# Nonroad Modeling



EPA National Nonroad Emissions Inventory Model (NONROAD)

> Workshop June 25, 1998 Chicago

# Today's Topic

#### • EPA NONROAD Emissions Model

- » SIP Tool Principal Focus
- » EPA Regulatory Development
- » EPA Strategic Planning

# **Today's Focus**

- Ensure User Needs Met
- Explain Draft Nonroad Model
- Feedback
  - » Model features, function, and inputs

# Agenda

- Part I
  - » Introduction
  - » Model Overview
  - » Development Schedule
  - » Draft NONROAD Release
  - » Stakeholder/EPA Communications

# Agenda (con't)

- Part II
  - » Model Description
  - » Preliminary Results
  - » Specific Default Inputs
  - » Computational Sequence and Methodology
  - » Open Discussion/Audience Presentations
  - » Commercial Marine

# Agenda (con't)

- Part III
  - » Workshop Summary
  - » Next Steps
  - » Ajourn Workshop
  - » Hands-On Demonstration

### Introductions NONROAD Team

- EPA's Office of Mobile Sources
  - » Assessment and Modeling Divison
    - Gary Dolce
    - Craig Harvey
    - Greg Janssen
    - Chris Lindhjem
    - Mike Sklar
    - Rich Wilcox

# Introductions NONROAD Contract Support

- ENVIRON International Corporation
  - » Gary Wilson
  - » Alison Pollack
- Dyntel

# Model Overview (cont'd)

- Stand Alone (No User Data Necessary)
- All Nonroad Sources (except locomotives and aircraft)
- Differentiated by Equipment Type and Other Characteristics
- HC, CO, NO<sub>x</sub>, PM, SO<sub>x</sub>, CO<sub>2</sub>

# Model Overview (cont'd)

- Past, Present and Future Year Inventories
- Temporal Allocation
- Geographic Allocation

### **Development Schedule**

#### <u>Milestone</u>

- » Draft Release
- » Workshop
- » Close Comments
- » Draft Final Release\*
- » Close Comments
- » Final Release
  - \* w/ Draft Com. Marine

- Date
  - » June 18
  - » June 25
  - » August 18
  - » November
  - » December
  - » February '99

# Draft NONROAD Release

- Availability
- Contents
- » Web Site
- » CD ROM
- » Source Code

» Installation Program

- » User's Guide
- » Tech Support Documents
- » Read.me Document
- » Release Notes

# Stakeholder/EPA Communications

- Electronic Information Sources
  - » Listserver
    - subscriber instructions on nonroad web page
  - » Web Site: http://www.epa.gov/omswww/nonrdmdl.htm
  - » Email: nonroad@epa.gov
- Personal Assistance
  - » EPA Contact Person

# **Equipment Types**

- Airport service
- Agricultural
- Commercial
- Construction
- Industrial
- Lawn & garden
- Logging

- Railroad (not locomotives)
- Recreational equip.
- Recreational marine

(more than 80 basic and 260 specific categories)

# **Pollutants Reported**

- HC (THC, TOG, NMOG, NMHC, VOC)
- Non-exhaust HC by Mode (diurnal, refueling, crankcase)
- HC not reported: (hot soak, running loss, resting loss)

- NO<sub>x</sub>
- CO
- CO<sub>2</sub>
- SO<sub>x</sub>
- PM (PM<sub>tot</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>)
- Fuel Consumption

# Geographic Coverage

- US Total
- 50-State
- State
- County
- Option to add sub-county data for nonattainment area analysis.

# **Temporal Coverage**

- Estimates of past, present and future year emissions
- Annual, seasonal, monthly, or daily emissions.
- Daily emissions distinguished by season and weekday/weekend.

# **Model Structure**

- Graphical User Interface (Visual Basic)
  » Scenario definition
- Core Model (Fortran)
  » Calculations
- Reporting Utility (Microsoft Access)
  - » Output content selection

# Hardware/Software

- Minimum: 486 with 16MB RAM (core model will run separately with 8MB)
- DOS, Win 3.1 or Win 95
- MS ACCESS not required

# **Input Options**

- User Selected:
  - » Year
  - » Temporal Period
  - » Geographic Area
  - » Equipment Types
- » Fuel Characteristics
- » (altitude unused)

# **Default Input Data**

- User Change OK if <u>Better Data</u>
- » Equipment Population (\*.pop)
- » Growth Rate (\*.grw)
- » Geographic Allocation (\*.alo)
- » Temporal Allocation (season.dat)
- » Emission Factors (\*.emf)

User Change Not <u>Recommended</u>

- » Useful Life & Scrappage (\*.pop)
- » Load Factors & Usage (activity.dat)
- » Emission Deterioration Factors (\*.det)

# **Output Options**

- ASCII File
- Pre-formatted ACCESS Reports
  » Access not required
- ACCESS database
- Excel Spreadsheet

# **Report Options**

- By County
- By Source Category
- By Equipment type/code
- By Horsepower

# **Know Limitations**

- Error Checking via Interface
- State and County Populations
  - » Certain categories only
- Seasonal or Daily U.S. Totals
- Refueling Method
- Aircraft Ground Equipment Method

# **Inventory News**

- Nat'l Nonroad Inventories Changing
  - » NONROAD vs. NEVES
    - -VOC +25%
    - NOx +25%
    - PM Down -5%

# **Inventory News**

#### • Why?

- » VOC and NOx -- Updated database has more equipment and new equipment categories added.
- » PM -- Same as above, but lower EFs.

# **Engine Population Estimates**

- Recently revised Technical Report available on EPA Web Page (NR-006A)
- Changes in current Report
  - » Request for comment on Mobile vs. Stationary engines
  - » Modification of Residential/Commercial Lawn & Garden split
  - » Modification of small engine classification scheme

### Engine Population Estimates Population Breakdown

- Engine populations rather than equipment populations (based on emissions regs)
- Engine populations are divided into:
  - » Market segments (e.g., Agricultural, Construction, Lawn & Garden, etc.)
  - » Applications (e.g. lawn mowers, leaf blowers, shredders, etc.)
  - » 5 Fuel types: Diesel, Gasoline 2-stroke, Gasoline 4-Stroke, CNG, LPG
  - » 19 Power levels (e.g., 0-1 hp, 1-3 hp, 3-6 hp, etc.)

