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1.0 INTRODUCTION

The Office of Transportation and Air Quality (OTAQ) of the U.S. Environmental Protection
Agency (EPA) is beginning work to design the "New Generation Model" (NGM) which will be
the successor to the Mobile6 highway vehicle emission factor model. Advances in measurement
technology have, in the last few years, made possible measurement of vehicle tail pipe emissions
during real-world vehicle operation using portable on-board instruments. A key consideration in
designing the NGM, therefore, is the role that data obtained from on-board emissions
measurements can play. Because the measurement and interpretation of on-board dataisa
relatively new area, EPA has sought input from three external organizations to provide examples
and recommendations of modeling approaches, and to recommend data collection strategies for
the NGM. Each of the three organizations is working simultaneously and independently under
the same scope of work, and each is preparing its own report. The three organizations are North
Carolina State University (NCSU), the University of Californiaat Riverside, and Environ. This
report represents the work done at NCSU. The three organizations have not had an opportunity
to review each other's reportsin preparing final conclusions and recommendations.

1.1  Objectives
This project has severa primary objectives:

1. Torecommend methods for using tailpipe emissions measurements for Light Duty
Gasoline Vehicles (LDGV), Heavy Duty Diesel Vehicles (HDDV), and nonroad vehicles
in the development of emission factor models;

2. To develop conceptua models for each of the three vehicle categories using on-board
emissions data provided by the U.S. Environmental Protection Agency;

3. To apply the conceptual models to predictions for a "validation" dataset and to interpret
the results;

4. To develop recommendations regarding other emissions data that should be used in
developing the NGM; and

5. To develop and recommend testing strategies for on-board measurement of emissionsin
support of the NGM.

These five objectives are supported by four major tasks:

Task 1: Development and Demonstration of a Conceptual Analytical Methodology for
Analyzing On-board Emissions Data (supports Objectives 1, 2, and 3)

Task 2. Development of Strategies for Using Alternative Emissions Data (supports
Objective 4)

Task 3: Development of Testing Strategies for On-Board Data (supports Objective 5)

Task 4:  Documentation of Results and Presentation to EPA (supports all objectives)



This chapter provides. (1) an overview of current approaches to measuring and modeling
emission factors; (2) motivation for the use of on-board emissions data; (3) a brief review of
previous work at NCSU regarding on-board emissions measurements; (4) areview of severa
alternative concepts for estimating emissionsin the NGM; and (5) an introduction to the genera
approach to modeling that is employed in this work.

1.2  Overview of Conventional Emissions M easurement and Estimation Approaches

The most common methods for measuring vehicle emissions have been the use of dynamometer
testsin alaboratory test facility or roadside, remote sensing at specific on-road locations, and
tunnel studies. The current generation of emission factor models, including the EMFAC series
of models used in California, and the MOBILE series of models developed by EPA, are based
upon emissions data for selected driving cycles. A driving cycleis composed of aunique profile
of stops, starts, constant speed cruises, accelerations and decelerations and is typically
characterized by an overall time-weighted average speed (TRB, 1995; NRC, 2000). Different
driving cycles are used to represent driving under different conditions. The emission
measurements for a driving cycle are typically conducted on a dynamometer in the laboratory. A
concern with driving cyclesis that they may not be sufficiently representative of real-world
emissions (Kelly and Groblicki, 1993; Denis et al., 1994; Barth et al., 1996; NRC, 2000; EPA,
1993). The MOBILE6 model is an improvement over the previous versions of the MOBILE
model, because it is based upon driving cycles obtained during recent activity studiesin various
cities. However, because the data obtained from driving cyclesistypically reported only atrip
average basis, such asin the Mobile Source Observational Database developed by EPA, it is not
possible to estimate emissions at smaller time or spatial scales. Thus, typical driving cycle data
cannot be used to evaluate microscale or mesoscale vehicle emissions. For example,
improvementsin traffic flow (e.g., signal coordination and timing) cannot be evaluated with
driving cycle-based models (NRC, 2000).

In order to estimate effects associated with driving dynamics, the modal operation of avehicle
and related emissions need to be analyzed. Modal emissions-based models rel ate emissions
directly to the operating mode of vehicles. The operating modes include cruise, acceleration,
deceleration, and idle (NRC, 2000; Barth and Norbeck, 1997; Frey et al., 2001; Tong et al.,
2000). Severa research studies have been performed using dynamometers and instrumented
vehicles producing second-by-second emissions data to investigate vehicle emissions associated
with modal events (e.g., Cicero-Fernandez and Long, 1994). By testing a small set of newer
technology vehicles, these studies found that CO and HC emissions are greatly affected by
various accel eration modes.

Several researchers have devel oped modal-emissions models. One way of developing a modal-
emissions model isto set up a speed-acceleration matrix in order to characterize vehicle
operating modes of idle, cruise, and different levels of accel eration/decel eration and to determine
corresponding emissions (West and McGill, 1997). According to Barth et al. (1996), the problem
with such an approach is that it does not properly handle other variables that can affect
emissions, such as road grade or use of accessories. Another disadvantage is that the vehicle
history is not properly considered, as the vehicle emissionsin a given second might be afunction



of the previous second’ s speed and acceleration (NRC, 2000). In statistical terminology, this
refers to autocorrelation in the time series of second-by-second emissions measurements.

