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Exchange energy representations in computational
micromagnetics
M. J. Donahue and R. D. McMichael
National Institute of Standards and Technology, Gaithersburg, MD, USA

In order to solve Brown’s equations, which describe a continuous medium, computational micromagnetic
modeling requires a discrete representation of the magnetizationM(r), and a discrete representation of the deriva-
tives ofM(r) must be chosen. This choice may be made through an explicit choice of interpolation or through
the choice of numerical representation of Brown’s equations. In this paper we describe some alternative repre-
sentations of the exchange energy on a square 2-D grid, and test these representations though comparison with
analytical results for magnetization spirals and with simulations testing vortex and domain wall mobility.
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The field of computational micromagnetics
has been growing rapidly in recent years as mag-
netic imaging techniques have achieved higher
resolution, and devices of interest have decreased
in size. Despite the fact that powerful computa-
tional resources have also become less expensive,
many micromagnetic calculations of continuous
thin films are carried out with a discretization that
is too coarse to accurately represent the magne-
tization everywhere [1, 2, 3]. Indications of too
coarse grids in thin film modeling include N´eel
walls with oppositely directed magnetization on
neighboring nodes and vortices without out-of-
plane vortex cores. In many cases of interest, the
magnetic element being modeled is several orders
of magnitude larger than the typical dimension of
such a feature, so accurate calculation of these
features requires a very large number of nodes and
a correspondingly large amount of computational
time and memory.

In this paper we demonstrate the features
of a number of discrete representations of the
exchange energy in micromagnetic calculations
with the goal of identifying and minimizing the
effects of using a grid with a spacing that is
coarser than the size of the smallest micromag-
netic features. For the purposes of this paper, we
restrict ourselves to a rectangular grid. In the con-
tinuum representation, the exchange energy den-
sity, Eex, is given by

Eex = A

∫
V
(∇mx)2 + (∇my)2 + (∇mz)2 dV,

(1)
wheremx, my, andmz are the Cartesian com-
ponents ofm = M/|M |. For the discrete mag-
netizationMi, defined at grid pointsi, there are
a number of choices for the representation of (1)
that, in at least some cases, correspond to a partic-
ular choice of interpolation of the magnetization
between grid points. The effective field acting on
momentMi is given byµ0Hex,i = −dEex/dMi.

1 Exchange Representations

1.1 Four-neighbor dot product

The most commonly reported representation for
the exchange energy on a rectangular grid is a four
neighbor dot product [4, 5, 6, 7, 8, 9]:

Eex,4dot = A
∑

i

4∑
nn=1

(1 −mi ·mnn). (2)

(The inner sum is over the 4 nearest neighbors of
nodei.) Using this representation of the exchange
energy, the exchange field at nodei is given by

Hex,4dot,i =
2A

µ0M

4∑
nn=1

mnn. (3)

One shortcoming of this representation is that
it does not accurately represent the torque when
the angle between neighboring moments is large.
To illustrate this, consider two neighboring mo-
ments,mi andmj . As the difference in orien-
tation betweenmi and mj becomes larger, we
expect a larger torque. In the four-neighbor dot-
product representation, however, the exchange en-
ergy attributed tomi andmj is proportional to
cos(θij), whereθij is the angle betweenmi and
mj, and the magnitude of the torque is propor-
tional to sin(θij). The four-neighbor dot product
representation describes a torque that actuallyde-
creasesasθij becomes greater thanπ/2.

1.2 Four-neighbor angle

In this representation, the magnetization interpo-
lation is a uniform rotation between the moments
at the two nearest grid points. This interpolation
preservesm = 1 in the interpolated region, and
the torque required to increase the angle between
adjacent spins increases up toθij = π. The ex-
change energy is
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Eex,4angle =
A

2

∑
i

4∑
nn=1

θ2
i,nn (4)

and the exchange field is

Hex,4angle,i =
2A

µ0M

∑
nn

θi,nn
mnn

sin θi,nn
. (5)

1.3 Eight-neighbor dot product

In this scheme, the magnetization between the
discretization grid points is interpolated from the
moments at the four nearest grid points. Inside
a cell with momentsMi,j, Mi+1,j, Mi,j+1 and
Mi+1,j+1 at the four corners, the magnetization
M(x, y) is given by

M(x, y) = Mi,j(1−x)(1−y) + Mi+1,j+1xy

+Mi,j+1(1−x)y + Mi+1,jx(1−y), (6)

wherex and y are in units of the grid spacing.
This interpolation allows the magnitude ofm to
deviate from a value of 1 within a cell, but it does
make the magnetization continuous everywhere.
A similar scheme for micromagnetics has been
presented for triangular and tetrahedral finite el-
ement meshes [1].

