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Abstract

We study the problem of how to detect “interesting
objects” appeared in a given tmage, 1. Our approach is
to treat it as a function approrimation problem based
on an over-redundant basis, and also account for oc-
clusions, where the basis superposition principle is no
longer valid. Since the basis (a library of image tem-
plates) is over-redundant, there are infinitely many
ways to decompose I. We are motivated to select a
sparse/compact representation of I, and to account for
occlusions and noise. We then study a greedy and it-
erative “weighted LP Matching Pursuit” strategy, with
0<p< 1. Weusean LP result to compute a solution,
select the best template, at each stage of the pursuit.

1 Introduction

In the field of signal processing and computer vision
an input signal or image is a function f over some
subset of R or R?. To manipulate and analyze f, it is
useful to introduce a linear decomposition into basis
elements f;, i.e., f = Zj ¢;f; - An example of a well
known and useful decomposition of this type is the
Fourier series expansion.

We study the object recognition problem via a ro-
bust template decomposition approach. Let the image
to be recognized be I and the template library be L.
The task of image recognition is reduced to a function
approximation problem of the form

I(z) = ZZCz’in(Tj)(l‘) =Y Ty (1)

i3

where 7; € £, T;; = Ai(7;) denotes an affine transfor-
mation A;, though in our studies we have just consid-
ered translations, applied to the template 7;, and c¢;;
18 the choice of coefficients that “best” decompose the
image. Typically the library £ is large, we have an
over-redundant basis leading to infinitely many solu-
tions, ¢;;, to this problem. That is not the case for the
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Fourier decomposition. The problem is then, to for-
mulate a coefficient selection criterion and a method
to compute the coefficients that yields compact repre-
sentations.

Decomposition with Occlusions:  Here we de-
part from our previous work [14]. To decompose an
image containing occluded objects, a special form of
(1) is needed. Since occlusions occur at overlapping
objects, we introduce an occlusion function O such

that

Ti;(x) if Tj; is the toppest one
among all covering z
0 otherwise.

O(Tyj)(z) =

The image decomposition problem with occlusions can
be written as

I(x) = ci;O(Ti) (). (2)

i3

We will treat O like a polymorphic function that it can
also be applied to a pixel x such that

1 if pixel x 1s covered by some template

O(m):{ .

1.1 Coeflicient selection and concave opti-
mization

otherwise.

Our approach is to construct an objective function
F(c) that when minimized selects a best representa-
tion, ¢*, among all solutions ¢ that satisfy the con-

straint I(z) = Zj > ¢iO(Ti;)(x) . We require

1. Sparse Representation: represent (decompose)
an image using as few templates as possible in
order to have an economical (minimal) represen-
tation. Field [9] also argued for sparse image rep-
resentations in the brain.



2. Occlusions: allow for partial occlusions, i.e., the
cost of fitting a template must take into account
that portions of the template may have a “bad
match”.

3. Noise: model noise via “noise templates” account-
ing for the difference between the template fit and
the image. This leads us to search for cost func-
tions that escalate with the magnitude of ¢;;, but
should not dominate the first condition, i.e., the
rate of increase in cost as a function of |¢;;| should
decrease.

The above consideration leads us naturally to adopt
concave objective functions. In particular, we will pri-
marily study the objective function

Fy(e) = Z sz’ﬂ% ", (3)

j=1

where N is the number of possible (translations) trans-
formations and M 1is the size of the template library.
The weights w;; are positive scalars, e.g., they may be
set to 1 or to the inverse of the template and image
variances.

The sparsity of templates suggests p = 0 to count
the number of utilized templates (weighted by w;;).
Noise templates should be paid according to how large
the “repair” is, i.e., how large the error c¢;; is. The
balance between both processes, sparsity of the tem-
plates and noise modeling leads to values of 0 < p < 1.
Furthermore, this balance also accounts for occlu-
sions. Compared to conventional L? methods (p = 2),
0 < p <1 will cost less for regions where the error is
large between the template and the image (occlusions).

The objective function is non-convex, and in fact
the optimization problem will generally have multiple
local minima. It is possible to characterize all local
minima and obtain the global one by visiting them [7].
Since the number of local minima grows exponentially
with the size of the template library we consider an
alternative greedy algorithm.

Recently, and independently, Chen and Donocho
[3, 4] studied the overcomplete signal representation
problems with L' norm optimization. Their method is
based on linear programming, which is efficient, but
only applies to the p = 1 case and still leads to a slow
algorithm.