Another type of modal-emissions model is based on engine mapping. The conceptual approach
isto translate real-time speed and route information into instantaneous vehicle rpm and load
parameters, use an engine map to look-up the instantaneous emission rates for the specific rpm
and load conditions, and continuously integrate the instantaneous emission rates to estimate the
total emissions from a given set of vehicle activities. A potential weaknessis that emissions
occurring under transient conditions may not be adequately represented by the emissions map
that is derived under steady-state conditions. Mapping models have been developed by LeBlanc
et al., (1994); Shih and Sawyer, (1996); and Shih et al., (1997).

The aggregate modal modeling approach used by the Georgia Institute of Technology for the
Mobile Emission Assessment System for Urban and Regional Evaluation (MEASURE) model is
similar to emission mapping, but it is based upon emissions ‘bag’ data to derive modal activities
(Washington, 1997). The model estimation data consisted of more than 13,000 |aboratory tests
conducted by the EPA and CARB using standardized test cycle conditions and alternative cycles
(Bachman, 1999). Hierarchical tree-based regression analysis was applied to the database using
several vehicle technologies and operating characteristics as variables to explain variability in
emissions. Vehicle activity variables include average speeds, acceleration rates, deceleration
rates, idle time, and surrogates for power demand.

The Center for Environmental Research and Technology at University of California Riverside
(UCR-CERT) has developed a modal emissions model that reflects Light-Duty Vehicle (LDV)
emissions produced as afunction of the vehicle's operating mode. The model predicts second-
by-second tail pipe (and engine-out) emissions and fuel consumption for different vehicle
categoriesin different states of condition (e.g., properly functioning, deteriorated, and
malfunctioning) (Barth et al., 1997). In developing the model 315 vehicles from 24 different
vehicle/technology groups were tested on the FTP (Federal Test Procedure) test, EPA’s high-
speed driving cycle (US06), and a newly developed modal driving cycle (Barth et al., 1997).

In the UCR-CERT model second-by-second tail pipe emissions were modeled as the product of
three components: fuel rate (FR), engine-out emission indices (gemission/Grue), @nd time-dependent
catalyst pass fraction (CPF). The model is composed of six modules: (1) engine power demand;
(2) engine speed; (3) fuel/air ratio; (4) fuel-rate; (5) engine-out emissions; and (6) catalyst pass
fraction. Power demand was estimated using environmental parameters (wind resistance, road
grade, air density, and temperature), and vehicle parameters (velocity, accel eration, vehicle mass,
cross-sectional area, aerodynamics, vehicle accessory load, transmission efficiency, and drive-
train efficiency). Power demand was combined with other engine parameters (gear selection,
air/fuel ratio, and emission control equipment) to develop dynamic vehicle or technology group
emission rates (Barth et al., 1996). The model uses atotal of 47 parameters to estimate vehicle
tailpipe emissions.

In the fuel-based method, emission factors are normalized to fuel consumption and expressed as
grams of pollutant emitted per gallon of gasoline burned instead of grams of pollutant per mile.
In order to obtain an overall fleet-average emission factor, average emission factors for



subgroups of vehicles are weighted by the fraction of total fuel used by each vehicle subgroup.
The fleet-average emission factor is multiplied by regional fuel salesto compute pollutant
emissions (Singer and Harley, 1996). The fuel based approach is amenable to the use of
emissions data collected for on-road vehicles using either remote sensing or tunnel studies, as
opposed to relying on laboratory tests in the driving cycle approach. Therefore, this approach
may yield akey benefit of being more representative of on-road emissions. Emissions can be
calculated by vehicle class by applying the multiplication separately for each class. The
accuracy of afuel-based model depends on how well the vehicles and driving modes from which
emission factors were measured represent the entire area under study. The accuracy of the age
distribution used to weight emissions data from each vehicle model year is another important
consideration. NCSU has conducted two on-road studies using remote sensing. Oneresulted in
fuel-based emission factors for CO and HC for school and transit buses (Frey and Eichenberger,
1997), and the other resulted in fuel-based emission factors for avariety of light duty vehicles
(Rouphail et al., 2000).

1.3 M otivation for Use of On-Board Emissions Data

The National Research Council (2000) reviewed the structure and performance of the Mobile
model, investigated ways to improve the model, and made recommendations for the NGM. One
of the recommendations of the NRC study is to devel op the capability to estimate emissions at
different scales such as microscale, mesoscale, and macroscale. To be able to develop thiskind

of model, new measurement techniques are needed. On-board emissions measurement is one of
these techniques and is widely recognized as a desirable approach for quantifying emissions
from vehicles, since data are collected under real-world conditions at any location traveled by the
vehicle. Until recently, on-board emissions measurement has not been widely used because it has
been prohibitively expensive. Therefore, instrumented vehicle emissions studies have typically
focused on avery small number of vehicles (Kelly and Groblicki, 1993; Cicero-Fernandez and
Long, 1997; Gierczak et al., 1994; Tong et al., 2000, as well as the work of Richard Shores,
Bruce Harris, and others at EPA). In other studies, researchers have measured engine parameters
only (Deniset al., 1994; LeBlanc et al., 1994; Guendler et al., 1998; West et al., 1997).

