickness is identical for all

structures, equal to 200 nm.

B. Magnetic susceptibility measurements

The dynamic magnetic susceptibility of the samples was investigated using a permeame-
ter based on the measurement of the reflexion parameter of a single coil [5,6] without/with
the magnetic film. Using this permeameter and an HP 8753-a vectorial network analyzer,
the susceptibility can be measured in the 30 MHz to 6 GHz frequency range. The configu-
ration of the measurement is described in Fig. 1. For the patterned samples, the magnetic
excitation field h(t) was applied perpendicular to the length of the stripe, in the film plane.
The patterning induces a shift of the gyromagnetic resonance frequency to higher values
and decreases the susceptibility. Typical spectra are reported in Fig. 2. These results can
be understood simply by the fact that the patterning increases the shape anisotropy of the

film by inducing demagnetizing fields.

III. THEORETICAL APPROACHES

A. Macroscopic Landau-Lifshitz Model

The dynamic behavior of the magnetization is usually described with the help of the
Landau-Lifshitz macroscopic model. This model explains dynamic behavior under the as-

sumption that the magnetization configuration is uniform. In this model, the temporal



evolution of the magnetization M is:
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Here H is the total field, v the gyromagnetic ratio, o the phenomenological damping con-
stant. Usually this equation is solved after linearization, using an harmonic excitation h(t)
of small amplitude, included in the total field H. In the macroscopic LL model, if we take
the (Ox) axis along the length, and if we probe the susceptibility perpendicular to this axis,

and in the plane of the film (see Fig. 1), the susceptibility is given by:
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where Mg is the saturation magnetization, H) the anisotropy field, N, the demagnetization
coefficient along the o = {x, y, z} axis, and w the frequency. N, is neglected, since the length
of the sample is large compared to the thickness. Demagnetizing fields are homogenous only
for ellipsoids, and can be defined by the demagnetizing factors: Hq = —N-M. For all other
geometries, the non-uniformity of the demagnetization pattern should be taken into account
for the determination of demagnetizing fields, and we cannot write the demagnetizing fields
in terms of tensorial demagnetizing factors. But in [7], the authors give a perturbative
calculation of the demagnetizing fields. To first order, the demagnetization coefficients can
be analytically derived in each point of the sample, and because it is a first order correction,
we can still write the demagnetizing fields in terms of tensorial demagnetizing factors. In
this way we can use the macroscopic LL model even if our stripes are not second order
geometries. In Fig. 3 we see the variation along the (Ox) axis of N, for a 10 ym x 9 mm X
200 nm structure. To introduce such a coefficient into the macroscopic LL. model, we have

to perform a spatial integration. The demagnetizing coefficients then become:
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The other components of the demagnetizing tensor are obtained by circular permutation
of {z,y, 2} and {a,b,c} in the two above expressions. This may be the best first order
correction to the macroscopic LI model that takes into account the non-uniformity of the

demagnetizing fields.

B. Micromagnetic calculations

Instead of solving a macroscopic Landau-Lifshitz equation, a micromagnetic description
of the problem can be used. In this work the OOMMEF code from NIST was used. In the mi-
cromagnetic framework [8,9], the magnetization distribution is obtained by the minimization

of the total energy density functional:

E=FEoxch T Edemag T Eanis + Ezeeman. (5)

The average energy density F is a function of M and includes exchange, demagnetiza-
tion, anisotropy and applied field (Zeeman). The exchange is calculated by an 8-neighbor
interpolation: E(iexch = (A/3)35_,(1 — m; - m;). The magnetostatic fields are calculated
with FFT techniques. One can find more details about the program and the evaluation of
the energy terms in [10,11]. The time evolution of the magnetization distribution is deter-
mined by solving a microscopic Landau-Lifshitz equation, in which the effective field is a

function of time and position:
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Starting in an equilibrium state, the susceptibility is obtained by exciting the system with
a small external field having a time dependence that allows us to investigate the susceptibility
in the correct range. This field is spatially homogeneous and is introduced in the density
functional of the Zeeman term. The amplitude of the driving field is very small to minimize

non-linear behavior. We define the spatial average susceptibility in the direction u as:
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where
< M(t) >= %/‘/M(r, 1) dr. (9)

Performing FFT’s on the excitation and the response, the obtained expression of the suscep-
tibility can be directly compared to the one obtained by the macroscopic LL model (formula
2). In our calculations, since the stripes are very long, we assume one invariant direction for
the magnetization. If we write the magnetization in the form M(z, y, z), we assume that
the magnetization does not depend on x, where x is directed along the length of the stripe.
The main drawback of this assumption is that the flux closure domains at the ends of the
structure are neglected. However, we expect that the contribution of such domains to the
susceptibility is very small. The mesh size used for the calculation is 10 gm in the (y, 2)

plane.

