
Image Recognition with Occlusions
Tyng-Luh Liu1 Mike Donahue2 Davi Geiger1 Robert Hummel11 Courant Institute, New York University, New York NY 10012, USA2 IMA, University of Minnesota, Minneapolis MN 55455, USAAbstract. We study the problem of how to detect \interesting objects"appeared in a given image, I. Our approach is to treat it as a functionapproximation problem based on an over-redundant basis. Since the ba-sis (a library of image templates) is over-redundant, there are in�nitelymany ways to decompose I. To select the \best" decomposition we �rstpropose a global optimization procedure that considers a concave costfunction derived from a \weighted Lp norm" with 0 < p � 1. Thisconcave cost function selects as few coe�cients as possible producing asparse representation of the image and handle occlusions. However, itcontains multiple local minima. We identify all local minima so that aglobal optimization is possible by visiting all of them. Secondly, becausethe number of local minima grows exponentially with the number of tem-plates, we investigate a greedy \Lp Matching Pursuit" strategy.1 IntroductionIn the �eld of signal processing and computer vision an input signal or image is afunction f over some subset of Ror R2. To manipulate and analyze f , it is usefulto introduce a linear decomposition into basis elements fj , i.e., f = Pj cjfj .An example of a well known and useful decomposition of this type is the Fourierseries expansion.We study the object recognition problem via a robust template decompositionapproach. Let the image to be recognized be I and the template library be L.The task of image recognition is reduced to a function approximation problemof the form I(x) =Xj Xi cijAi(�j)(x) =Xi;j cijTij(x) (1)where �j 2 L, Tij = Ai(�j) denotes an a�ne transformation applied to thetemplate �j , and cij is the choice of coe�cients that \best" decompose the image.Typically the library L is large, in order to accommodate many possible situationsand also consider the possible (a�ne) transformations. Thus, we have an over-redundant basis leading to in�nite many solutions, cij , to this problem. That isnot the case for the Fourier decomposition.Let us illustrate the problem of function decomposition with over-redundantlibrary. Say our basis consists of sinusoids and functions of the form 1=(k +x) (k 2 N). Assume that f(x) = sin 2x + 4(3+x) is our target function (our



image). It is clear that only two terms from the prototype library are required torepresent f(x). However, one could write f(x) using either sinusoids alone or ascombinations of 1=(k + x) alone, but either representation would require manyterms. The problem is to formulate a coe�cient selection criterion and a methodto compute the coe�cients that yields compact representations.1.1 Coe�cient selection, concave cost function, and optimizationOur approach [7, 13] is to construct an objective function F (c) that when min-imized selects a best representation, c�, from among all solutions c that satisfythe constraint I(x) =PjPi cijAi(�j)(x) : We require1. Sparse Representation: represent (decompose) an image using as few tem-plates as possible in order to have an economical (minimal) representation.Field [9] also argued for sparse representations in the brain.2. Occlusions: allow for partial occlusions, i.e., the cost of �tting a templatemust take into account that portions of the template may have a \bad match".3. Noise: model noise via \noise templates" accounting for the di�erence be-tween the template �t and the image. This leads us to search for cost func-tions that escalate with the magnitude of cij , but should not dominate the�rst condition, i.e., the rate of increase in cost as a function of jcij j shoulddecrease.The above consideration leads us naturally to adopt concave objective functions.In particular, we will primarily study the objective functionFp(c) = MXj=1 NXi=1 !ij jcij jp ; (2)where N is the number of possible (a�ne) transformations and M is the size ofthe template library. The scalars !ij 's are positive, e.g., they may be set to 1 orto the inverse of the template and image variances.The sparsity of templates suggests p = 0 to count the number of templates(weighted by !ij). Noise templates should be paid according to how large the\repair" is, i.e., how large the error cij is. The balance between both processes,sparsity of the templates and noise modeling leads to values of 0 < p � 1.The objective function is non-convex, and in fact the optimization problemwill generally have multiple local minima, making the optimization more di�-cult. We will show that it is possible to characterize all local minima and obtainthe global one by visiting them. Since the number of local minima grows expo-nentially with the size of the template library we consider an alternative greedyalgorithm. Recently, Chen and Donoho [3, 4] studied the overcomplete signalrepresentation problems with L1 norm optimization. Their method is based onlinear programming, which is e�cient, but only applies to the p = 1 case and stillleads to a slow algorithm. Coifman and Wickerhauser [5], modeled an entropylike function, Pi;j jcij j2logjcij j2 with more constraints on the the coe�cients cijsquare-sum to 1.