However, in the last few years, efforts have been underway to develop lower-cost instruments
capable of measuring both vehicle activity and emissions (Scarbro, 2000; V ojtisek-Lom and
Cobb, 1997). More recently, the concepts employed by Vojtisek-Lom and Cobb have been
commercialized by Clean Air Technologies International, Inc., which markets the OEM-210
portable emissions measurement system. Other companies are al so entering the on-board
emissions measurement market with instruments of their own.

OTM

14  PreviousWork at NCSU Regarding On-Board Emissions M easurements

NCSU has been a pioneer in the use of on-board emissions measurement systems. For more than
two years, NCSU has deployed portable on-board emissions measurement systems to measure
real-world, on-road tailpipe emissions of light duty vehicles (Frey et al., 2001). The objectives
of the study wereto: (1) evaluate a new low-cost approach for measuring on-road tailpipe
emissions of highway vehicles; (2) investigate factors that affect the amount and variability of
on-road emissions, using statistical methods; and (3) devise and demonstrate methods for
designing and conducting observational experiments that realistically evaluate pollution
prevention strategies for on-road vehicles.



Portable instruments were used for measuring carbon monoxide (CO), nitric oxide (NO), and
hydrocarbon (HC) emissions and vehicle activity (e.g., vehicle speed, engine parameters) on a
second-by-second basis. Data collection, quality assurance, reduction, and analysis protocols
were developed. Field data collection occurred in apilot and an evaluation phase. In total, over
1,200 one-way trips were made with more than 20 vehicles, 4,000 vehicle-milestraveled, 160
hours of second-by-second data, and 10 drivers. The pilot study was used to identify key factors
influencing on-road emissions and as input to the design of the evaluation study. Inthe
evaluation study, data were collected intensively with a small number of vehicles on two
corridors before and after signal timing and coordination changes were implemented. For the
first corridor, changes in signal timing and coordination did not result in asignificant changein
traffic flow or emissions. However, substantial reductions in emissions were estimated for
uncongested versus congested traffic flow when comparing travel in the same direction at
different times of day. For the second corridor, there were significant improvements in traffic
flow and some reduction in emissions for three of the four time period and travel direction
combinations evaluated.

The impact of signal timing and coordination changes with respect to non-priority movements
involving cross-streets was evaluated. For the first corridor, there was no statistically significant
observed change in emissions for non-priority movements. For the second corridor, there
typically was a decrease in average speed and an increase in emissions for non-priority
movements, however, many of the observed changes were not statistically significant.

The study also demonstrated other analysis methods, including: (@) macro-scale analysis of trip
average emissions and traffic parameters; (b) micro-scale analysis of second-by-second
emissions and vehicle operation; (c) meso-scale analysis of modal emission rates; and (d) spatial
analysis of emissions at specific locations along the corridors. Both statistical and theoretical-
based approaches were evaluated. The implications of the study results for pollution prevention
strategies were discussed. Conclusions were presented regarding instrumentation, protocols,
analysis techniques, and case study-specific findings. Recommendations were given regarding
future applications of on-board measurements.

Of the most common approaches to emissions data collection, the emerging area of on-board
emissions measurement is perhaps the most promising. Although not without limitations, on-
board emissions data measurement enables collection of representative real-world data at any
location and in any weather, which remedies many of the shortcomings of laboratory based
methods and of field-based methods such as remote sensing and tunnel studies, which are limited
in siting. At the same time, because real-world data collection is observational, it is not possible
to collect data under controlled conditions asin the laboratory. Therefore, there will continue to
be role for multiple sources of datain developing the NGM.

15  Possible Conceptual Approachesfor Estimating Emissionsin the NGM

EPA has suggested several approaches for the Emission Rate Estimator (ERE) of the NGM.
These approaches can briefly be summarized as:



Approach 1: Use of high frequency (e.g., second-by-second) data to develop microscale
(e.g., second-by-second) emission estimates, with aggregation as appropriate for
mesoscale (e.g., modal) and macroscale (e.g., trip average emissions) estimates. This
model would be highly dataintensive. If implemented as a neural network, it would
not be very transparent to the user in terms of the underlying physical principles. If
implemented as a physical-based model, it may require a substantial amount of design
data or other input assumptions that are not readily observed using portable on-board
emissions measurement systems or using existing infrastructures for collecting
vehicle registration and traffic data.

Approach 2. Use of statistical methods to process raw data to generate mesoscale and
macroscale estimates. EPA characterizes this as a "descriptive’ method.

Approach 3. Development of an extensive data set and use of the ERE to ssmply query
the database when emissions estimates are needed.

All three of these approaches have validity and in some cases overlap with each other. For
example, NCSU has employed regression tree approaches to devel op emission estimates based
upon remote sensing data (Rouphail et al., 2000). Regression tree approaches effectively involve
binning the data but do not require fitting of amodel to the data. Thus, such an approachisa
combination of Approach 2 and Approach 3.