IV. EXPERIMENTAL SUSCEPTIBILITY RESULTS AND ANALYSIS

First, the experimental spectra for the as-sputtered films are compared with the theoret-
ical predictions deduced from the macroscopic LL model (Fig. 4). The parameters (Hj,Ms)
determined by static measurements are introduced to the model and we fit the damping
parameter . Good agreement between measurement and theoretical predictions is found
as observed in Fig. 4.

Second, the patterned films are considered. Table I reports resonance frequencies, both
experimental and as predicted by the macroscopic LL model, for stripe widths of 50, 75
and 100 pgm. The the macroscopic LL model results are higher than those experimentally
measured, and the discrepancy increases with stripe width. As mentioned above, the stripes
are not as independent. To take into account the interaction between stripes, and to include
a finer evaluation of the demagnetizing field, micromagnetic calculations are performed.

The first calculations are performed in order to point out the influence of the number of



stripes on the dynamic susceptibility. We have considered 50 pm stripes of ideal permalloy
(M,=800 kA-m~!, H,=500 A-m™!), separated by 10 pum non-magnetic spacers. Starting
from one calculated stripe up to 8 stripes, the results of the influence of the number of
stripes on the resonance frequency for the gyromagnetic mode is plotted in Fig. 5. The
magnetostatic interaction between stripes reduces the demagnetizing fields. The frequency
tends to an asymptotic value as the number of interacting stripes is increased. The shift of
the frequency between 6 and 8 stripes is less than 50 MHz for this calculation.

We use the experimental magnetic parameters (Hy, M;, o) of each sample before pattern-
ing to predict the susceptibility of patterned layers by micromagnetic calculations. In Fig. 6
we plot the frequency of the gyromagnetic resonance for experimental data, macroscopic
LL model and micromagnetic calculations for 1 stripe and for 6 stripes. The discrepancy
between the experimental results and macroscopic LL is due mainly to the interactions that
are neglected in that model. The evaluation of the demagnetizing fields using a first order
approximation in the macroscopic L. model seems to explain fairly well the behavior of an
isolated stripe. The frequency obtained by micromagnetic calculations for one stripe is very
similar to that obtained by the macroscopic LL model. As we see in Fig. 6, the macroscopic
LL model is better for the largest aspect ratio (I/w), which may be simply explained by the
fact that the non-uniformity of the demagnetizing field is greatest near the boundaries.

The imaginary part of the susceptibility is plotted in Fig. 7, for the array of 75 um wide
stripes: experimental after patterning, macroscopic LL model prediction, and micromagnetic
calculation for 6 stripes. One can see the broadening of the experimental spectrum for the
layer after patterning. This broadening may be caused by defects produced by the process
of laser ablation, but we do not have a simple explanation for why the broadening affects
only the low frequency part of the spectra. We see here that the micromagnetic calculation

provides a better description of the susceptibility than the macroscopic LL model.



V. CONCLUSION

In this work, the influence of the interaction between permalloy stripes on the magnetic
susceptibility spectrum is investigated. The macroscopic LL model successfully explains the
dynamic behavior of simple magnetic structures, but does not predict accurately the response
of coupled structures. To circumvent this problem, it has been shown that micromagnetic
calculations can be performed with success. A good agreement between experimental data
and simulations is achieved. Such a micromagnetic determination of the susceptibility may
be useful for predicting the behavior of complicated magnetic structures, such as multilayers,

where there is no analytic method for calculating the susceptibility.



TABLES

TABLE I. Gyromagnetic mode frequency: macroscopic LL model and experimental measure-

ments.

stripe width (um): 50 75 100
frequency (experiment, GHz): 1.9 1.4 1.1
frequency (macroscopic LL model, GHz): 2.1 1.7 1.5
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FIGURES

FIG. 1. Micrograph of the patterned layer. P)ark zones correspond to ablated regions. Direc-

tions of the driving field and the anisotropy axis are indicated.
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FIG. 2. Susceptibility spectrum before and after patterning, real part (x') and imaginary
part (x”). The patterned sample has permalloy stripes 75 pum across separated by 10 pm wide

non-magnetic stripes.
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FIG. 3. Demagnetizing factor N, for a 50um wide stripe, evaluated across the width, along the

center line x=7z=0. The origin of the coordinates is taken in the center of the stripe
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FIG. 4. Fit of experimental susceptibility spectrum by the macroscopic LL model for permalloy.

The values of Hy and Mg are determined by static measurements (Hy = 412 A- m~ !, Mg = 712000

A- m~!). The value of the damping parameter « is taken as a free parameter (a = 0.021).
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FIG. 5. Calculated resonance frequency as a function of the number of stripes.
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FIG. 6. Evaluation of the gyromagnetic resonance frequency with width of the stripes: experi-

ment, macroscopic LL. model and micromagnetic computations.
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FIG. 7. Imaginary part of the susceptibility spectrum, for experiment, macroscopic LL model

and micromagnetic computations.
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