#### Engine Population Estimates Source Classification Codes (SCC)

- Each combination of application and fuel type has a unique SCC
- For most applications:
  - » First 4 digits specify fuel type (2260xxxxx = 2stroke gasoline)
  - » Next 3 digits specify market segment (2260004xxx = 2-stroke gasoline lawn & garden)
  - » Last 3 digits specify application (226004010 = residential lawn mowers)
- Marine, rail, and aircraft are exceptions

#### Engine Population Estimates PSR Database

- Base year (1996) engine populations come from estimates made by Power Systems Research (PSR)
  - » PSR population estimates are based on manufacturer sales surveys, experimentally determined engine life, and surveys of engine usage
  - » PSR application codes were matched to SCCs

#### Engine Population Estimates Changes from NEVES Inventories

- Majority of changes in population between NEVES and NONROAD are the result of:
  - » Updating inventory from 1989 to 1996
  - » Adding several equipment classes no included in NEVES

- An engine that moves from one place in a 12 month period is defined as a mobile source
  - This distinction is not immediately obvious (e.g., pallet mounted engines appear to be stationary but are moved)
  - » Mobile/stationary allocation taken from Booz, Allen, and Hamilton report to California ARB

#### Engine Population Estimates Mobile vs. Stationary Nonroad

- These fractions are applied to PSR populations for generator sets, pumps, compressors and welders.
- Should they also be applied to general industrial engines, hydro power units and irrigation sets?

| Power Range (Hp) | Percent Mobile<br>Equipment |  |  |
|------------------|-----------------------------|--|--|
| 0 to 25          | 90                          |  |  |
| 25 to 40         | 90                          |  |  |
| 40 to 100        | 70                          |  |  |
| 100 to 175       | 20                          |  |  |
| 175 to 300       | 15                          |  |  |
| 300 to 500       | 10                          |  |  |
| 500+             | 0                           |  |  |

#### Engine Population Estimates Commercial vs. Residential Lawn & Garden

- Many lawn and garden applications are operated by both commercial and residential users
  - » Usage patterns are significantly different
    - Commercial has higher use in hr./year, shorter average life in years, different hr./weekday vs. weekend compared to residential
  - » PSR populations don't distinguish between the two

#### Engine Population Estimates Commercial vs. Residential Lawn & Garden

- Commercial/residential sales fractions by application were derived by California ARB
- Calculation of population fraction from sales fraction:
  - Commercial Population Fraction = (Commercial Sales Fraction \* Commercial Average Life in Years) / (Commercial Sales Fraction \* Commercial Average Life + Residential Sales Fraction \* Residential Average Life)

#### Engine Population Estimates Commercial vs. Residential Lawn & Garden

| Application       | Resi  | dential    | Commercial |            |  |  |
|-------------------|-------|------------|------------|------------|--|--|
|                   | Sales | Population | Sales      | Population |  |  |
| Lawn mowers       | 90.0% | 96.3%      | 10.0%      | 3.7%       |  |  |
| Trimmers/edgers/  |       |            |            |            |  |  |
| cutters           | 81.9% | 89.4%      | 18.2%      | 10.6%      |  |  |
| Chainsaws         | 75.0% | 93.5%      | 25.0%      | 6.5%       |  |  |
| Leaf blowers/     |       |            |            |            |  |  |
| vacuums           | 86.9% | 92.5%      | 13.1%      | 7.5%       |  |  |
| Tillers <6 hp     | 82.0% | 85.7%      | 18.0%      | 14.3%      |  |  |
| Snowblowers       | 90.0% | 90.0%      | 10.0%      | 10.0%      |  |  |
| Commercial turf   |       |            |            |            |  |  |
| equipment         | 0.0%  | 0.0%       | 100.0%     | 100.0%     |  |  |
| Rear engine rider | 95.0% | 97.4%      | 5.0%       | 2.6%       |  |  |
| Lawn and garden   |       |            |            |            |  |  |
| tractors          | 95.0% | 97.4%      | 5.0%       | 2.6%       |  |  |
|                   |       |            |            |            |  |  |
| Other lawn and    |       |            |            |            |  |  |
| garden equipment  | 25.0% | 45.7%      | 75.0%      | 54.3%      |  |  |
| Front Mowers,     |       |            |            |            |  |  |
| Chippers/stump    |       |            |            |            |  |  |
| grinders,         |       |            |            |            |  |  |
| commercial turf,  |       |            |            |            |  |  |
| all other         |       |            |            |            |  |  |
| equipment         | 0.0%  | 0.0%       | 100.0%     | 100.0%     |  |  |

### Engine Population Estimates Small SI Lumping

- Proposed regs for small spark-ignition (SI) engines (<25hp) define engines based on use and displacement while NONROAD classifies by application and power level
- Proposed regs will likely result in shift from 2stroke to 4-stroke engines
- NONROAD methodology cannot currently accommodate that shift if 2- and 4-stroke engines are in different SCCs

#### Engine Population Estimates Small SI Lumping (Cont'd)

#### • Solution:

- » All SI engines <25HP (2- and 4-stroke, CNG, and LPG) for a single application were lumped
- » Distinctions between different types of engines for sales fraction and emission rates are maintained by using technology groups

#### Engine Population Estimates Recreational Marine

- In Rec Marine Rulemaking, EPA determined that populations derived from sales data supplied directly by the manufacturers was more accurate than PSR for SI rec marine engines.
  - » NONROAD uses these rulemaking populations
- Same problem as for small SI engines:
  - » Because of inconsistencies between NONROAD and rec marine regs, engines are lumped into a single group with separate tech types