As part of previous work, NCSU has explored in some detail the use of neural networks to
process on-board emissions data collected during a study for NCDOT (Frey et al., 2001). Neural
networks offer some advantages of flexibility of functional form in representing data. They
require a good training data set. However, the process of selecting appropriate inputs for training
of the neural network model is a subjective one. Thetime it takes to get good results during
training is afunction of the a priori assumptions made by the analyst regarding which
explanatory variables to include in the model. In addition, since there is some autocorrelation in
second-by-second activity and emissions data, it is hecessary to consider multiple time steps
when training the neural network. A key shortcoming of neural networksis that they do not
provide direct measures of sensitivity nor do they provide clear equations that reveal the key
physical relationships among the inputs and outputs. Techniques exist for trying to interpret the
results of a neural network model, but for most users such models are likely to be impenetrable
"black boxes" providing no insight other than what a user obtains for himself or herself through
sensitivity analysis.

Physical-based models are perhaps the most intellectually satisfying of the approaches
mentioned above. Such models would enable prediction of emissions based upon design and
activity datafor the vehicle. For example, knowledge of the engine displacement, number of
cylinders, compression ratio, intake air pressure, equivalence ratio, volumetric efficiency, and
many other parameters could form a basis for predicting fuel consumption and emissions with an
appropriately calibrated model. The problem with a model such as this as there can be avery
large number of inputs that are not typically measured in vehicle activity studies. Therefore, it
would be impractical to use such models for estimating fleet average emissions or for many other
purposes. Thereis atemptation with such models to include lots of input variables. However, it



is perhaps equally or more important to tease out which onesreally matter and which onesreally
do not. Such models are useful for providing insights into key factors that affect emissions, but
they may not be practical for use on anational scale or even on an urban scale for emissions
predictions by local, state, and federal agencies.

Perhaps the most practical approach, and the approach pursued by NCSU in this project, involves
acombination of some of the above. Specificaly, it isimportant that physical insight play arole
in the development of an emissions model. At the sametime, it isaso critically important that
there be a good empirical basisfor the model. It istypically the case for many models that the
model outputs are most critically sensitive to only a subset of al possible model inputs.
Therefore, it is not necessary, useful, or practical to exhaustively include all possible inputs.
Cullen and Frey (1999) and others discuss issues of model complexity, aggregation, and
exclusion that are relevant here. A model should have a clear data quality objective and clear
criteriaregarding the desired domain of applicability. The domain over which the model isvalid
should ideally correspond to the domain for which model predictions are desired.

The complexity of amodel is characterized by the number of compartments, pathways, or states
represented in the model, by the number of inputs, and by the function form of the equations.
Complexity and size are two different issues, however. A model may be large but smple in that
it may be composed of alarge number of inputs but have alinear functional form. A model can
be small and complex because it might be highly nonlinear with extensive interactions among the
components. Complex systems are often hierarchies, which can be described in terms of the
"span" of each level in the hierarchy and in terms of the number of levels. A simple model may
have repetitive components at only one level. It isgenerally believed that simple models are
more limited in their applicability than complex models. For example, if asimple model isa
local linearized version of a more complex model, then the simple model will provide accurate
predictions close to some specific point but the accuracy of the predictions will degrade as the
model is extrapolated farther away from the calibration point.

There are various trade-offs between simplicity and complexity in models, and such trade-offs
should be acknowledged and made consciously. Complex models are often intended to represent
the science as well as possible. Simpler models are often intended for more widespread use.
Complex models may be more accurate than simpler models. Accuracy here refers to
convergence of the average predictions of the model to the true value. In going from simple to
more complex models, uncertainty due to the structure of the model may be reduced. However,
uncertainty associated with perhaps alarger number of inputs or with the error propagation
properties of the complex formulation can lead to aloss of precision.

For policy purposes, some say that models should be made "as ssimple as possible, but no
simpler" (Morgan and Henrion, 1990). This means that models should not contain any
extraneous features that have no real bearing on the policy applications of the model. Thus, if a
model isto be used for development of modal or macroscale emission inventories involving
averages over afleet of vehicles, for example, then it may be extraneous to include excessive
design details regarding individual vehicle make and model among the inputs to the model. The
typical user would only be frustrated by such demanding data input requirements. However, this
does not mean that such considerations should not enter into the process of developing the



model. It only means that the final model should be of an appropriate level of complexity
consistent with itsintended use. For example, a complex, detailed physical-based model could
be developed initially to obtain fundamental insights regarding key relationships that should be
preserved in the final model, perhaps using surrogate variables that are more readily measurable.
Various methods, such as response surface techniques or other sensitivity analysis methods (e.g.,
see Frey and Patil, 2002 for areview, aswell as Cullen and Frey, 1999, and Bharvirkar and Frey,
1998) can be used to identify key relationships in the complex model that should be preserved in
amore simplified model intended for wider use.

16 Summary

On-board emissions measurements have emerged as a promising new approach for obtaining
representative real-world tail pipe emissions data based upon actual on-road driving. The
increasing availability of instrumentation for performing on-road emissions studies, the
development of data collection and analysis protocols, and the increasing availability of example
on-board studies suggests that on-board data collection is a potentially practical and useful
source of datafor the NGM. Therefore, this study is aimed at exploring the potential of on-board
datato play an important role in the NGM, and to make recommendations for the development
of models and measurement of data needed to support the NGM. Based upon the key
considerations regarding conceptual approaches to estimating emissions described here, Chapter
2 will present in more detail the general approach to modeling that is employed in this study.
Chapter 3 focuses on development and demonstration of a conceptual model for LDGVV
emissions. Chapters 4 and 5 have asimilar focus with respect to HDDV and nonroad vehicles,
respectively. Predictions made with conceptual models for all three mobile source categories are
given in Chapter 6 and a comparison is made to observed values. Recommendations regarding
the use of alternate emissions data are addressed in Chapter 7, and recommendations for testing
strategies for on-board data are addressed in Chapter 8.