Comparison with principal component analysis/Eigenfaces: Our ap-proach is fundamentally di�erent from the \eigenfaces" approach (PCA ap-proach) [16]. In our case the basis functions are �xed and the adaptation ofthe method is on choosing the appropriate coe�cients (from a redundant basis),a non-linear process. In the PCA approach the choice of basis functions, a linearprocess, is where the adaptation occurs. PCA works well only when the taskfunction is a simple linear superposition of the basis functions.1.2 Matching pursuitInspired by Mallat and Zhang's work [14] we consider a matching pursuit strat-egy where, at each stage, the criterion of best selection is based on minimizingan image residue. In regression statistics, this decomposition method is known asProjection Pursuit Regression , a non-parametric method that is concerned with\interesting" projections of high dimensional data (see Friedman and Stuetzle[10], Huber [11]). Recently, Bergeaud and Mallat [2] used the (L2) matching pur-suit with a redundant family of Gabor oriented wavelets to approximate imagesand produce compact decompositions for the main features of images.The original matching pursuit is based on the standard L2 (Hilbert space )method. We propose an Lp matching pursuit with 0 < p � 1, to improve therobustness. With 0 < p � 1, we lose the structure of inner product but the notionof a template \closest" to the image is recaptured via the cost function.2 Template Library and Image CoordinatesWe must �rst establish a well-de�ned over-redundant library of templates con-taining many non-canonical templates as well as one canonical template. A canon-ical template is a trivial template with zero gray-level value pixels everywhereexcept one pixel at the extreme left and top corner that its gray-level value is 1.Moreover, we will assume we can apply a set of a�ne transformations to eachtemplate, indeed we will restrict ourselves to translations. Clearly, this singlecanonical template plus a set of all translations form a basis for the image space.Coordinate transformations: Suppose we have now created a template libraryL = f�j : j = 1:::Mg for some application, where we will use �1 � �1 to representthe canonical template. Let the image to be recognized be I of dimension Nand each template �j be of dimension NT (we assume that both N and NTare perfect square numbers). Furthermore, let P = fp1; p2; � � � ; pNg and Q =fq1; q2; � � � ; qNT g be the pixel sets of I and any �j , respectively. (We order thepixels from top to bottom and left to right.) Let the translation Ai(�j) indicatethat the �rst template pixel q1 is positioned at the i-th pixel pi 2 P . The mappingformula for Ai is such that qr 7! pk = pk(r;i) where 3 k = i + (b r�1pNT c � N) +(r� 1�b r�1pNT c�pNT ) : Denote Tij = Ai(�j) and ei1 = Ti1 = Ai(�1) 4, then we3 The expression bxc denotes the greatest integer less than or equal to x.4 Note that ei1(pj) = ei(pj) = �ij , where �ij = 1 for i = j and �ij = 0 otherwise.



have Tij(pk) = �j(qr). Using these notations, one can write the decompositionequation (1) asI(pk) = NXi=1 ci1ei1(pk)+ MXj=2 NXi=1 cijTij(pk) = NX�=1 c�e�(pk)+ M:NX�=N+1 c�T�(pk) (3)
where � = �(i; j) = (j � 1)�N + i. We may write I[k], e�[k] and T�[k] insteadof I(pk), e�(pk) and T�(pk), respectively, for simpli�cation.3 Optimization Problem and SolutionEquation (3) can be written in matrix notation as Tc = I where

T = 0BBB@ e1[1] � � � eN [1] TN+1[1] � � � TMN [1]e1[2] � � � eN [2] TN+1[2] � � � TMN [2]... . . . ... ... . . . ...e1[N ] � � � eN [N ] TN+1[N ] � � � TMN [N ]
1CCCA ;c = (c1; c2; : : : ; cMN )t and I = (I[1]; I[2]; : : : ; I[N ])t :Note that if the prototype library forms a basis (linearly independent), thenM = 1, and there is no freedom in choosing the coe�cients (c�); the coe�cientsare uniquely determined by the constraint. If there are linear dependencies in theprototype library, thenM > 1, the prototype library over-spans, and the set of allsolutions (c�) to the constraint forms an (M � 1)N dimensional a�ne subspacein the M:N -dimensional coe�cient space. Let S denote this solution space, i.e.,dim(S) = (M�1)N :Using the above matrix notations, our optimization problemcan be formulated as:minc Fp(c) = minc MNX�=1 !�jc�jp subject to the constraint Tc = I (4)

where T 2 RN�M:N , c 2 RM:N , I 2 RN , M > 1. The next result is shown in[7, 13], or previously stated in [8].Proposition 1 All the local minima of Lp-cost function in (4) occur at thevertices of a polytope. This polytope is constructed from the intersection of thea�ne subspace S and a cube de�ned by the origin and bounded in each axis byd�. d� can be as large as (Fp(c0)=!�)1=p, where c0 is any solution to Tc = I .