### Engine Population Estimates Summary of Remaining Issues

- Should mobile/stationary fractions also be applied to general industrial engines, hydro power units, and irrigation sets?
- Mistake in Airport Support Equipment populations
  - Conflicting information as to whether PSR application "Terminal Tractors" falls into the Airport Support Equipment category
  - » Currently they are not included in that category, but at least some of the population should be

#### **Growth Factors**

- Technical Report available on EPA Web Page (NR-008)
- Approach described in Technical Report and used in Draft NONROAD is a new one
  - » Comments with suggestions for improvement are encouraged

- Use Bureau of Economic Analysis growth forecasts for major sectors of the economy
- Match those sectors to the nonroad equipment that would be used in each sector

#### Growth Factors Economic Indicators - Limitations

- BEA may tend to under-predict growth
  - » Total growth, 1990-1996
    - -BEA projected: 9.3%
    - PSR growth in nonroad population: 18.1%
- BEA can't be used to project market shifts
  - » Shift from gasoline to diesel engines
  - » Shift from lower to higher hp
  - » Increased mechanization

#### Growth Factors Option 2: Historical Population Growth

- Project future growth by extrapolating from historical growth in nonroad equipment populations
- Population growth estimated from Power Systems Research (PSR) PartsLink database
  - » Includes historical engine population estimates for 1989-1996
  - » Allows for segregation by market sector, application type, fuel type, and horsepower
- Provides a more direct measure of change than economic forecasts

#### Growth Factors Historical Population Growth - Limitations

- PSR database may contain errors
  - » Errors have bigger impact as one goes to finer grained breakdown of population
  - » Can limit impact by not going to extremely fine detail
- 1989-1996 may not be representative
  - » Includes periods of low and high economic growth

#### Growth Factors Historical Population Growth - Limitations

- 7 years of historical projections is not a long enough period of time on which to base 20-30 year projections
  - » Could modify method to use historical growth for near-term and BEA for long-term or cap long-term growth in some other way

#### Growth Factors Projected Annual Growth Rate Comparison

|                 |       | PSR   |        |          |       |       |  |
|-----------------|-------|-------|--------|----------|-------|-------|--|
| Market          |       |       |        |          |       |       |  |
| Segment         | BEA   | Total | Diesel | Gasoline | LPG   | CNG   |  |
| Airport Service | 5.5%  | 8.2%  | 9.4%   | 1.4%     |       |       |  |
| Construction    | 1.0%  | 2.6%  | 3.6%   | 0.3%     |       |       |  |
| Farm            | 2.4%  | 2.8%  | 3.2%   | 2.0%     |       | -7.7% |  |
| Industrial      | 1.9%  | 3.1%  | 4.4%   | -3.5%    | 4.1%  |       |  |
| Lawn & Garden   | 1.0%  | 2.7%  | 9.6%   | 2.6%     |       |       |  |
| Light           |       |       |        |          |       |       |  |
| Commercial      | 1.9%  | 4.9%  | 5.5%   | 4.7%     | 14.2% | 5.1%  |  |
| Logging         | 7.4%  | 5.2%  | -0.8%  | 5.9%     |       |       |  |
| Railway         | -0.9% | 2.7%  | 5.1%   | 1.3%     |       |       |  |
| Recreational    | 1.0%  | 0.9%  | 3.9%   | 0.9%     |       |       |  |

- Problem with fuel-specific growth rates
  - » Fuel-specific growth rates must be capped by the overall market segment growth rate
  - » For Draft NONROAD, we have scaled the fuel specific populations to the total market segment population to avoid this problem
  - » In the future, we might want a single market segment growth rate with a separate input to project % market share

#### Growth Factors Market Shifts - Scaled Results

|                 | PCP   |        |        |          |          |       |        |       |        |
|-----------------|-------|--------|--------|----------|----------|-------|--------|-------|--------|
| Market          |       |        | Scaled |          | Scaled   |       | Scaled |       | Scaled |
| Segment         | Total | Diesel | Diesel | Gasoline | Gasoline | LPG   | LPG    | CNG   | CNG    |
| Airport Service | 8.2%  | 9.4%   | 8.3%   | 1.4%     | 0.8%     |       |        |       |        |
| Construction    | 2.6%  | 3.6%   | 3.3%   | 0.3%     | 0.0%     |       |        |       |        |
| Farm            | 2.8%  | 3.2%   | 3.1%   | 2.0%     | 1.9%     |       |        | -7.7% | -8.1%  |
| Industrial      | 3.1%  | 4.4%   | 3.6%   | -3.5%    | -4.3%    | 4.1%  | 3.3%   |       |        |
|                 |       |        |        |          |          |       |        |       |        |
| Lawn & Garden   | 2.7%  | 9.6%   | 9.1%   | 2.6%     | 2.5%     |       |        |       |        |
| Light           |       |        |        |          |          |       |        |       |        |
| Commercial      | 4.9%  | 5.5%   | 5.3%   | 4.7%     | 4.6%     | 14.2% | 13.2%  | 5.1%  | 5.0%   |
| Logging         | 5.2%  | -0.8%  | -1.2%  | 5.9%     | 5.4%     |       |        |       |        |
| Railway         | 2.7%  | 5.1%   | 4.5%   | 1.3%     | 0.8%     |       |        |       |        |
| Recreational    | 0.9%  | 3.9%   | 3.8%   | 0.9%     | 0.8%     |       |        |       |        |

- Draft NONROAD only contains national growth factors
- We have state by state historical populations from PSR, but haven't analyzed them yet
- We plan to include the state growth factors in the final NONROAD
- States that have their own estimates of state or local growth could substitute them subject to EPA SIP Guidance

#### Growth Factors Summary of Remaining Issues

- Should we do something to cap growth rates in the long term? Proposals?
- How fine should we cut the database?
  - » Currently only market segment and fuel
  - » Plan to segment the database by state
  - » Should we include horsepower or applications?

