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Abstract— This paper presents an edge field correction for by an ideal edge. This problem is largely avoided by finite
micromagnetic computations of arbitrarily shaped objects on element techniques, which allow a much better approximatio
rectangular grids. The correction is compatible with FFT tech- of arbitrary shapes, at the expense of a less efficient eloal
niqgues and involves factors that are precomputed using the f . f 1dsi2]. 3], An al L id
standard self-magnetostatic algorithms applied on a local, refined 0 magnetostgtlp e _S_[ 1, _[ ]. An alternative is to prosi
mesh. To evaluate this correction, we introduce a quantitative Corrections within a finite difference code to compensate fo
measure that is based on calculating an edge mode resonance fothe effects of stair-step edge contours[4], [5]. In this grap
different orientations of an edge with respect to the rectangular \we introduce and evaluate a new correction method of the

mesh. Applied to a 350 nm NioFexo square, we find up t0 2 50% |a4ter type that allows a finite difference model to more elgs
frequency shift for the uncorrected approach, but less than a % imate th . i f ideal ed
shift using the proposed method. We also study vortex expulsion approximate the micromagnetics ot ideal eages.

in a 220 nm NigoFexo square, and again find that the proposed
correction significantly reduces the dependence of the expulsion 1. STAIR-STEP CORRECTION METHOD

field on the orientation angle of the sample square with the mesh. . .
! ' ' g pi square Wi The method presented here involves separating the magne-

tostatic field calculation into a rough, long range part and a
refined short range part. The separation is made in a manner
that allows the long range part to be computed by efficient FFT
methods, while the near field correction term ensures ateura
|. INTRODUCTION values in the short range. The short range correction irslv
Regular grids are attractive for micromagnetic modelinfactors computed during problem initialization that aresdmh
because they enable fast and efficient computation of thge loon pointwise local submeshes that are many times finer than
range magnetostatic interactions using fast Fourier toams the base mesh, as schematically illustrated in Fig. 1. Hewev
(FFT) techniques[1]. However, regular grids carry a disadv at run time both short and long range parts are computed on
tage that only shapes that coincide with the grid boundariasmesh that is sized at the usual micromagnetic length scale,
are nicely modeled. For shapes that do not fit neatly on the., on the order of the material exchange length.
grid, a simple approximation to the part shape can be madeNe begin by considering the usual demagnetization energy
by setting saturation magnetizatigil; = 0 in all cells with that would be computed on a fine mesh that spans the entire
centers outside the desired part boundary, while maimtginiproblem domain:
the full value of M inside the boundary. The approximated 1
part shape will then have a stair-step profile characteristi Edemag = §M0Vﬁne Z ZMZ-T/Ni'j'Mj', (1)
the discretization grid as shown in Fig. 1. i
Unfortunately, the stray field computed using the staipsteyhere V. is the volume of the submesh celly; ;. is the
approximation differs significantly from the field producedjemagnetization tensor{6] interaction between subcélsd
j’, andM;, is the magnetization in subcell If we define the
constantCr to be the number of subcells contained in one
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r Uncorrected .

boundary.., coarse me;h cell, or, equwglentﬁl,p = ‘/goarse/Vﬁne, then

',_w we can define a corr.espor?dlng averaged interaction teiigor
= Sample between coarse celisandj by
volume =Q
Q'°°"‘”< .| Coarse Cell Lij = Cr Z Z nirny Nieje-(2)
e (Ei’eini’) (Zj’ej 77j’) i'€i €]
f | Subcelli” Here we have defined a factgf which takes on value 1 if
. subcell?’ is inside the sample volum®, or O otherwise.
Because the coarse mesh is assumed fine enough to capture
/ Local refinement  “Coarse mesh the variation in the magnetization, we will assume that the

reduced magnetizatiom; is constant across the enclosing
Fig. 1. A refined mesh is used to calculate the magnetostatitsfial the coarse mesh cell If we let M; denote the average magneti-
neighborhoodjocar,; Of partially filled edge cells. zation in cells, i.e., M; = m;v; M, wherev; is the fraction



of cell i volume that is inside the sample boundary, then war field approximation in (4) includes local field contribris,

can rewrite (1) as so the correction term (5) only needs to be applied near the
1 sample boundaries. Moreover, the current method can be used
Edemag = §M0Vcoarse Z ZM?Liij' (3) in 3D computations.
L The cost in computing (5) can be further reduced by a