Comparison with principal component anal-
ysis/Eigenfaces: Our approach is fundamentally
different from the “eigenfaces” approach (PCA ap-
proach) [17]. In our case the basis functions are fixed

and the adaptation of the method is on choosing the
appropriate coefficients (from a redundant basis) with
the occlusion factor taken into account, a non-linear
process. In the PCA approach the choice of basis
function, a linear process, is where the adaptation first
occurs, and the whole process of choosing coefficients
is also linear. PCA works well when the task func-
tion is a simple linear superposition of the basis func-
tions. A clear scenario to show how different these
methods can be is the case of edge detection. Suppose
we have a few different images to train and another
image to test the edge detection for both approaches.
Our method, would define edges as step edges and
then “look” at any of the images (e.g., the test one) to
decompose it into these operator and an ok edge de-
tector would have been built. A PCA approach would
find the “edge-eigenfunctions” from the training set
of images, and hope to describe the next test image
by these edge-eigenfunctions (where the edges are not
formed from linear superpositions of the training edge-
images). It would be a disastrous edge detector! The
same should occur for face recognition unless previ-
ous “super-normalization” puts them aligned (includ-
ing emotional expressions normalization).

1.2 Matching Pursuit

Inspired by Mallat and Zhang’s work [15] and more
recently Bergeaud and Mallat [2], we consider a match-
ing pursuit strategy where, at each stage, the crite-
ria of best selection is based on minimizing an image
residue. In regression statistics, this decomposition
method 1s known as Projection Pursuit Regression |
a non-parametric method that is concerned with “in-
teresting” projections of high dimensional data (see
Friedman and Stuetzle [10], Huber [11]).

The original matching pursuit is based on the stan-
dard L? method. In recognition of image with occlu-
sions, the L? norm is not suitable. We propose an LP
matching pursuit, 0 < p < 1, to improve the robust-
ness. With 0 < p < 1, we lost the structure of inner
product but the notion of projection can be recaptured,
the criterion for a template to be “best matching” or
“closest” to the image is to minimize a cost function.
(We will adopt the term “L? norm” though it is not
really a norm.) This modification improves robust-
ness of the pursuit scheme but the convergence of LP
pursuit 1s now not guaranteed. The energy conserva-
tion equation and so Jones’ proof [13] of convergence
of projection pursuit no longer hold.

2 Template Library and Image Coordi-
nates

We first establish a well-defined over-redundant li-
brary of templates containing non-canonical templates



as well as one canonical template. A canonical tem-
plate i1s a trivial template with zero gray-level value
pixels everywhere except one pixel at the extreme left
and top corner that its gray-level value is 1. More-
over, we will assume we can apply translations to each
template (in theory one could apply any affine trans-
formation with more computational cost). Clearly, this
single canonical template plus a set of all translations
form a basis for the image space.

Coordinate transformations: Assume that the
template library £ = {r; : j = 1..M}, where we
will use €; = 71 to represent the canonical template.
Let the image to be recognized be I of dimension N
and each template 7; be of dimension Np (we as-
sume that both N and Np are perfect square num-
bers). Furthermore, let P = {p1,p2, -, pn} and
@ =1{q1,92,- -, gny } be the pixel sets of I and any 7;,
respectively. (We order the pixels from top to bottom
and left to right.) Let the translation A;(7;) indicate
that the first template pixel ¢; 1s positioned at the ¢-th
pixel p; € P (see Figure 1). We can explicitly describe
such relation as follows:

QA—>QZ ={pr:kel;, I, C{l1,2,..,.N}}CP. (4)

The mapping formula for A; is such that ¢, —
pk_pk(m)wherelk—z—l—(t J><N)—|—(r—1—

L\/N | x+/Nr) . Denote T;; = ( ) and e = T =
Aji(e1) 2, then we have Tj;(px) = 7(¢-). Using these

notatlons one can write (2) as

N

M N
I(pr) = Zczlezl (px) ZZ
l;l J\;i\]z:
= Zcxex D) Z cxO(TH)( (5)
A=1 A=N+1

where A = A(4,j) = (j — 1) x N +i. We may write
ITk], ex[k] and O(Ty)[k] instead of I(py), ex(px) and
O(T>)(pk), respectively, for simplification.

3 Optimization Problem and Solution

Equation (5) can be written in matrix notation as
Te =1 where T is

alt] o ex[t]  O(Twan)1] O(Tars)[1]
af2] - enl2] O(Twa)2] O(Tarx)[2]
(@[N] - en[N] O(Twa)[N] - O(Taw)[N]

! The expression |z| denotes the greatest integer less than or
equal to z.

2Note that ei1(p;) = ei(p;j) = &ij, where §;; = 1 fori = j
and &;; = 0 otherwise.
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Figure 1: The pixel correspondences between I and
Ty = T;; = Ai(1;). We see that pixel ¢; is positioned
on p; and ¢, on pg, respectively.

and 1= (I[1],I[2],..., I[N])".

