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Abstract— This paper presents an edge field correction for
micromagnetic computations of arbitrarily shaped objects on
rectangular grids. The correction is compatible with FFT tech-
niques and involves factors that are precomputed using the
standard self-magnetostatic algorithms applied on a local, refined
mesh. To evaluate this correction, we introduce a quantitative
measure that is based on calculating an edge mode resonance for
different orientations of an edge with respect to the rectangular
mesh. Applied to a 350 nm Ni80Fe20 square, we find up to a 50%
frequency shift for the uncorrected approach, but less than a 5%
shift using the proposed method. We also study vortex expulsion
in a 220 nm Ni80Fe20 square, and again find that the proposed
correction significantly reduces the dependence of the expulsion
field on the orientation angle of the sample square with the mesh.

Index Terms— Micromagnetic modeling, edge corrections,
magnetic edge properties

I. I NTRODUCTION

Regular grids are attractive for micromagnetic modeling
because they enable fast and efficient computation of the long
range magnetostatic interactions using fast Fourier transform
(FFT) techniques[1]. However, regular grids carry a disadvan-
tage that only shapes that coincide with the grid boundaries
are nicely modeled. For shapes that do not fit neatly on the
grid, a simple approximation to the part shape can be made
by setting saturation magnetizationMs = 0 in all cells with
centers outside the desired part boundary, while maintaining
the full value ofMs inside the boundary. The approximated
part shape will then have a stair-step profile characteristic of
the discretization grid as shown in Fig. 1.

Unfortunately, the stray field computed using the stair-step
approximation differs significantly from the field produced
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Fig. 1. A refined mesh is used to calculate the magnetostatic fields in the
neighborhoodΩlocal,i of partially filled edge cells.

by an ideal edge. This problem is largely avoided by finite
element techniques, which allow a much better approximation
of arbitrary shapes, at the expense of a less efficient calculation
of magnetostatic fields[2], [3]. An alternative is to provide
corrections within a finite difference code to compensate for
the effects of stair-step edge contours[4], [5]. In this paper
we introduce and evaluate a new correction method of the
latter type that allows a finite difference model to more closely
approximate the micromagnetics of ideal edges.

II. STAIR-STEP CORRECTION METHOD

The method presented here involves separating the magne-
tostatic field calculation into a rough, long range part and a
refined short range part. The separation is made in a manner
that allows the long range part to be computed by efficient FFT
methods, while the near field correction term ensures accurate
values in the short range. The short range correction involves
factors computed during problem initialization that are based
on pointwise local submeshes that are many times finer than
the base mesh, as schematically illustrated in Fig. 1. However,
at run time both short and long range parts are computed on
a mesh that is sized at the usual micromagnetic length scale,
i.e., on the order of the material exchange length.

We begin by considering the usual demagnetization energy
that would be computed on a fine mesh that spans the entire
problem domain:
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whereVfine is the volume of the submesh cells,Ni′j′ is the
demagnetization tensor[6] interaction between subcellsi′ and
j′, andMi′ is the magnetization in subcelli′. If we define the
constantCF to be the number of subcells contained in one
coarse mesh cell, or, equivalently,CF = Vcoarse/Vfine, then
we can define a corresponding averaged interaction tensorLij

between coarse cellsi and j by
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Here we have defined a factorη′

i which takes on value 1 if
subcelli′ is inside the sample volumeΩ, or 0 otherwise.

Because the coarse mesh is assumed fine enough to capture
the variation in the magnetization, we will assume that the
reduced magnetizationmi′ is constant across the enclosing
coarse mesh celli. If we let Mi denote the average magneti-
zation in celli, i.e., Mi = miviMs wherevi is the fraction



of cell i volume that is inside the sample boundary, then we
can rewrite (1) as
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This expression possesses the accuracy of the fine mesh, but is
computed on the coarse mesh. Unfortunately, the interaction
tensorLij is not translation invariant (Lij depends oni andj
independently, as opposed to depending only on the difference
i − j), so (3) cannot be efficiently computed using an FFT.