- Should we switch to a % market share approach or stick with scaled growth factors?
  - » Change may not be feasible for Final NONROAD
- Growth rate for Airport Service equipment will change
  - » Incorrect populations taken from PSR database
  - » Other sources of information may be better for this category
    - FAA projections of take-offs and landings?

# Age Distribution & Scrappage

Chris Lindhjem NONROAD NR-007

# Scrappage Function

#### Based on a normal distribution



2 NONROAD 6/25/98

# Scrappage in NONROAD

- Included in the Growth File (nation.grw)
- Alternate Scrappage functions can be used
- Will affect fleet turnover and phase-in rates of new engine emission standards
- Currently not using a use-by-age function, so the scrappage distribution estimates both age and use-by-age 3 together 3 NONROAD 6/25/98

# Initial Year (1996) Age Distribution



# Age Distribution Calculations

- Future year sales is calculated by adding one year of scrappage and the growth in the overall population (inlcuding some scrappage in the first year)
  - Previous year's engines are scrapped by one additional year
  - -Next year's sales is the sum of that year's scrapped engines plus that needed to bring the engine population 625/98

# Growth Methodology (sample)



#### **Sales Perturbation**

- In the previous example 3% population growth results in 10% sales growth
- Initial year age distribution is responsible for this

NONROAD 6/25/98

### Effect on Age Distribution



### **MOBILE** Comparison

- Age distributions predetermined (using a similar methodology)
- Sales growth estimates fixed for the purpose of age distribution
- Travel fractions include both age distribution and use-by-age function

NONROAD 6/25/98

8

# Median Life Estimations

Chris Lindhjem NONROAD Report NR-005A

# Definition

- Median Life; 50% of new engines scrapped
- NONROAD input; Hours at Full Load
- Calculation Median Lifetime (years) = <u>Median Life (hrs)</u> <u>Activity (hrs/yr) \* Load Factor</u>

# Use of Median Life



# **Information Source**

- Energy and Environmental Analysis Inc. analysis of the Power Systems Inc. database for the Air Resources Board of California
- Lawn & Garden Estimation from EPA\Manufacturers Regulatory Negotiation Committee work - generally lower than EEA estimates
- The median life is found in the \*.pop files



# Activity and Load Factors

Chris Lindhjem NONROAD Report NR-005A

### General

- Emissions = (Population \* Power \* Load Factor \* Activity \* Emission Factor)
- Load Factor Average Fraction of Available Power
- Activity Engine Hours Use per Year

- Power Systems Research Conducts User Surveys to Estimate Load and Hours Use (PSR estimates used for most applications)
- Other Survey Information for Lawn & Garden and Spark-Ignition Recreation Marine

3 NONROAD 6/25/98

### How to Determine

- Hours is determined by use of meters on engines (often called Hobbs meters); analogous to an odometer
- Load Factor is determined from the Hours and Fuel Consumption

4 NONROAD 6/25/98

# Load Factor Estimations

- Load Factor = EP/(FC/(BSFC \* Hours Used))
  - » EP Engine Power
  - » FC Fuel Consumption (actual)
  - » BSFC Brake Specific Fuel Consumption (lb/hp-hr or g/kW-hr); derived from test data
  - » Hours Used Engine On and Fuel Consumption Information

NONROAD 6/25/98

#### **Collecting New Data**

- Important to collect data from professionally designed surveys (apocryphal information abounds)
- Determine engine related parameters (such as power level and age of engine) in addition to hours of use and fuel consumption

6 NONROAD 6/25/98
# **Emission Factors**

Chris Lindhjem Reports NR-009A & NR-010A plus deterioration

> 1 NONROAD 6/25/98

### **Emission Factor**

- Emission Factors are zero hour (new engine)
- Deterioration applied for in-use engines
- Emission Factors; gram/hp-hr or g/gallon or g/gallon
- Draft release only uses g/hp-hr factors



# **CI Emission Factors**

Chris Lindhjem NR-009A

# **CI Emission Factors**

- Pre-1988 model years from NEVES emission rates
- >1988 Precontrolled engine emissions from new (1998) EPA\SwRI study
- New engine standards are included (rulemaking not yet finalized)
- Adjustment from steady-state certification test results to in-use emission rates

# **Emission Factors in NONROAD**

- Pre-Calculation Method
  - » EF = Steady-state EF \* Adjustment for In-Use
  - » EF<sub>(THC for Backhoes)</sub> = 0.68 (g/hp-hr) \* 2.19
- Emission factors calculated outside of the model and included in the data files
- Emission factors are included in \*.emf files and new standards are phased-in through technical types in the tech dat

#### Pre1988; NEVES Factors

- Older Equipment (Early 1980's and older engines)
- NEVES adjusted steady emission rates with the use of highway certification test cycle
- Recast emission factors with new in-use adjustments
- Sparse data delineated by equipment type



# >1988 Precontrolled Engines

- New and more test data than NEVES
- Emission factors generally lower (highway diesel engine technology improvements transferred to nonroad engines)
- >100 hp and <100 hp engines treated separately due to emission results (different engine technology; fuel injection systems)

### New Standards

- Includes Tier I, II, and III emission standards
- \*Tier II and III rulemaking is not finalized so may change from draft version of NONROAD\*

#### Adjustment for In-Use Activity

- Test data on three representative in-use test cycles (backhoe\loader; crawler dozer; and agricultural tractor)
- Transient nature and average load of cycles
- Mapping of the three test cycle adjustments or no adjustment to equipment applications (given in the Report)

#### Adjustment (cont.)

| Table C1 NEVES Test                  | Cycle Adjustm  | ent from ISO   | -C1 Emission   | Factors         |              |
|--------------------------------------|----------------|----------------|----------------|-----------------|--------------|
|                                      | HC             | CO             |                | NOx             | PM           |
| NEVES<br>Adjustment                  | 1.4            | 2.0            |                | 1               | 1.6          |
| Table C2 In-use Adjust<br>Emissions) | ment Factor (R | atio of Applic | ation Test Cyc | ele to Steady-S | state ISO-C1 |
| Test Cycle                           | HC             | CO             | NOx            | PM              | BSFC         |
| Agricultural Tractor                 | 0.89           | 0.42           | 0.99           | 0.64            | 0.98         |
| Backhoe\Loader                       | 2.19           | 2.31           | 1.03           | 2.04            | 1.18         |
| Crawler Dozer                        | 0.93           | 1.27           | 0.99           | 1.21            | 0.98         |
|                                      |                |                |                |                 | 10           |