Note that if the prototype library forms a basis (lin-
early independent), then M = 1, and there is no free-
dom in choosing the coefﬁc1ents (ea); the coefficients
are uniquely determined by the constraint. If there
are linear dependencies in the prototype library, then
M > 1, the prototype library over-spans, and the set of
all solutions {cy) to the constraint forms an (M —1) N
dimensional affine subspace in the M.N-dimensional
coefficient space. Let S denote this solution space,
i.e.,, dim(S) = (M — 1) N . Using the above matrix no-
tations, our optimization problem can be formulated
as:

c= (cl,cz,...,cMN)t

MmF M1nZw>\|c>\|p subject to Te =1
NXM.N M.N N (6)
where T € RV ¢ e RN TeRY, M > 1. The

constraint space, S, is the set of all ¢ satisfying Te =
I, and is an affine subspace of dimension (M — 1) N.
We will first study the LP-cost function in (6). Tt is
natural when analyzing F, in (6) as a function in the
coefficient space {c)) to decompose the domain into
octants, where each coefficient is of constant sign. This
allows the removal of the absolute values in (6), so we
may treat I}, as a smooth function inside each octant.
For example, if we consider the restriction of F, to
the octant consisting of all points ¢ such that ¢; < 0,
c2 < 0, and ¢y > 0 for A > 3, then the cost function in
(6) becomes

MN
Fp(c) = wi(=c1)P +wa(—es) + > wnch .
A=3

Moreover, it is clear that F,(c) — oo as ||c|| = oo,
so for minimization purposes it suffices to consider
bounded ¢. The bound will depend upon the con-
straint equation (2), but, for example, if cg is any
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Figure 2: Nllustration of a domain restriction polytope
obtained from the intersection of a 2 dimensional con-
straint space S with a rectangular solid bound domain
D in a 3 dimensional coefficient space. In this example
the intersection is a non-regular pentagon. If the re-
stricted objective function [ is concave, then its local
minima occur at the vertices of the pentagon.

solution to (2), then it suffices to consider only those
¢ satisfying |ex] < (Fp(co)/wx)l/p for all A. Recall
that each wy 1s a positive scalar and can be computed
in advance. When combined with the restriction to
octants, we have a decomposition of the pertinent do-
main of F}, into M.N-dimensional cubes of edge length

(Fy(co)fun) 7"

The intersection of the constraint space S with these
domain cubes gives rise to convex polytopes, as illus-
trated in Figure 2. The system of domain restrictions
can be written out explicitly. For the first (positive)
octant they are

Te =1
Cx S d>\, IS/\SMN (7)
—cx < 0; 1§A§MNa (8)

where previously we considered the case that each dj
is at least as large as (Fp(co)/wx)l/p.

The relation ¢; = (1,0,...,0)" - ¢ < dy describes a
half-space in the space (c), and the entire collection (7)
and (8) together describe the intersection of 2M N half-
spaces, 1.e., a polytope with at most 2M N faces. The
general inequality defining a half-space is v - ¢ < dj,
where v is a vector normal to the bounding hyper-
plane, and dy determines an offset from the origin. So
an arbitrary convex polytope having N’ faces can be
described in the form Be < d, where B € ]RNIXM'N,
de }RNI, and the inequality is interpreted coordinate-
wise. So the generalized constraint relations can be

written:
Te

Be

I
4 (9)

IA I

The relations (9) can be viewed as defining a poly-
tope inside the affine space S. If we were to perform a
basis transformation to obtain coordinates conducive
to representations inside S, then F, under the same
transformation would loose its simple form. Even
without this consideration, it is useful to study more
general objective functions. The specific property of
I, of interest to us is concavity. A function F' map-
ping from a convex domain €2 of a vector space X to
IR is concave if

Flaz+ (1 —a)y) > aF () + (1 — a)F(y)

for all # and y in © and « € [0,1]. The result we
desire (Proposition 1) actually requires only a weaker
property, which we call pseudo-concave. A function
F:Q — R as above is pseudo-concave if

Floax 4+ (1 —a)y) =2 Min{F(z), F(y)}

for all # and y in € and « € [0, 1]. Clearly any concave
function is also pseudo-concave.

Proposition 1 Let © be a closed, bounded, convex
polytope in a vector space X, and let F' : Q — R be
pseudo-concave. Then the global mintmum of F' on Q
occurs at a vertex of Q.

4 Multiple Templates and Matching
Pursuit

Let us assume that the residue at the initial stage
is the input image, i.e., R°I = I. Then, at stage n, if
a transformed template Ty, (= T, ;, = A, (75, )) and
coefficient ¢y, are chosen, the n-th residual image can
be updated by “projecting” the R"~'I in the direction
of Ty .. More precisely,

RMITk] = R*Y k] — e, Th, [K](1 — O[K]),  (10)

where k = 1..N and A, = (j, — 1) X N +i,. Note
that T, is only of dimension Np and we have assumed
that T [k] = 0if k ¢ T;, as defined in (4).