4 One Template Matching and SimulationsIf we want to �nd a speci�c face in an image, then it su�ces to use only oneface-template. In these cases the non-canonical template represents a key featureand the canonical templates e� represents non-interest elements , e.g., noise.Let us assume that this particular template be �2 of size NT (�1 � �1) and Aibe the translation, that is, Ai(�2) = Ti2 = TN+i. This says that we look for adecomposition of the form:I(x) = cN+iTN+i(x) + NX�=1 c�e�(x) : (5)
It is clear that c� = I[�] if pixel p� is not covered by TN+i. So, the equation (1)can be restricted to the region where TN+i is located.0BBB@ eAi(1)[Ai(1)] � � � eAi(NT )[Ai(1)] TN+i[Ai(1)]eAi(1)[Ai(2)] � � � eAi(NT )[Ai(2)] TN+i[Ai(2)]... . . . ... ...eAi(1)[Ai(NT )] � � � eAi(NT )[Ai(NT )] TN+i[Ai(NT )]1CCCA0BBB@ cAi(1)...cAi(NT )cN+i 1CCCA = 0B@ I[Ai(1)]...I[Ai(NT )]1CAwhere ei[j] = ei(pj) = �ij . Recall that TN+i[Ai(r)] = �2[r] (and Ai(1) = i). Wecan also assume that �2[r] 6= 0 for r = 1; : : : ; NT , since otherwise we can rede�neeither �2 or the pixel ordering to get a smaller value for NT .It follows from Proposition 1 that the local minima of Fp(c) can be found bysetting cN+i, cAi(1), : : : , cAi(NT ) to zero one at a time. If we set cN+i = 0 thenwe get c� = I[�] for all �. This is the \pure noise" solution. The �rst nontrivial(template using) solution sets cAi(1) = 0. This forces the template coe�cientcN+i = I[Ai(1)]=�2[1], from which it follows that cAi(r) = I[Ai(r)] � cN+i�2[r],for r = 2; : : : ; NT . The solution determined by setting cAi(r) = 0 (2 � r � NT )can be calculated in an analogous fashion.The optimal cost of the match of the template in the (translation) positioni is the smallest of the values of Fp(c) across all NT + 1 solutions (c). Oneperforms a similar analysis for all template translations, and �nds the positionwhich generated the smallest match cost. Note that in the case of one templatematching, the Lp-norm decomposition problem is actually the same as p-normminimization.4.1 SimulationsWe have designed a sequence of experiments focused on the e�ects of noise andocclusions to demonstrate both the weighted and unweighted (all !�'s are setto 1) Lp decomposition methods are superior to the conventional correlationtechniques. The weights used in the weighted scheme are de�ned as !�(i;j) =1=([PNTk=1 j�j [k]jp][PNTk=1 jI[Ai(k)]jp]) , for 0 < p � 1 .