#### New Standards Phase-In

- New emission factors are phased-in through the use of a tech type description
- New technology or new mix of technologies by model year

11 NONROAD 6/25/98

# Tech. Types (example)

Tech types use for standards phase-in for Base (pre-1988), T0 (>1988), T1 (Tier 1 Standards), T2 (Tier 2), T3 (Tier3)

| Model<br>Year | SCC Low & High Hp Technical Types |     |     |      |    |      |      |      |
|---------------|-----------------------------------|-----|-----|------|----|------|------|------|
|               | 2270005000                        | 175 | 300 | Base | T0 | T1   | T2   | T3   |
| 1900          |                                   |     |     | 1    | 0  | 0    | 0    | C    |
| 1988          |                                   |     |     | 0    | 1  | 0    | 0    | C    |
| 1996          |                                   |     |     | 0    | 0  | 1    | 0    | C    |
| 2003          |                                   |     |     | 0    | 0  | 0.3  | 0.7  | C    |
| 2004          |                                   |     |     | 0    | 0  | 0.15 | 0.85 | C    |
| 2006          |                                   |     |     | 0    | 0  | 0.15 | 0    | 0.85 |
| 2011          |                                   |     |     | 0    | 0  | 0    | 0    | 1    |
|               |                                   |     |     | •    |    |      |      | 12   |

### Fuel Sulfur PM Adjustment

- Diesel PM is a combination of unburnt fuel, engine oil, carbon core, and hydrated sulfate
- Fuel sulfur adjustments affects only the sulfate related PM, not total PM

13 NONROAD 6/25/98

# Fuel Sulfur PM Adjustment

#### PM sulfur adjustment for PM

PM = PMBase - BSFC \* A \* (0.0033 - Fuel Sulfur)

where

 $PMBase = PM \ emissions \ with \ default \ fuel, \ in \ g/hp-hr$   $PM = PM \ emissions \ with \ test \ fuel, \ in \ g/hp-hr$   $BSFC = Brake \ Specific \ Fuel \ Consumption \ in \ g/hp-hr$   $A = 0.157 \ g \ PM/hp-hr/Weight \ Fraction \ sulfur/BSFC$   $0.0033 = \ the \ default \ weight \ fraction \ of \ fuel \ sulfur \ for \ nonroad \ diesel$   $Fuel \ Sulfur = Weight \ Fraction \ of \ sulfur \ in \ test \ fuel$ 

14 NONROAD 6/25/98

7/8/ 98

# **SI Emission Factors**

Chris Lindhjem NR-010A

# **General Emission Factors**

- NEVES baseline for >25 hp SI engines
- Engines unique because of rulemakings
  - » <25 hp general-use engines (except recreational vehicles and underground mining)
  - » Recreational SI marine
- LPG and CNG engines
- 7ero-hour (new) engine emission NONROAD 6/25/98



16

# >25 hp SI Engines

#### • NEVES

- » construction
- » agricultural
- » all other applications use NEVES industrial

17 NONROAD 6/25/98

### Recreational, LPG, and CNG

- Recreational (motorcycles, all-terrain vehicle, snowmobiles, and other specialty)
  - » Use new data on snowmobile engines
- LPG & CNG
  - » Two types; industrial and all other applications
  - » Emission rates used for <25 hp engines 18 also



# <25 SI Emission Factors

- Engines considered under a rulemaking
- 5 engine classifications (Class I-V)
  - » Class I and II; nonhandheld small and large
  - » Class III-V; handheld small to large
  - » Class definition described in Report NR-006A
- Rule definition is by use and engine size -NONROAD defines by use and engine power



# **Small Engine Rulemaking**

- Averaging Standard (some low emitters and some high; averaging lower overall)
- Rulemaking results in lower THC emissions due to lower emission factors for new model years and a shift in technology type from 2-stroke to 4stroke



# **Recreational SI Marine**

- Averaging standard also
- Outboard (2-stroke) & Personal Watercraft (2-stroke) are the focus of rulemaking
- Inboard (4-stroke) is assumed not to change

21 NONROAD 6/25/98

# Outboards

- Generally two types currently (2 and 4stroke)
- New engine standards are expected to result in more 4-stroke engines and lower emitting 2-stroke engines
- Emission rates vary by engine power

- Generic name instead of JetSki® brand name
- A move from 2-stroke to 4-stroke is expected here as well



# Tech. Type Phase-In (example)

• M2 (standard 2-stroke), M14 (lower emitting 2-stroke) M13 (current 4-stroke)

| rable 20 Estimate i hase-in of ivew i ersonar water crait Engines >50 np |       |       |       |  |  |  |
|--------------------------------------------------------------------------|-------|-------|-------|--|--|--|
| Year                                                                     | M2    | M13   | M14   |  |  |  |
| 1900                                                                     | 1.000 | 0.000 | 0.000 |  |  |  |
| 1999                                                                     | 0.177 | 0.092 | 0.731 |  |  |  |
| 2000                                                                     | 0.177 | 0.259 | 0.564 |  |  |  |
| 2001                                                                     | 0.177 | 0.533 | 0.291 |  |  |  |
| 2002                                                                     | 0.177 | 0.823 | 0.000 |  |  |  |
| 2004                                                                     | 0.038 | 0.962 | 0.000 |  |  |  |
|                                                                          |       |       |       |  |  |  |