Let T' be the index set of matched pixels (those cov-
ered by the selected transformed templates in the pro-
cess of LY matching pursuit). Clearly, I' = § initially
and is updated, say at stage n, as I' «~ T'UT; . Sup-
pose that LP matching pursuit is completed in m stages
and Ty, is the best selected template with an associ-
ated index set I'; at stage n, 1 < n < m. Then, we



and

have [ =J,_, T

in

I(2) = ilcan(TAn)(x) + 3 el (1)

NgE

O ) (@) + 3 exex(w) + 3 I[Ker(w),

1 keTl kgr

n

where > ¢y, O(Ty,) is the main decomposition,
and ZkeF creg 18 the residual decomposition. The de-
composition cost F, for (11) is

Yo wnilen P+ D7 wilexl” + 37 wklI[K]|P =
n=1 ker kgD

iwxnlcxnlu > (wrlrel” = IRy 4+ 32 [1[K]112)

n=1 kel ke{l..N}

The weights related to selection of canonical template
are defined as wy = 1 if k ¢ T or wg = wxr, ifk € T
and T}, is the toppest one covering pi. For every possible
decomposition of I, the set I in (11) could be different but
the last term in (12) is common for all decompositions.

The cost Fj, in (6) and (12) are total cost. We need
to formulate a stage-wise cost function, denoted as F, for
the pursuit. Note that F, is a function of one ¢ ( a scalar)
and we have also approximated the computation of Fj, to
exclude the overlap region and only after a best matching
is decided we resolve overlapping ambiguities if there are
any. Intuitively, one may define Fj for selecting T, with
coefficient ¢y, , at stage n, as

Waalexa P+ D (wa, |ral” = [IIK]P)(1 = O[], (13)
ker;,

where ri, = |[R™ ' I[k]—cx, Th, [K]| is the residue at py. Our
experiments show that the cost (13) may prefer to match
white regions (0 is black, 255 is white). In stead, we define
Fplex,) as

L wx, + Z ("“'>m|rk|p - |][k]|p) (1 _ O[k]) 7

P
Ban el lex, |

(14)

where 3, is the number of pixels covered by T, with
O[k] =0 and wx, = 1/|Varicmce(7']n)|§. Our experiment
results show by adapting (14) as the stage-wise cost func-
tion, the pursuit can avoid “over-utilization” of templates
on dark or white regions, since it is possible for a template
to match very well in a darker region due to a small value
of |ca, |- The weight wx, give the benefits of choosing a
template with more variation (large variance) over a plain
one.

5 Matching Pursuit Experiments

Synthetically Randomized Images : Let’s begin
with a simple but instructive experiment to test our tem-
plate matching algorithm for a synthetic example. In this

Figure 3: (a), (b), (c) are synthetic template type 1,
type 2 and type 3, respectively. (d) Test image I; with
noise added and occlusion. (e) Result of the decom-
position for the L? with p = 0.25. (f) Results once the
breakdown limits are reached, and occluded objects
are not recognized when p > 0.75.

experiment, the template library £ consists of three differ-
ent types (or shapes) of templates ((a), (b), (c) in Figure
3). There are 40 templates for each type so that £ includes
120 non-canonical templates and one canonical template
€1. Each of the non-canonical template is a synthetically
randomized image with gray-level values between (0, 200)
generating from a random number generator. To construct
a test image I; (as in Figure 3-(d)), we first select one non-
canonical template randomly from each template type in £
to form the base (exact) image then add noise and an oc-
cluded square derived from uniform distribution in (0, 10)
and (245, 255), respectively. The threshold values used in
simulation vary with respect to the value of p for L¥ match-
ing pursuit. Our results suggest for p € (0.25,0.75), the
L? pursuit is rather robust. But, as shown in Figure 3-(f)
R,, it failed to recognize the occluded object for p > 0.75.

Face Recognition : A small library of face templates
has been established (see Figure 4 (a)-(j)). The dimension
of all 10 face templates is 64 x 64. Numerous experiments
have been carried out to test our algorithm. To illustrate,
consider the two real images, I; and Iz, in Figure 5 (a)-
(b). We obtained decomposition results R; and R shown
in Figure 5, for p = 0.25. (Similar results are derived
for p = 0.50, 0.75.) When p = 2, it is indeed the L?
matching pursuit method and the recognition results are
Rs; and R4. Our proposed LP matching pursuit has the
robustness advantage over the L? one.
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