However, in the far field, where the distance between cells
i and j is large relative to the cell size, the tensor elements
Lij are well approximated byNij , where Nij is the usual
demagnetization tensor for coarse mesh cellsi andj. Indeed,
the net dipole moment from an averaged magnetization cell,
Mi, is the same as that from the corresponding fine mesh
cell collection Mi′ , so the leading term of the difference
is a quadrupole field. Moreover,Nij is translation invariant,
so the following scheme suggests itself. First, compute a
rough demagnetization field using the coarse cell volume
averaged magnetizationsMi and the standard coarse mesh
demagnetization tensor:

H
rough
demag,i = −

∑

j

NijMj . (4)

This can be computed efficiently using FFT techniques, and
accurately represents the contribution from cellsj far removed
from cell i. However, the contribution from nearby cells is
inaccurate, so for cells neari, say j ∈ Ωlocal,i, we add in a
correction term

Hcorr,i =
∑

j∈Ωlocal,i

(Nij − Lij)Mj . (5)

The final computed value for the demagnetization field is then

Hdemag,i = H
rough
demag,i + Hcorr,i. (6)

This expression computes the near field contribution (j ∈

Ωlocal,i) in exact agreement with that computed from the fine
mesh. The difference in the far field contribution can be made
arbitrarily small by enlargingΩlocal,i as desired.

Although Hcorr,i cannot be computed using FFT tech-
niques, it is not too expensive to compute because it involves
only a local sum acrossΩlocal,i. Moreover, Hcorr,i only
needs to be computed for those cellsi such that their local
neighborhoodΩlocal,i intersects the boundary, since ifΩlocal,i

is entirely contained inside the sample volumeΩ, thenHcorr,i

will be zero. It should also be noted that although (1) was
derived using a fine mesh that covered the entire sample, to
computeHcorr in practice only requires knowledge of the
fine meshNi′j′ tensor elements across the much smaller local
regionsΩi. Also, theNi′j′ elements are the same for allΩi; the
variation inHcorr,i for different i come about due to different
ηi′ηj′ in (2), not differentNi′j′ .

The decomposition discussed here is similar to the method
proposed in [5], except that in the present work the local field
correction is computed using the same algorithm as is used for
the long range part, as opposed to requiring development of a
separate, special algorithm to handle curved edges. Also, the

far field approximation in (4) includes local field contributions,
so the correction term (5) only needs to be applied near the
sample boundaries. Moreover, the current method can be used
in 3D computations.

The cost in computing (5) can be further reduced by a
simple approximation that works surprisingly well. First,break
out themi dependent part:

Hcorr,i =
∑

j∈Ωlocal,i

(Lij − Nij) Msvj (mi − mj)

−

∑
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If the material is exchange coupled, then for cellsj close to
cell i, the differencemi −mj will be small, so the first term
on the righthand side of (7) will be small. Even for cells on the
periphery ofΩlocal,i, wheremj begins to vary more frommi,
this term will be attenuated by the convergence ofLij towards
Nij . This shows thatHcorr,i can be reasonably approximated
by

Hcorr,i ≈ −KiMi (8)
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∑
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(Lij − Nij) . (9)

Thus Hcorr,i is reduced to the form of a simple cell-local
anisotropy. This is essentially a generalization of the approx-
imation used in [7] to model film thickness variation. This is
the form forHcorr,i that is used in the remainder of the paper.
As will be seen in the next section, it works remarkably well.
However, if higher accuracy is required, then (5) may be used
directly, or else a higher order approximation tomj may be
introduced into (7).

III. VALIDATION

We use two methods to probe the properties of corrected
and uncorrected edges in thin film squares. The first method
measures the frequency of a spinwave mode localized near the
film edge[8], [9], and the second method measures the field
required to annihilate a vortex at the edge.