The experiments consist of numerous trials on random images with �xedocclusion size and �xed noise variance. The latter determines the signal-to-noiseratio (SNR) for the experiment, de�ned here as the ratio of the standard deviationof the image to the standard deviation of the noise.Each trial has four components: an image, a template, an occlusion, and noise.The image is 64 pixels wide by 64 pixels high, randomly generated using anuncorrelated uniform distribution across the range (�256; 256). The template isa 4 pixel by 4 pixel subimage of the image. After selecting the template, a portionof the image from which the template is drawn is \occluded" by redrawing fromthe same distribution that formed the image, i.e., from an uncorrelated uniformdistribution with range (�256; 256). (Occlusion sizes range from 0{14 pixels,from a total subimage size of 16 pixels.) Finally, noise is added to the (occluded)image, drawn from an uncorrelated Gaussian mean-zero random variable.Translates of the template are compared against the noisy, occluded image,using both weighted and unweighted Lp-norm decomposition method. (Becauseboth the template and the image are drawn from zero-mean random variables,there is little di�erence between 2-norm error minimization and standard cor-relation.) For each method the translation position yielding the best score iscompared with the position of the original subimage from which the templatewas formed. If the two agree then the match is considered successful, otherwisethe match fails for the trial in question.5 Multiple Templates and Matching PursuitIn this section, we proceed to elucidate the matching pursuit method for thecase of multiple templates. The basic idea is to devise a greedy iterative methodwhere at each stage only one template is selected and thus, we can rely on theprevious section result. In this section we will also consider, for comparison, acost function based on the LTS (Least Trimmed Squares, Rousseuw 1983, 1984,[15]).5.1 ReviewWe brie
y review the (L2) matching pursuit below. Suppose it is given a signalf , and a library of functions D = fg
g
2� where � is a set of index tuples and Drepresents a large, over-redundant family of functions. A \best" matching libraryelement to the residual signal structures at each stage is decided by successiveapproximations of the residual signal with orthogonal projections on elements inthe library. That is, say at stage n, for any element g
 2 D, we considerRn�1f =< Rn�1f; g
 > g
 +Rnf (6)where Rnf is the n-th residue after approximating Rn�1f in the direction of g
(assume that the initial residue is the function f , i.e.R0f = f). The matching pur-suit strategy is to �nd g
� that minimizes jjRnf jj (or the g
� closest to Rn�1f),i.e. jjRn�1f� < Rn�1f; g
� > g
� jjL2 = min
2� jjRn�1f� < Rn�1f; g
 > g
 jjL2 .
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(c) (d)Fig. 1. (a)Experimental matching accuracy as a function of occlusion size with no noise.The solid curves correspond to our proposed weighted Lp decomposition, dashed to theunweighted Lp decomposition. Note that smaller values of p outperform larger valuesproviding nearly 100% correct results with p = 0:125 for occlusions as large as 11 (outof 16) pixels. Also given a p value the weights (normalization) can help improve theresults. (b) Experimental matching accuracy as a function of occlusion size at a Signalto noise Ratio (SNR) of 37. The solid curves correspond to our proposed method,dashed to the unweighted Lp method. Here we note that p = 0:125 still performs verywell, although good results can not be obtained if the occlusion is larger than halfthe template size. Notice that the results using larger values of p are less a�ected bynoise, especially those with p > 1. (c) Experimental matching accuracy as a functionof noise level at a �xed occlusion size of 5 (out of 16) pixels. Note again that largervalues of p produce results which are less sensitive to noise. For example, the resultsfor p = 0:125, which are best for large SNR, are poorest for SNR of less than about3. The solid (dashed) curves correspond to weighted (not weighted) Lp method. (d)Experimental matching accuracy as a function of p, at various noise levels and occlusionsizes. For an occlusion size of 4/16 and a SNR of 9.2, the best p value for our weightedLp method is somewhere between 0.25 and 0.5. The solid (dashed) curves correspondto weighted (not weighted) Lp method.



5.2 Our approachAssume that R0I = I, the input image. Then, at stage n, if a transformedtemplate T�(= Tij = Ai(�j)) and coe�cient c� are chosen, the n-th residualimage can be updated as follows:RnI(pk) = Rn�1I(pk)� c�T�(pk) for k = 1:::N : (7)Note that T� is only of dimension NT and we assume that T�(pk) = 0 if pk isnot covered by T�. From (7), RnI can be derived by \projecting" Rn�1I inthe direction of T�. At each stage, we recover a best matching by minimizing!�jjRnIjjLp where !� is de�ned similarly to the case of one-template matching.5.3 Matching pursuit simulationsWe �rst work with synthetic data and then with real images.Synthetically Randomized Images : Let's begin with a simple experiment to testour template matching algorithm for a synthetic example. In this experiment, thetemplate library L consists of three di�erent types (or shapes) of templates ((a),(b), (c) in Figure 2). There are 40 templates for each type so that L includes120 non-canonical templates and one canonical template �1. Each of the non-canonical template is a synthetically randomized image with gray-level valuesbetween (0; 200) generating from a random number generator. To construct atest image I1 (as in Figure 2-(d)), we �rst select one non-canonical templaterandomly from each template type in L to form the base (exact) image thenadd noise and an occluded square derived from uniform distribution in (0; 10)and (245; 255), respectively. The threshold values used in simulation vary withrespect to the value of p for Lp matching pursuit and � for LTS matching pursuit.We see that both methods can handle occlusions (e.g. see Figure 2-(e) R1). Ourexperiment results suggest for p 2 (0:25; 0:75) and � 2 (0; 51; 0:75), both theLp and LTS methods are rather robust. But, as shown in Figure 2-(f) R2, bothmethods failed to recognize the occluded object for p � 0:75 and for � � 0:75.Face Recognition : A small library of face templates has been established (seeFigure 3 (a)-(f)). The dimension of all the six templates is 64 � 64. Numerousexperiments have been carried out to test our algorithm. To illustrate, considerthe three real images, I1 - I3, in Figure 4 (a)-(c). We obtained decompositionresults R1, R2 and R3 shown in Figure 4, for p = 0:25. (Similar results arederived for p = 0:50 and 0:75.) When p = 2, it is indeed the L2 matchingpursuit method and the recognition results are R4, R5 and R6. Our proposedLp matching pursuit has the robustness advantage over the L2 one. In case thatan image contains objects with large occlusions (like I3), the LTS may fail torecognize them as shown in 4-(l). In addition, the Lp is more e�cient than LTSregarding to the computation complexity.