20 GENERAL TECHNICAL AND MODELING APPROACH

To support Objectives 1, 2, and 3, and to meet the requirements of Task 1, an overall approach as
well as specific procedures for analyzing on-board emissions data must be developed and
demonstrated. This chapter provides an overview of the general technical and modeling
approach employed in thiswork. The approach is applied to two categories of on-road vehicles,
LDGV and HDDV, and to a single category representing nonroad vehicles.

EPA provided on-board measurement data sets for selected LDGV, HDDV, and nonroad
vehicles. The HDDV vehicles for which data were provided are diesel transit buses. The non-
road vehicles for which data were provided are construction equipment. It isimportant to point
out that NCSU had no role in the design or execution of the on-board measurement studies.
Thus, NCSU had no role in selection of vehicles, drivers, routes, time of day, and other
scheduling aspects, nor regarding the calibration, maintenance, and operation of the
measurement equipment. Thus, the focus of this chapter is on methods for evaluating and
analyzing data after they have been collected. However, the development of amodel is
conditional on the data used to calibrate the model. Therefore, the quality of the model will be
influenced by the study design for the data collected for model calibration. Important
considerations in designing on-board data collection studies are addressed in Chapter 8.

21  Overview of General Technical and Modeling Approach

The general modeling approach employed by NCSU involves the following key considerations:

1. Visudize the datal

2. lterative approach to model development, including consideration of physical and
empirical (statistically significant) relationships observed in actual data, informed by
apriori theoretical constructs.

2. Quantification of variability and uncertainty in model predictions.

When evaluating a data set and when developing amodel from the data set, it is important to
begin with hypotheses regarding relationships based upon physical insights. Such insights might
be obtained based upon previous work. For example, parametric experiments in laboratory
settings provide some indication of what are the key sensitivities of emissions to various factors,
such as engine load, engine speed, air temperature, accessory use, and so on. Knowledge of
these factors isimportant in identifying "independent” or input variables to use in initial model
devel opment.

The first step of data visualization typically includes devel oping multiple pairwise scatter plots
of the candidate input and output variables to look for possible empirical relationships among
them. Statistical software such as SPLUS is well-suited to this type of work and has been used
extensively in previous studies involving both remote sensing and on-board emissions
measurement data (e.g., Rouphail et al., 2000; Frey et al., 2001). The process of visualization of
data also gives the analyst an appreciation for the variability in the data that may not be
explained by any of the candidate input variables.



Both physical and statistical relationships between emissions and explanatory variables are
explored. Examples of statistical methods used in previous work include ANOV A, regression
trees, and regression analysis. Past work at NCSU has typically employed procedures most
similar to Approach 2 described in Section 1.5; however, data have also been analyzed in terms
of key physical parameters (e.g., fuel equivalence ratio) in order to obtain key physical insights
regarding relationshipsin the data. For example, HC emissions from diesel vehicles have a
dependence on equivalence ratio, as do CO emissions from LDGV. However, although
emissions may be better explained by some physical variables such as equivalence ratio, such
variables are not readily observable for those who are likely users of the NGM. Therefore, rather
than develop a model based upon input parameters for which data are not likely to be readily
available, it isimportant to seek surrogate variables that are related to the key physical variable
of interest but for which data may be more readily available. For example, akey focus of
previous work has been to evaluate the predictive power of readily observable traffic parameters
with respect to emissions (e.g., Rouphail et al., 2000).

The development of the functional form of a model should be informed not only by a priori
assumptions based upon theoretical expectations, but also upon relationships that are inferred
from the data. When only a priori assumptions guide model development, it istypically the case
that the model can become too complex or fragmented. For example, in the nonroad source
categories, emission factors are often subdivided by type of equipment, type of application, size
of equipment, and other factors. In the specific case of CFl equipment, for example, agencies
such as EPA propose to separate 2-stroke equipment by size, and to develop emission factors
separately for each sizerange. However, astatistical analysis of data for the different size ranges
revealsthat there is not a statistically significant difference in emissions for two size ranges
reportedly under consideration (Frey and Bammi, 2002). Therefore, there is no obvious benefit
to creating multiple size ranges for this source category.

Similarly, Kini and Frey (1997) performed a statistical evaluation of the driving cycle data used
to develop the speed correction factor in the Mobile5 model. The average emissions estimated
from severa driving cycles were found to be not statistically significantly different than the
average emissions estimated from other cycles. For example, this was found in a comparison of
the LSP1, LSP2, and LSP3 cycles. Since all three cycles produce essentially the same emissions,
these three cycles are redundant. Time and effort can be saved by not creating an unnecessary
demand for data and by not using redundant datain model development. Model development is
simplified if unnecessary categories are avoided.