Using this interpolation, the gradients appear-
ing in (1) are found from straightforward differ-
entiation of (6). The exchange energy is given by

Eex,8dot =
A

3

∑
i

8∑
nnn=1

(1 − mi · mnnn), (7)

where the inner sum is over four nearest neigh-
bors and four next-nearest neighbors, weighted
equally. The exchange field is

Hex,8dot,i =
2A

3µ0M

8∑
nnn=1

mnnn. (8)

Table 1:Analytical expressions forEex for a magne-
tization spiral evaluated for several representations on
a grid with spacing∆.

Model Eex

Continuum Ak2

4-dot 2A
∆2 [2 − cos(kx∆) − cos(ky∆)]

4-angle Ak2; k∆ ≤ π

8-dot 2A
3∆2 [4 − cos(kx∆) − cos(ky∆)

− cos((kx + ky)∆)
− cos((kx − ky)∆)]

2 Comparison of Representations

2.1 Spiral Magnetization

In this section the above discretized expressions
for the exchange energy are compared with the
continuous expression in (1) for a magnetization
configuration where (1) can be evaluated explic-
itly, namely

mx + imy = eik·r. (9)

Substituting this expression into (1), we find that
the exchange energy density—the integrand in
(1)—is Ak2. The discretized expressions (2), (4),
and (7), can be evaluated for the magnetization
spiral using the following relations:

mi ·mj = cos[k · (rj − ri)] (10a)

θi,j = k · (rj − ri) (10b)

Values for the energy density are presented in
Table 1. All three discrete representations give
Eex = Ak2 for k∆ � 1, where∆ is the grid
spacing.

The 4-dot and 8-dot expressions of the ex-
change energy are anisotropic; for a spiral with
a given value of|k|, the exchange energy depends
on the direction ofk, as illustrated in Fig. 1. We
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Figure 1:Plots ofEex for wave vectors directed along
thekx orky axes and along the grid diagonal,kx = ky.
The 4-dot and 8-dot expressions give identical results
for wave vectors parallel to the coordinate axes.

note in passing that a dot-product-based expres-
sion for the exchange energy with greater symme-
try can be constructed by considering expressions
of the form

Eex =
A

1 + 2β

∑
i

[
4∑

nn

(1 − mi · mnn)

+β
4∑

nnn

(1 − mi · mnnn)

]
. (11)

Using the relations in (10) and expanding to
O(k∆)4, the maximum symmetry is obtained
when the resulting expression depends only on
powers of(k2

x + k2
y), with terms proportional to

powers ofkxky set equal to zero. This condition
is satisfied whenβ = 1/4.

2.2 Domain wall mobility

We also compared the effects of the exchange en-
ergy representation on the critical field needed
to move domain walls. To isolate the effects of
the choice of exchange energy representation, the
magnetostatic fields have been neglected. Values
of A = 1.3 × 10−11 J/m,Ku = 5.3 × 105 J/m3
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Figure 2:Normalized out-of-plane moment as a func-
tion of applied out-of-plane field for ‘hcp cobalt’ ma-
terial parameters. Inset: The zero-field magnetization
configuration for the 4-angle representation.

andMs = 1.45 × 106 A/m corresponding to ‘hcp
cobalt’ were used.

Virgin curves for a 200x50 nm section of hcp
cobalt with ∆ = 5 nm are presented in Fig. 2.
Because the domain wall lies parallel to an axis
of the grid, the 4-dot and 8-dot representations
are identical. In addition, with zero magneto-
static field, the problem becomes essentially one-
dimensional. The critical field for the 4-angle is
less that that for the 4-dot representation. This
effect is associated with the fact that the 4-angle
exchange and the dot-product exchange represen-
tations have very different behavior when the an-
gles between adjacent spins are large.

The critical fields for domain wall motion
using the ‘hcp cobalt’ parameters are plotted in
Fig. 3 as a function of cell size. The critical field
drops to zero when the cell size is approximately
equal to the exchange length,δ = (A/Ku)1/2 ≈
5.0 nm.

2.3 Vortex Mobility

We next compare the properties of these repre-
sentations using a vortex magnetization configu-
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Figure 3:Critical field for wall motion as a function
of cell size for ‘hcp cobalt’ material parameters.

ration. Vortices are often present in micromag-
netic models of thin films [2, 9, 11, 10, 12]. Be-
cause of the translation invariance of an infinite,
uniform thin film, the exchange energy of a mag-
netic vortex should not depend on the position of
the vortex. The discretization of the film into a
grid breaks the translation invariance, raising the
possibility of vortex pinning as an artifact of the
grid. We have evaluated the exchange energy of a
vortex as a function of the location of the vortex
center for the three exchange energy representa-
tions described above.