The edge mode frequency may be the less intuitive method,
but it avoids numerical problems encountered near critical
fields while providing a quantitative measure that is sensitive to
the conditions on the edge. Further, the edge mode frequency
is a natural response of the system, more closely related to the
behavior of the magnetization than an arbitrary choice suchas
a field measurement at a chosen location.

Figures 2a)-c) illustrate a few of the normal modes of a
square of 350 nm square of Ni80Fe20 (Ms = 800 kA/m, A
= 13 pJ/m, damping parameterα = 0.01), 5 nm thick in an
applied field of 0.1 T and computed using 5 nm cubic cells.
The spinwave mode spectrum and images are determined using
a ground-pulse-ring-FFT sequence of computations that are
described more fully elsewhere[10]. The greyscale in the mode
images represents the out-of-plane component of the dynamic
magnetization in the indicated modes.

Figure 2f) shows the lowest edge mode frequency as a func-
tion of the system rotation angle. Atθ = 0, the part boundaries
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Fig. 2. Edge mode frequencies are used to test the edge corrections. A few
of the lowest frequency spinwave modes for a 350 nm square of Ni80Fe20, 5
nm thick are shown in a)-c) with the mode spectrum in d) insets.The rotation
angleθ is defined in e), and the frequency of the lowest frequency edge mode
is plotted in f) for uncorrected stair-step edges, long-range corrections using
diluted edge cells and the full correction using the locallyrefined grid. The
p × q notation indicates ap × p local neighborhood withq × q subcells.

coincide perfectly with cell boundaries. For uncorrected edges
and for the long range correction, the frequency increases by
roughly 50% as the square and applied field are rotated out of
alignment with the discretization grid.

The mechanism for the increase in precession frequency
involves changes in the demagnetization field near the film
edge. For the uncorrected edge and for the diluted edge cells,
the demagnetization field near the edge is reduced as the
magnetostatic charges are spread out either over the longer
stair-step edge perimeter or spread over boundaries between
cells with different magnetization. As the demagnetization
field is reduced, the net field near the edge is increased, and
therefore the precession occurs at a higher frequency. The edge
mode frequency shift produced by edge property changes is
expected to depend on a number of parameters including the
applied field.

The corrected curves in Fig. 2f show the edge mode
frequency when the short range correction is implemented as
a local anisotropy term (8) for different different fine meshes.
Local neighborhood sizep was found to be less important.
The corrected edge mode frequencies vary by less than 5%.

Within an excited edge mode, the spins remain nearly
uniform, and it follows that the edge mode frequency test does
not strongly test the assumption that is made in the derivation
of (8) that the magnetization is nearly uniform near the edge.

To provide a stronger test of the assumption of nearly
uniform magnetization near the edge, we calculated the field
required to annihilate a vortex at the edge as a function of
the system rotation angle. We modeled 220 nm squares of
2.5 nm thick Ni80Fe20 using 2.5 nm cubic cells with the
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Fig. 3. The vortex exit field is used as a test of edge corrections. The field
required to push a vortex out of a 220 nm square, 2.5 nm thick isplotted as
a function of rotation angle. The error bars indicate the size of the field step.

applied field and square edges rotated relative to the grid asin
the edge mode test. The smaller cells were needed to resolve
the vortex core and minimize pinning of the vortex on the
grid. Beginning with a vortex state, we calculated the vortex
annihilation field as a function of the rotation angle. See Fig. 3.
For the uncorrected edge, the vortex annihilation field drops
by 26%, while for the local edge correction, the change is only
3.2%.

IV. CONCLUSION

This paper presents a 3D-compatible correction method
for calculating the micromagnetics of arbitrary shapes using
regular finite-difference discretization. The correctionreuses
the magnetostatic code on a finer mesh to compute local
anisotropy terms for cells in the neighborhood of the part
boundary. The edge mode frequency test reveals dramatic grid-
induced anisotropy that is largely suppressed by the correction.
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