This expression possesses the accuracy of the fine mesis, betmple approximation that works surprisingly well. Firsteak
computed on the coarse mesh. Unfortunately, the interactiout them; dependent part:
tensorL;; is not translation invariant(;; depends ori and j

independently, as opposed to depending only on the differen Heorri = _ Z (Lij = Nij) Myv; (m; — my)
1 — 7), so (3) cannot be efficiently computed using an FFT. F€€hocal ¢

However, in the far field, where the distance between cells - Z (Lij — Nij) Msvjm,;. (7)
1 and j is large relative to the cell size, the tensor elements FE€Qocal i

L;; are well approximated byV;;, where N;; is the usual |¢ yhe material is exchange coupled, then for cellslose to
demagnetization tensor for coarse mesh celiadj. Indeed, o ; the differencem, — m; will be small, so the first term
the net dipole moment from an averaged magnetization Cejl, ihe righthand side of (7) will be small. Even for cells oa th
M;, is the same as that from the corresponding fine meﬁgriphery 0f1ocal.;, Wherem; begins to vary more fronm,,

cell collection M, so the leading term of the differenceyis term will be attenuated by the convergence.gf towards

is a quadrupole field. Moreovely;; is translation invariant, N;;. This shows thaH,,, ; can be reasonably approximated
so the following scheme suggests itself. First, compute '

rough demagnetization field using the coarse cell volumé e N
. . Hcorr,z ~ _KZMZ (8)
averaged magnetizatiorsI; and the standard coarse mesh
demagnetization tensor: where v,
K; = L (Lij — Nyj) . C)]
h i ij ij
B =Y NM, @ i,
J

This can be computed efficiently using FFT techniques, ar-{(ﬁl.l“IS Heorr; IS reduced to the form of a simple cell-local

accurately represents the contribution from ceglfar removed _amsptropy. Th_|5 IS essenhally_a ger_werahzatlon_of_ thereqo_p .
. - . imation used in [7] to model film thickness variation. This is
from cell i. However, the contribution from nearby cells i

) . . . Sthe form forH.... ; that is used in the remainder of the paper.
inaccurate, so for cells near sayj € Qjocal s, We add in a . o . ;
: ’ As will be seen in the next section, it works remarkably well.
correction term s . .
However, if higher accuracy is required, then (5) may be used

Heori = Z (Nij — Lij) M;. (5) directly, or else a higher order approximation e, may be
J€ocars introduced into (7).
The final computed value for the demagnetization field is then
. I11. VALIDATION
Hdemagﬂ = Hg:;falg’i + Hcorr,i- (6)

We use two methods to probe the properties of corrected
This expression computes the near field contributigng( and uncorrected edges in thin film squares. The first method
Mocali) IN exact agreement with that computed from the finmeasures the frequency of a spinwave mode localized near the
mesh. The difference in the far field contribution can be madién edge[8], [9], and the second method measures the field
arbitrarily small by enlargingioca1; as desired. required to annihilate a vortex at the edge.

Although H,,,,; cannot be computed using FFT tech- The edge mode frequency may be the less intuitive method,
nigues, it is not too expensive to compute because it ingolvieut it avoids numerical problems encountered near critical
only a local sum acros€,..;. Moreover, Hg,,; only fields while providing a quantitative measure that is séresto
needs to be computed for those cellsuch that their local the conditions on the edge. Further, the edge mode frequency
neighborhoodi,c.1,; intersects the boundary, sincef¥,..;; is a natural response of the system, more closely relateugto t
is entirely contained inside the sample volufagthenH,.,,; behavior of the magnetization than an arbitrary choice sigch
will be zero. It should also be noted that although (1) wes field measurement at a chosen location.
derived using a fine mesh that covered the entire sample, tdrigures 2a)-c) illustrate a few of the normal modes of a
compute H.,,, in practice only requires knowledge of thesquare of 350 nm square of §NFe,, (M; = 800 kA/m, A
fine meshi, ;» tensor elements across the much smaller local 13 pJ/m, damping parameter = 0.01), 5 nm thick in an
regions?;. Also, theN,.;; elements are the same for &i]; the applied field of 0.1 T and computed using 5 nm cubic cells.
variation inHg,, ; for differenti come about due to different The spinwave mode spectrum and images are determined using
nin; in (2), not differentN, ;. a ground-pulse-ring-FFT sequence of computations that are