Table 20 Estimate Phase-in of New Personal Water Craft Engines >50 hp

# Deterioration

Chris Lindhjem\Greg Janssen Report Due Soon

# Summary

- Deterioration Report Imminent
- Application
  - » Emission Rate = Emission Factor (zero hour) \* Deterioration
    - Deterioration = 1 + A (age) <sup>b</sup>
      - A, b constants
      - Age = Cumulative hours \* Load Factor / Median Life
    - Deterioration caps allowed and used
- Input in NONROAD in \*.det files

### **Deterioration Values**

- < 25 hp SI engine emissions deterioration taken from EPA rulemaking
  - » 2-stroke linear deterioration = 1 + A \* Age
  - » 4-stroke deterioration =  $1 + A^* (Age)^{0.5}$
  - » All deterioration capped at 1 median life
  - » Magnitude taken from Phase I rulemaking RIA
- >25 hp SI deterioration from NEVES



#### **Sample Deterioration Effect**



#### **Other Deterioration**

- Draft version of NONROAD has no deterioration for diesel for any pollutant
- Initial testing indicates concern
  - » 4 of 9 engines recruited had maintenance problems with manifold leaks
    - Manifold leaks required repair to measure emissions
    - Manifold leaks will affect the turbocharger efficiency potentially raising emissions 29 NONROAD 6/25/98

### **Non-Exhaust Emissions**

#### **Modeled**

Diurnal Crankcase

Clankcase

#### Refueling

#### Not Currently Modeled

Hot Soak Running Losses Resting Losses

### Non-Exhaust Emissions: Diurnal

#### **Based on NEVES**

3.0 g/gallon/day\* ( >25hp )

#### Modified for <25hp Engines per ARB Model

1.0 g/gallon/day\* ( <25hp )

\* Grams per Day per Gallon fuel tank capacity

#### Non-Exhaust Emissions: Diurnal

# Would consider using method in EPA small engine regulatory model (NSEEM)

Gram per day values for specific applications

Data based on 72-96F tests

Ignores potentially large range of tank sizes within an application (e.g., generator sets)

### Non-Exhaust Emissions: Diurnal

- Fuel Tank Size is calculated by model based on engine application and horsepower
- See Refueling Loss presentation

### Non-Exhaust Emissions: Crankcase

Based on NEVES

Zero for 2-Stroke and Rec Marine

HC Only

Would consider CO & NOx (much smaller)

### Non-Exhaust Emissions: Crankcase

4-Stroke

<u>Diesel</u>

33.0 % of exhaust HC

2.0% of exhaust HC

- Technical Report not yet available
- All refueling calculations are based on NEVES methodology described in Appendix I of the NEVES Report
- Planned changes from Draft NONROAD to Final
  - » Draft NONROAD uses simplified method
  - » Final NONROAD will revise this

- Two components
  - » Spillage
  - » Vapor Displacement
- These are calculated separately and then combined for output

- Refueling method assumptions
  - » Container filled all lawn and garden, recreational equipment, outboards and personal watercraft
  - » Pump filled all others

- Refueling method Alternative assumptions
  - » NEVES lawn and garden, recreational, light commercial, and all equipment with tank volumes less than 6 gallons are container filled
  - » ARB all gas 2-stroke and all equipment less than 15 hp are container filled

- Spillage Assumptions
  - » All refuelings are fill-ups
  - » 17.0 g per refueling event from containers
  - » 3.6 g per refueling event from gas pump

- Spillage Calculation
  - » Container:
    - Spillage (g/gal) = 17.0 / Tank Volume
  - » Pump:
    - Spillage (g/gal.) = 3.6 / Tank Volume
  - » NONROAD uses fuel consumption to convert g/gal to total emissions in Tons

- Spillage Tank Volumes
  - » NEVES gave average tank volumes for each application
  - » Within an application, tank volumes vary by engine size
  - » Based on equipment specifications available on the World Wide Web, we developed application-specific tank volumes in gallons/hp

- Spillage Tank Volumes
  - » Analysis needs more work could still go back to NEVES approach
  - » Interim values are in ACTIVITY.DAT file
  - » In draft model, ACTIVITY.DAT is only accessed for diurnal emissions calculations
  - » SPILLAGE.EMF contains emission factors for each application based on NEVES tank volumes

- Vapor Displacement NEVES approach
  - » Disp. = -5.909 0.0949 x dT + 0.0884 x Td + 0.485 x RVP
  - » Disp. = Displacement (g/gal)
  - » dT = Temp of Tank (Ambient Temp) -Temp of Dispensed Fuel (°F)
  - » Td = Temp of Dispensed Fuel (°F)
  - » RVP = Reid Vapor Pressure of Fuel

- Vapor Displacement NEVES approach
  - » NEVES used this formula to create a look-up table for summer and winter temperatures and container and pump refueling
  - » DISPLACE.EMF contains g/gal emission factors based on summer temperatures from the NEVES look-up table and 9.0 RVP
  - » NONROAD uses fuel consumption to convert g/gal to total emissions in Tons

- Vapor Displacement Final model approach
  - » NONROAD will calculate g/gal emission factors based on the NEVES formula and temperatures and RVP entered under Scenario: Options
  - » Temp. of dispensed fuel will be calculated by the following equation (derived from the NEVES table):
    - -Td = 62 + 0.6 x (Ambient Temp. 62)

- Summary of remaining issues
  - » Container vs. pump refueling allocation
  - » Tank volumes use NEVES or collect more data for gal/hp method?
  - » Alternatives to "all refuelings are fill-ups" assumption?

- Summary of remaining issues (cont'd.)
  - » Effect of Stage II controls
    - Geographical allocation is a problem
    - Most likely solution is a Stage II switch for county runs
    - User would have to set the switch
    - Stage II effectiveness for nonroad refueling?