(a) (b) (c) (d) I1 (e) R1 (f) R2Fig. 2. (a), (b), (c) are synthetic template type 1, type 2 and type 3, respectively. (d)Test image I1 with noise added and occlusion (e) Result of the decomposition for theLp with p = 0:25, and also for the LTS with � = 0:51. (� is the robust constant ofLTS.) (f) Results once the breakdown limits are reached, and occluded templates arenot recognized. For example, Lp, with p = 0:75 and LTS with � = 0:75.
(a) (b) (c) (d) (e) (f)Fig. 3. (a) - (f) are the face and book templates used in the face recognition simulation.References1. J. Ben-Arie and K. R. Rao, \On the Recognition of Occluded Shapes and GenericFaces Using Multiple-Template Expansion Matching", Proceedings IEEE Interna-tional Conference on Pattern Recognition, New York City, 1993.2. F. Bergeaud and S. Mallat, \Matching Pursuit of Images", SPIE, Orlando, 1995.3. S. Chen and D. Donoho, \Atomic Decomposition by Basis Pursuit", TechnicalReport, Stanford University, May, 1995.4. S. Chen and D. Donoho, \Basis Pursuit", TR, Stanford University, Nov. 1994.5. R. Coifman and V. Wickerhauser, \Entropy-based Algorithms for Best Basis Se-lection", IEEE Transactions on Information Theory, vol. 38, no. 2, 1992.6. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms,McGraw-Hill, 1990.7. M. J. Donahue and D. Geiger, \Template Matching and Function DecompositionUsing Non-Minimal Spanning Sets", Technical Report, Siemens, 1993.8. H. Ekblom, \Lp-methods for Robust Regression", BIT 14, p.22-32, 1973.9. D. Field, \What Is the Goal of Sensory Coding", Neural Comp. 6, p.559-601, 1994.10. J. H. Friedman and W. Stuetzle, \Projection Pursuit Regression", Journal of theAmerican Statistical Association, vol. 76, p.817-823, 1981.11. P. J. Huber, \Projection Pursuit", The Ann. of Stat., vol. 13, No.2, p.435-475, 1985.12. P. J. Huber, Robust Statistics, John Wiley & Sons, New York, 1981.13. T. Liu, M. Donahue, D. Geiger and R. Hummel, \Sparse Representations for ImageDecomposition", Technical Report, CS, Courant Institute, NYU, 1996.



(a) I1 (d) R1 (g) R4 (j) R7
(b) I2 (e) R2 (h) R5 (k) R8
(c) I3 (f) R3 (i) R6 (l) R9Fig. 4. (a)-(c) The test images, where some templates are present with small distor-tions (scale and viewing angle), noise and occlusions. (d)-(f) Image decomposition forLp matching pursuit with p = 0:25 (similar results are obtained for p up to 0:75). (g) -(i) Image decomposition for p = 2:0 and recognition is destroyed (this is equivalent touse correlations methods, like in the L2 matching pursuit). Note that false recognitionoccurs in (i). (j)-(l) Image decomposition with LTS.14. S. Mallat and Z. Zhang, \Matching Pursuit with Time-Frequency Dictionaries",IEEE Trans. on Signal Processing, Dec. 1993.15. P. J. Rousseeuw and A. Leroy, Robust Regression and Outlier Detection, JohnWiley, New York, 1987.16. M. Turk and A. Pentland, \Eigenfaces for Recognition", J. of Cognitive Neuro-science, vol. 3, p.71-86, 1991.17. B. Uhrin, \An Elementary Constructive Approach to Discrete Linear lp-approximation, 0 < p � +1", Colloquia Mathematica Societatis J�anos Bolyai,58. Approximation Theory, Kecskem�et, 1990.This article was processed using the LATEX macro package