It isimportant to consider both variability and uncertainty when analyzing data and developing a
model. Previous work at NCSU has demonstrated that there is substantial variability in emissions
for a given mobile source category, whether it be an on-road source (e.g., Frey et al., 1996; Kini
and Frey, 1997; Frey and Eichenberger, 1997; Frey et al., 1999; Frey et al., 2001) or a nonroad
source (e.g., Bammi and Frey, 2001; Frey and Bammi, 2002a&b). However, for emission
inventory purposes, oneistypically lessinterested in inter-vehicle variability in emissions and
more interested in uncertainty regarding fleet average emissions. Therefore, it is necessary to
statistically analyze emissions data so that estimates of uncertainty in average emission factors
can be produced. NCSU has demonstrated approaches for quantification of variability and
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uncertainty in both on-road and nonroad sources, as referenced above. Such approaches are
employed in this work.

One of the key reasons to address uncertainty in model predictionsisto enable comparisons. For
example, in this project EPA provided NCSU with a"modeling” dataset was used for model
development. These data are also referred to here as "calibration” data, because they were used
to calibrate the model. Separately, EPA provided a"validation" data set that isincomplete. The
validation data contained only selected activity data, and NCSU was required to make
predictions using the model developed from the pilot modeling data set using the activity data of
the validation dataset. EPA withheld information regarding the observed emission values for the
validation data set until after NCSU reported the predictions made by the conceptual models
developed in this project.

In making predictions, estimated ranges of variability and/or uncertainty in the predictions are
reported. When comparing the model predictions to the true values of emissions for the
validation case, the precision of the model should be considered. It isalso critically important to
consider the data quality objectives of the prediction. In this study, the calibration data set is
based upon arelatively small number of vehicles for each of the three source categories. LDGV,
HDDV, and nonroad. For each of the three categories, EPA requested predictions of emissions
for individual vehicles and for a"fleet" average. When making predictions for individual
vehicles, it isimportant to evaluate the precision of the model in terms of the portion of the
observed inter-vehicle variability from the calibration data set that is unexplained by the model.

For example, suppose that a conceptual emission factor model is used to estimate the total trip
emissions for asingle vehicle. Activity datafor the vehicle, in the form of a second-by-second
speed trace, may be available, along with second-by-second data for a small number of other
possible explanatory variables. The conceptual model might be structured so as to predict
second-by-second emissions and sum them to obtain an estimate of the total trip emissions. The
estimated trip emissions can then be compared with the observed trip emissions, and the
difference between the two is an indication of the model prediction error. However, akey
question is whether the model prediction error in a specific case is within the expected error of
the model. If itis, then the prediction is considered to be acceptable. If it isnot, then there may
be some important discrepancy that should be investigated and corrected. Because the model is
not likely to be able to predict emissions with no error, some prediction error is expected.
Possible causes of error in model predictions include the following:

- Themodel may beincompletein that it does not have a sufficient set of explanatory
variables,

- themodel may not have the most appropriate functional form;

- the model may have been calibrated with data that contained measurement errors,

- thevalidation data may contain measurement errors for either the explanatory
variables and/or the observed emissions; and/or

- thevalidation data set may have been obtained under conditions substantially
different than those for the data used to calibrate the model.

- dataentry errors.
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If the validation data were for conditions different then those under which the calibration data
were collected, the model was extrapolated. The predictions of amodel that has been
extrapolated can have very large errors and/or be meaningless. In developing the predictions for
the validation data set, the range of values of the explanatory variables were compared to those
in the calibration data sets to determine if there were any potential problems with model
extrapolation.

2.2  Technical Approach for On-Road Vehicles

This project features the development of methodologies for using on-board emissions data as the
basis for estimating emissions for both on-road and nonroad sources. Thisis essential in
developing the EPA’s NGM since data representative of real-world conditions need to be utilized
for better emissions predictions. The overall philosophical approach that we will use has been
described in the previous section. In this section, we provide some additional detail and
examples regarding the approach in this work for dealing with on-road vehicles.

This study involves methodol ogies that will be used for estimating on-road vehicle emissions of
hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxides (NOx). First, conceptual
analytical modeling techniques will be presented with example analyses applied to on-road data
collected in previous work at NCSU using an on-board emissions measurement device as part of
an NCDOT-funded project.

The first task of this project, Development and Demonstration of a Conceptual Analytical
Methodology for Analyzing On-Board Emission Data, is divided into two subtasks. Oneisthe
development of a conceptual analytical methodology, and the other involves application of the
methodology to an example case study. The general approach for both is addressed in this
section.

In discussing on-road vehicles, the examples focus upon gasoline-fueled (spark ignited engine)
vehicles. Of course, diesel-fueled (compression ignited engine) vehicles are also of importance.
The on-board emissions measurement technique used at NCSU for gasoline-fueled vehiclesis
similar to the on-board emissions measurement technique for diesel vehicles. Both techniques
involve collection of vehicle activity data, typically through an on-board diagnostic (OBD) data
link and measurement of gaseous tailpipe emissions for pollutants such as CO, NO,
hydrocarbons, and CO,. An additional consideration for diesel vehicles, which was not part of
the scope of this project, is particulate matter (PM) emissions. The methods described in the
following sections can include analysis of PM data. We note that EPA did not provide such data
in the pilot modeling data set, and that the EPA is requesting only composite emission estimates
for HC, CO, NOy, and CO, for on-road equipment, and for NOy and CO, for nonroad equi pment.