- Summary of remaining issues (cont'd.)
  - » Diesel emissions
    - None in Draft NONROAD
    - NEVES used 0.041 g/gal at 80 °F for displacement
    - Spillage is unknown
  - » Accounting for spillage and displacement when filling portable containers
    - Unlikely to be addressed in Final NONROAD

### **Temperature & RVP Effects**

#### **Only affects calculated Diurnal loss**

#### **Based on MOBILE5**

(Uncontrolled Diurnal Index, Wade equation)

- Start with base rate for 60-84F
- Adjust Vapor Pressure to desired Temperature & RVP

# Fuel Sulfur & Oxygen Effects Spark-Ignition

#### Oxygen Effects

Exhaust CO, NOx, and VOC

#### Sulfur Effects

Exhaust SOx and PM

# Fuel Sulfur & Oxygen Effects Spark-Ignition

- Assume no Feedback (closed-loop) controls
- Assume no Catalysts
  - » No reduction of catalyst efficiency
  - » Will need to revisit in future
- Effects of Aromatics, Olefins or Distillation curve are ignored
- Default gasoline sulfur content = 339 ppm

# Fuel Sulfur & Oxygen Effects Spark-Ignition

- 97% of fuel Sulfur converted to SO<sub>2</sub>
- 3% of fuel Sulfur emitted as PM

### Fuel Sulfur & Oxygen Effects Oxygen

- Oxygen Effects based on older highway vehicle and some small engine testing
- CO & VOC decrease proportional to fuel oxygen
- NOx increases proportional to fuel oxygen

# Fuel Sulfur & Oxygen Effects\* Oxygen

| <u>4-Stroke</u> |        | 2-Stroke |        |  |
|-----------------|--------|----------|--------|--|
| VOC             | -4.5%  | VOC      | -0.6%  |  |
| СО              | -6.5%  | СО       | -6.5%  |  |
| NOx             | +11.5% | NOx      | +18.6% |  |

\* Per Percent Fuel Oxygen

Hydrocarbon Report Types

Chris Lindhjem NONROAD Report NR-002

# **Definition of THC**

- THC is total hydrocarbons
- Measured with a flame ionization detector (FID) calibrated with propane; the FID measures carbon content of sample.
- Hydrogen is added to the carbon emission rate to represent hydrocarbon emissions

THC (grams) = (FID Response) \* (12 (Carbon) + ~1.8 (Hydrogen)) 12 - Molecular weight Carbon 1.8 - Number of Hydrogen atoms associated with Carbon

NONROAD 6/25/98

### **Definition of TOG**

- TOG total organic gas
- FID doesn't measure carbon atoms associated with oxygen such as aldehydes and alcohols
- Aldehydes and alcohols are measured separately and added to the THC by weight as formaldehyde and methanol

*TOG* = *THC* + (*total aldehydes*) + (*total alcohols*)

# Definition of NMHC, NMOG, and VOC

- NMHC nonmethane hydrocarbons
- NMHC = (THC methane)
- NMOG nomethane organic gas
- NMOG = (TOG methane)
- VOC volatile organic compounds
- VOC = (NMOG ethane)

4 NONROAD 6/25/98

### Results

| Engine Type                 | TOG/THC | NMOG/THC | NMHC/THC | VOC/THC |
|-----------------------------|---------|----------|----------|---------|
| 2-Stroke<br>Gasoline [2]    | 1.044   | 1.035    | 0.991    | 1.034   |
| 4-Stroke<br>Gasoline [2, 3] | 1.043   | 0.943    | 0.900    | 0.933   |
| Diesel [4]                  | 1.070   | 1.054    | 0.984    | 1.053   |
| LPG[5]                      | 1.036   | 0.740    | 0.704    | 0.647   |
| CNG[5]                      | 1.002   | 0.049    | 0.048    | 0.004   |

- Applied in the Reporting Utility not in the Core Model
- Lumped equipment (<25 hp SI) treated as either 2-stroke or 4-stroke gasoline whichever predominates

6 NONROAD 6/25/98

#### Geographic Allocation Basic Approach

- Technical report available by mid-July
- Geographic allocation of engine populations accounts for how many and what types of equipment are being used in a certain location
  - » Default data allocates to the county level
  - » NONROAD can allocate equipment populations to the subcounty level, but <u>user</u> must provide fractions to allocate from the county to subcounty level

- National engine/equipment populations from Power Systems Research (PSR)
  - » PSR has state and county level numbers but methodology used to derive them is proprietary
  - » Publicly available data used as much as possible to allocate populations
- PSR national populations allocated outside NONROAD to county level using countyspecific surrogate indicators
- County populations are then aggregated to produce default state population input files

#### Geographic Allocation Basic Approach

- NONROAD allocates state level default population input data down to the county level for each equipment type using the countyspecific surrogate indicators
  - » Equip. Popcounty = Equip. Popstate X <u>Surrogatecounty</u> Surrogatestate
- Allocating equipment populations is surrogate for allocating activity
  - » NONROAD only has one activity level (hours/year) for each equipment type for all of U.S.
- Option for user to specify own state/county surrogate indicators
  - » Equipment category or by individual equipment types

- Residential Lawn and Garden (except snowblowers) : 1 & 2 unit single family homes from 1990 Census (draft version)
  - » Final version adjusted by 1997 human population estimates
- Commercial Lawn and Garden (except snowblowers): number of employees in landscape and horticultural services (SIC 78)
  - » U.S. Census <u>County Business Patterns 1995</u> (CBP)

#### Geographic Allocation Application-Specific Surrogate Indicators

- Snowblowers
  - » Same as above, but plan to adjust by annual average snowfall data from NOAA for final version
  - » Set to zero for counties and states in draft version
- Construction: F.W. Dodge Database of total construction dollar value by county
  - » Census Bureau tracks value but only at MSA level
  - » CBP number employees does not address intercounty movement of equipment
- Agricultural: acreage of harvested cropland
  - » Source: Census Bureau: <u>USA Counties Database</u> <u>1996</u>

- Light Commercial Equipment
  - » Census CBP, number of wholesale establishments (SIC 50)
- Industrial
  - » Census CBP, number of employees in manufacturing (SIC 20)
- Oil Field Equipment
  - » Census CBP, number of employees in oil and gas extraction (SIC 1300)