The decomposition discussed here is similar to the methddscribed more fully elsewhere[10]. The greyscale in theleno
proposed in [5], except that in the present work the locatifieimages represents the out-of-plane component of the dynami
correction is computed using the same algorithm as is used foagnetization in the indicated modes.
the long range part, as opposed to requiring development of &igure 2f) shows the lowest edge mode frequency as a func-
separate, special algorithm to handle curved edges. Atso, tion of the system rotation angle. At= 0, the part boundaries
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the vortex core and minimize pinning of the vortex on the
grid. Beginning with a vortex state, we calculated the vorte
annihilation field as a function of the rotation angle. Seg Bi
For the uncorrected edge, the vortex annihilation field drop
by 26%, while for the local edge correction, the change iy onl
3.2%.
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Fig. 2. Edge mode frequencies are used to test the edge donsch few
of the lowest frequency spinwave modes for a 350 nm square @fFgio, 5
nm thick are shown in a)-c) with the mode spectrum in d) insBEte rotation
angled is defined in e), and the frequency of the lowest frequency edgde
is plotted in f) for uncorrected stair-step edges, longgeworrections using
diluted edge cells and the full correction using the locaéifined grid. The
p X ¢ notation indicates @ x p local neighborhood witly x g subcells.

IV. CONCLUSION

This paper presents a 3D-compatible correction method
for calculating the micromagnetics of arbitrary shapesgsi
regular finite-difference discretization. The correctimuses

e magnetostatic code on a finer mesh to compute local

e isotropy terms for cells in the neighborhood of the part
roughly 50% as the square and applied field are rotated outB}>° :
ghly > q PP boundary. The edge mode frequency test reveals dramatic gri

li t with the di tizati id. . . . .
alignment wi e discretization grid induced anisotropy that is largely suppressed by the cthorec

. The mechanlsm_ for the Incréase In precession frequencyl_his work supported in part by the NIST Magnetic Sensors
involves changes in the demagnetization field near the f|I§1

. ompetence Program.
edge. For the uncorrected edge and for the diluted edge cells P g
the demagnetization field near the edge is reduced as the
magnetostatic charges are spread out either over the longer _ ‘ _
stair-step edge perimeter or spread over boundaries betwe@] T- G. Stockham, "High speed convolution and correlatialgint Comm-
I ith diff oL he d L puter Conference Proceedings, vol. 28, pp. 229-233, 1966.
cells with diiferent magnetization. As the lemagnetizatio [5) 1. R. Koehler and D. R. Fredkin, “Finite element methods fiuicro-
field is reduced, the net field near the edge is increased, and magnetics,"lEEE Trans. Mag, vol. 28, pp. 1239-1244, 1992.
therefore the precession occurs at a higher frequency. dgye e [81 W- Scholz, J. Fidler, T. Schrefl, D. Suess, R. Ditrich, Forster,
. . and V. Tsiantos, “Scalable parallel micromagnetic solversnfagnetic
mode frequency shift produced by edge property changes is panostructures Comp. Mat. i, vol. 28, pp. 366-383, 2003.
expected to depend on a number of parameters including th@ G. J. Parker, C. Cerjan, and D. W. Hewett, “Embedded cumvend-
applied field ary method for micromagnetic simulations]! Magn. Magn. Mater.,
' . ) vol. 214, pp. 130-138, 2000.
The corrected curves in Fig. 2f show the edge modg c. J. Gafég-Cervera, Z. Gimbutas, and W. E, “Accurate numerical
frequency when the short range correction is implemented as methods for micromagnetics simulations with general geometriks
a local anisotropy term (8) for different different fine mesh Comp. Phys,, vol. 184, pp. 37-52, 2003.
. . . [6] A.J. Newell, W. Williams, and D. J. Dunlop, “A generalizan of the
Local neighborhood size was found to be less important. demagnetizing tensor for nonuniform magnetizatiah,Geophys. Res.-
The corrected edge mode frequencies vary by less than 5%. Solid Earth, vol. 98, pp. 9551h—9555, 1993.|_ oot a ol
Within an excited edge mode, the spins remain nearly/! (&% 0T T G POt G e et hopl. Phys. vol. 89
uniform, and it follows that the edge mode frequency tessdoe  pp. 7257-7259, 2001.
not strongly test the assumption that is made in the dediuati [&] f( J\?rzci;Ck'rS' I(O- /D\erlr\]olgiltoy, BbHi\uelérarlw(ds, M.stilleLlﬂéFern}%:),
. . . . . Y. Guslienko, A. N. avin, D. V. berkov, an . L. Gorn,
of (8) that _the magnetization is nearly uniform n_ear the edge wave wells in nonellipsiodal micrometer size magnetic elemeftsys.
To provide a stronger test of the assumption of nearly
uniform magnetization near the edge, we calculated the field!
required to annihilate a vortex at the edge as a function of
the system rotation angle. We modeled 220 nm squares [
2.5 nm thick NigFey, using 2.5 nm cubic cells with the

coincide perfectly with cell boundaries. For uncorrectedes
and for the long range correction, the frequency increages
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