2.2.1 Microscale Analysisfor On-Road Vehicles

Microscale analysis refers to estimation of emissions for specific corridors and intersections for
project level and hot-spot analyses (EPA, 2001). The temporal profile of vehicle activity and
emissions provides important insights regarding potential factors that can explain variation in
vehicle emissions and, in particular, explain high emissions events or "hot spots’. A "hot spot”
would be alocation at which emissions tend to be high because of the influence of roadway,
traffic control, or other traffic characteristics at that location.
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To illustrate the type of data available from on-board emissions measurement and the insights
they provide, an example of an individual one-way vehicle trip for a1999 Ford Taurus collected
by the NCSU research team on August 30, 2000 at asitein North Carolinais presented. Figure
2-1 shows vehicle speed versus elapsed time of thetrip. The figureis labeled with the location
of the vehicle at specific times. Thetrip took place on Chapel Hill Road between Cary, NC and
Research Triangle Park. Thetrip began south of Morrisville Parkway and ended a short distance
north of Airport Boulevard. Thereis notation in the figure indicating when the vehicle entered
the queue for an intersection, and when the vehicle crossed the center of the intersection, such as
at Aviation Parkway. The travel time on the corridor was approximately 13 minutes. The
instantaneous speed ranged from zero to approximately 50 mph, and the average speed was 11
mph. Thelongest waiting times occurred in the queue at the intersection with Morrisville
Parkway. The specific location of the vehicle was measured in this case based upon the speed
trace and time stamps.

An example emission trace for ameasured pollutant is shown in Figure 2-2 for CO. Itisclear
that the highest emission rates, on a mass per time basis, occur during small portions of the trip.
For example, for CO, the emission rate exceeds 0.02 grams per second only five times during the
trip, and emissions exceed 0.10 grams per second only onetime. The largest peak in the
emission rate occurs at the same time as the accel eration from zero to approximately 40 mph as
the vehicle clears the intersection with Aviation Parkway. In fact, most of the peaksin CO
emission rate tend to coincide with accelerations. The CO emission rate remains below 0.02
grams per second for the first ten minutes of the trip, corresponding to a period of stop-and-go
travel with speeds ranging from zero to less than 25 mph. These data suggest that the CO
emission rate during idling or crawling are comparatively low compared to the CO emissions
during acceleration. Thus, an important insight is that high emissions may not necessarily be
associated with heavily congested traffic flow, asis often assumed. Instead, high emissions may
occur at a specific location because of the influence of traffic control and traffic regulations (e.g.,
speed limit) at a specific site. Thistype of insight emphasi zes the tremendous importance of on-
road emissions data. This example also serves as a cautionary tale that the insights obtained from
an on-board emissions data-based model may contradict "conventional wisdom" obtained from
mistaken interferences based upon extrapolation of dynamometer data-based models (e.g., Frey
et al., 1996; Kini and Frey, 1997; Frey and Eichenberger, 1997; Rouphail et al., 2000; Frey et
al., 2001).
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Figure 2-1. Vehicle speed versus elapsed time of thetrip (Source: Frey et al., 2001).
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Figure 2-2. Vehicle CO emissions versus elapsed time of the trip (Source: Frey et al., 2001).

In general, the timetraces for al four measured pollutants, including HC, NO, and CO, (not
shown here but documented in Frey et al., 2001) indicate that thereis arelatively large
contribution to total emissions from short-term events at certain locations. Thisimplies that
efforts to have accurate predictions should consider these events. Using these data one can
develop temporal distributions of emissions as given in Figure 2-2. Thiswould be the first stepin
identifying “hot-spots’ and parameters that are responsible for these “ hot-spots’. In order to
understand what causes emissions hotspots on aroute, it isimportant to understand the
fundamental relationships between vehicle operation and emissions.

For example, short-term episodes of high CO emissions are typically associated with "fuel
enrichment.” Fuel enrichment refers to periods of vehicle operation in which the fuel-to-air ratio
is higher than during normal operation. During normal vehicle operation, the fuel-to-air ratio is
almost exactly stoichiometric. During fuel enrichment, there is not enough air to completely
combust the fuel. Therefore, the emissions leaving the engine during enrichment will include
more products of incomplete combustion, especialy CO. The catalytic converter normally is
capable of oxidizing CO to CO,. However, under fuel enrichment, there is not sufficient oxygen
in the exhaust gas for this oxidation reaction to go to completion.

An example of the effect of fuel enrichment on CO emissions obtained from on-board
instruments as the vehicle, 1999 Ford Taurus, was driven on atest corridor is shown in Figure 2-
3. The CO emission rate in terms of grams of CO emitted per gram of fuel consumed on a
second-by-second basis is compared with the vehicle fuel equivalenceratio. An equivalence
ratio close to one denotes stoichiometric combustion. An equivalence ratio of greater than one
indicates fuel enrichment. The figure clearly demonstrates that high CO emissions occur only
during fuel enrichment. The equival ence ratios were calculated from data reported by the OEM-
2100™ on-board emissions measurement system used at NCSU, including fuel flow rate and
intake air flow rate. In the current study, insufficient data were available from which to calculate
equivalence ratio for many of the vehicles in the calibration data set; therefore, it was not
possible to perform a similar analysis on a consistent basis for all of the vehicles provided in the
EPA database. However, for the final model, surrogate variables that reflect the influence of
these key physical factors may be needed, sinceit is not likely that equivalence ratio or fuel flow
will be readily available activity datain practice. Since high equivalence ratio tendsto be
associated with high engine loads such as occurring during acceleration, one surrogate for
equivalence ratio used in thiswork is to define separate driving modes (acceleration, cruise,
deceleration, and idle) and to calculate emissions separately for each mode.
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ratio reflects greater fuel enrichment) for a 1999 Ford Taurus (Source: Frey et al., 2001).
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Figure 2-4. Illustration of Spatial Distributions of Emissions Based upon Averages of over 100
vehicle runs on a selected corridor (Source: Frey et al., 2001).