In a continuous medium, the exchange energy
of a pure 2-D vortex is not well defined. The in-
tegral in (1) diverges logarithmically both at the
center of the vortex and at large distances from
the center. The discretized expressions for the ex-
change energy of the vortex do not diverge at the
center of the vortex, but they also diverge at large
distances. To circumvent these problems, we
limit our continuous medium calculation to a ring-
shaped region with an inner radius of∆/3 and an
outer radius on the order of 100∆. The discretized
calculations are limited to the same outer radius,
with no inner radius limit. (At large radii the dis-
cretized calculations converge rapidly enough to
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Figure 4:Exchange energy as a function of the vortex
center position within a cell for three representations
of the exchange energy.

the continuous (analytic) calculations so that in-
creasing the outer radius beyond 100∆ does not
significantly changeEdiscrete − Eanalytic.) The
results are depicted in Fig. 4. In all 3 cases the
minimum energy configuration occurs when the
vortex center is in the middle of a cell, i.e., away
from the discretization grid points. The effect is
largest for the 4-angle exchange formulation.

In the energy well calculation described in the
previous paragraphs, the spin directions were de-
termined solely by their position relative to the
vortex center, not by energy minimization. To
examine how grid pinning of vortices affects ac-
tual micromagnetic calculations, we calculated
the field needed to move a vortex from the cen-
ter of a 1µm square of ‘permalloy’. Because
similar grid pinning effects may exist in the cal-
culation of demagnetizing fields, we isolated the
effects of the exchange energy representation by
replacing the dipole–dipole fields with a uniaxial,
easy plane anisotropy,Ku = 1

2µ0M
2
s = 4 × 105

J/m2. The other parameters used in this calcula-
tion areMs = 8.0 × 105 A/m, ∆ = 50 nm, and
A = 1.3 × 10−11 J/m. The results are plotted in
Fig. 5.

The 4-angle representation of the exchange

5



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-05 0.0001 0.001 0.01 0.1

M
/M

0

µ0 H (T)

4 angle
4 dot
8 dot

Figure 5: Virgin curves for 1µm × 1 µm ‘permal-
loy’ squares calculated from an initial state containing
a vortex at the center using three representations of the
exchange energy.∆ = 50 nm.

energy, which gives the most accurate results for
calculation of magnetization spirals, is found to
produce undesirably strong grid pinning of vor-
tices. This effect is amplified in Fig. 5 by the fact
that the outer portions of the vortex structure col-
lapse before the vortex core moves, reducing the
effective interaction of the vortex with the applied
field.

As a function of cell size, one might initially
expect that smaller cell sizes would reduce the
effects of discretization. However, cell size re-
duction reduces the width of the wells depicted
in Fig. 4 without changing their depth, increas-
ing the steepness of the well sides. The field re-
quired to move initially centered vortices in 100
nm squares of ‘permalloy’ is given in Fig. 6 as a
function of N , where the squares are discretized
onto anN × N grid. Demagnetization fields are
replaced by a uniaxial anisotropy, as above.

As the cell size is decreased (increasingN ),
the critical field initially increases linearly with
N , in agreement with increased pinning due to
steepening of the sides of vortex energy wells.
When the cell size decreases to a size on the or-
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Figure 6: Field required to move initially centered
vortices in 100 nm ‘permalloy’ squares on anN × N
grid as a function ofN . The maximum value for
µ0Hc,4angle is about 75 mT, occurring atN = 8.

der of the exchange length,δ = (A/Ku)1/2 ≈
5.7 nm, N ≈ 18, the critical field begins to de-
crease. Concurrent with this decrease, the vor-
tex develops an out-of-plane moment in the vortex
core. As the mesh becomes fine enough to model
the internal structure of the vortex, further refine-
ment reduces the critical field for vortex mobility
to zero.

3 Conclusions

We have compared the characteristics of three
representations of the exchange energy for a 2-D
square grid, using comparison with continuum re-
sults and tests of vortex and domain wall mobility.
For a magnetization spiral, we find the following
points:

• all three representations give accurate re-
sults fork∆ � 1,

• the 4-angle representation gives the most
accurate evaluation of the exchange energy
for k∆ ≤ π, and
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• the dot-product representations are notably
anisotropic fork∆ > 1.

The domain wall and vortex mobility studies
show the following:

• grid-induced energy wells for vortices and
domain walls can be significant,

• domain walls and vortices are pinned when
the grid size is too large,

• the 4-angle representation produces the
largest vortex pinning, and the least domain
wall pinning,

• the pinning strength for domain walls and
vortices drop as the grid size becomes
smaller than the relevant exchange length,
so that the vortex core and domain wall
structure are resolved.
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