#### Geographic Allocation Application-Specific Surrogate Indicators

#### Logging

- » Draft version: number of employees in logging (SIC 2410) plus number of employees in saw and planning mills (SIC 2420)
  - number of employees in saw and planing mills allocates to urban areas in some cases
- » Final version will only use number of employees in logging

- Recreational Marine
  - » Boats not necessarily used in county where purchased, registered, or stored
  - » Draft version uses water surface area
    - Doesn't account for navigational limitations or max. number of boats that can fit on waterbodies
  - » Effort will be made to refine water surface area method or find a better method
  - » EPA open to ideas & suggestions for default surrogate allocation indicators
  - » Local data is probably best alternative

#### Geographic Allocation Application-Specific Surrogate Indicators

- Recreational Equipment (except snowmobiles and golf carts)
  - » Problem similar to recreational marine
  - » Have not been able to find reasonable surrogate indicator at county level
  - » Draft using number of RV park/camp establishments (SIC 7030) from Census CBP
    - Only placeholder because these data appear to be incomplete
  - » EPA open to ideas and suggestions for defaults
  - » Local data is probably best alternative

#### Snowmobiles

- » Allocation method not complete in draft version
- » Could be allocated using same indicator as other recreational equipment or separately
- » Draft version will report national population and emissions, but zero out state and county level information
- » Final version will limit geographic allocation using annual average snowfall data from NOAA
- » Local data may be best alternative

#### Geographic Allocation Application-Specific Surrogate Indicators

#### Golf carts

- » Draft version uses number of employees at public golf courses (SIC 7992) from Census CBP
- » These data have significant gaps
  - -No data available for many states
- » Will be corrected for final version
#### Geographic Allocation Application-Specific Surrogate Indicators

- Aircraft Ground Support Equipment
  - » Draft version uses number of employees in air transportation (SIC 4500) from Census CBP
  - » For final version, investigating the use of DOT landing/takeoff data at airports with commercial operations
- Railroad Maintenance Equipment
  - » Draft version uses 1990 human population
  - » Investigating better alternatives
    - Track mileage by county?

#### Geographic Allocation Application-Specific Surrogate Indicators

- Underground mining equipment
  - » Draft version uses number of employees in metal mining (SIC 1000) from Census CBP
  - » Final version will use indicator more appropriate to underground mining
    - number of employees in coal mining (CBP 1200)?
- AC/refrigeration equipment
  - » Used on Truck Trailers
  - » Draft version uses 1990 human population
    - Human population consistent with where this equipment operates

### Seasonal Allocation Background

- Technical report available on OMS web page
- Seasonal allocation fractions account for the effect of climatic variations on nonroad equipment usage patterns
- 1995 CA ARB TSD for OFFROAD model used for CA seasonal allocation

#### Seasonal Allocation Background

- NEVES used for rest of country
  - Recreational equipment seasonal allocation data based on 1990 MIC survey
  - Recreational marine data based on 1991 NMMA survey of boaters
  - -Other categories based on 1973 SwRI report by Hare and Springer, 1987 SIPs, 1991 CA ARB lawn & garden emission standards and testing procedures TSD

### Seasonal Allocation Regions

- Ten regions
  - » Composite of regions from the 3 sources in NEVES



### Seasonal Allocation

- Seasons divided into 3 month periods
  - » 1 month = season/3
- NEVES only contained fractions for Summer and Winter
- Spring and Fall extrapolated by: 1-(Summer + Winter)/2

### Seasonal Allocation

- States assigned to regions by geography and climate
  - » No data for HI and AK
    - AK assigned to Great Lakes/Midwest region
    - HI assigned to West Coast region along with CA (1995 CA ARB TSD)
  - » Best judgment used for large states spanning more than one region and having several climatic tendencies that could be categorized in more than one region.
    - NY: Northeast/New England, Great Lakes/Midwest Middle Atlantic
    - WY: Rocky Mountain, Central West, Northwest

### Weekday/Weekend Allocation

- From CA ARB original draft MVOFF model
  - » Fractions allocate emissions for average week or weekend day
  - » Can be specific to the equipment type
    - Currently specific to equipment category only
  - » EPA planning to study further and would like to hear ideas and suggestions

### Commercial Marine Module Default Input Data

- Covers top 150 U.S. ports
  - » number of trips and tonnage by vessel category
- 12 well-characterized ports
  - » Based on:
    - -representativeness of operations & geographic location
    - -data availability
  - » Ports matched up with 150 top ports

### Commercial Marine Module Detailed Port Data

- 5 large ocean ports
  - » NY/NJ, Philadelphia, Seattle, Corpus Christi, New Orleans
- 2 typical international ocean ports » Baltimore, Coos Bay
- 1 typical domestic ocean port
  - » Tampa
- 2 river ports
  - » St. Louis, Cincinnati
- 2 Great Lake ports
  - » Burns Harbor, Cleveland

# Commercial Marine Module Detailed Port Data

- Detailed Port Activity by Vessel Category
  - » Average Horsepower
  - » Engine/Fuel Type
  - » Range of dead weight tons
  - » Number of Trips
  - » Average Hours in Mode
    - Mode = Cruising, Maneuvering, and Hoteling

## Commercial Marine Module Methodology

- User specifies one of the top 150 ports
- Model matches a given port with a wellcharacterized port of a similar vessel mix and scales the emissions by activity per vessel category

# Commercial Marine Module Methodology

- Module calculates emissions for one of the 12 detailed ports matched with the port chosen by user from the top 150
- For each vessel category and load by mode module will calculate emissions by mode
  - » Emissions by Vessel Category and Mode = Emission Rate<sub>(ship & engine type, mode)</sub> \* Hours<sub>(mode)</sub> \* Load<sub>(mode)</sub> \* # Ship<sub>(Type)</sub> \* # Trips

### Commercial Marine Future Plans

- Work still underway on module and data
- Draft release expected Fall 1998
- Additional work
  - » Acquiring data on interport emissions on the Great Lakes and rivers
  - » To be included in future version of commercial marine module.