Another way to identify hot-spotsislook at the spatial distribution of emissions. The spatial
location of emissions can be estimated by assigning a location to the vehicle for each second of
the trip, which can be obtained from GPS. An example of spatial analysisis shown in Figure 2-
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4, where emissions averaged over 100 vehicle runs on a selected corridor with 1999 Ford Taurus
is given with the locations of traffic signals.

Figure 2-4 displays the average speed and average HC emissions for a corridor approximately
2.5 miles long and shows the locations of signalized intersections. This exampleillustrates the
presence of an emission hotspot associated with a specific intersection, at approximately 1.25
miles. The spatia distribution of emissions can also be used to estimate emissions for segments
of routes representing different roadway functional classes. Thus, the influence of functional
class on emissions can be evaluated. In addition, the influence of other possible explanatory
factors can be explored, such as road grade, traffic control devices, and others.

Even if not included in this study, in the future consideration should be given to characterization
of traffic control devices with respect to emissions. For example, while there could be a default
emission estimate for vehicle emissions on aprimary arterial functional class of roadway, the
emission estimate could be modified based upon knowledge of the density of traffic signalization
along the corridor (e.g., number of signals per mile). We recommend that EPA give serious
attention to collecting activity data regarding roadway functional class and traffic control devices
in future on-board emissions data collection. Alternatively, emissions can be estimated as a
function of roadway classification, with subcategories representing vehicle movements within an
influence zone of an intersections as distinct from vehicle movements that are not influenced by
intersections (e.g., midblock).

The considerations above generally apply to both light duty and heavy duty on-road vehicles.
However, for heavy duty vehicles, emissions may typically be influenced by other factors that
are not readily observable, such asthe vehicle payload. For example, work by Bruce Harris at
EPA has explored the effect on emissions of vehicle payload in the trailer of atractor-trailer rig.
While such information could be observed in principle in the process of collecting data, the user
of amodel would have to make assumptions about the distribution of vehicle loads.

Diesel engines have different emission characteristics than do gasoline engines. Because diesel
engines operate at much higher pressure ratios and with excess air, they have higher NOy
emissions than do gasoline engines. Flagan and Seinfeld (1986) indicate that equivalenceratio is
an important explanatory factor for diesel engine emissions. For example, HC emissions tend to
be low for equivalence ratios greater than approximately 0.5, but increase sharply as equivalence
ratio decreases to values |less than approximately 0.3. CO emissions tend to be lowest at
equivalence ratios of approximately 0.4 to 0.5, and to increase if the equivalenceratio is either
higher or lower than these values. NO, emissions tend to increase as the equivalence ratio
decreases. One implication of the data shown by Flagan and Seinfeld is that HC emissions are
relatively insensitive to equivalence ratio for awide range of variation of equivalenceratio. This
implies that HC emissions may be relatively constant, on average, as afunction of the available
explanatory variables (e.g., speed, acceleration) compared to the other pollutants.

2.2.2 Mesoscale Analysisfor On-Road Vehicles

Mesoscale analysis refersto analysis at regional and sub-regional (corridor) levels as stated by
NRC (2000). These analyses should be for fine resolution estimation of emissions using vehicle-
operating conditions as input parameters. It should be noted that there might be some overlap
between mesoscale and microscale analyses (EPA, 2001).
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Figure 2-5. Mean Modal Emissions of Four Pollutants and 95 Percent Confidence Intervals on
Mean Emission Rates (Source: Frey et al., 2001).

Mesoscale anal yses would allow devel oping accurate assessment of TCMs and Transportation
Improvement Plans (TIPs). One method that enables such results is modal analysis. The research
team at NCSU has devel oped modal analysis methods based upon empirical definitions of
operating modes of vehicles using vehicle speed and acceleration as input variables (Frey et al.,
2001).

As part of previous work, a program was written in Microsoft Visual Basic that calculates the
driving mode for second-by-second data and determines the average value of emissions for each
of the driving modes and for the total trip. In order to illustrate the types of results obtained from
modal analysis of the emissions data, example results are devel oped based upon 72 one-way trips
obtained using a 1999 Ford Taurus on Chapel Hill Road. A comparison of the average modal
emission rate for each of four pollutantsis shown in Figure 2-5, along with estimates of the 95
percent confidence intervals on the mean emission rates.

For each of the four pollutants, the four modal emission rates are significantly different from
each other at the 0.05 significance level. Thus, from the graph in Figure 2-5, one can conclude
that the acceleration mode produces the highest emission rate for all four pollutants studied. The
idle mode produces the lowest emission rates. The fact that all of the modes are statistically
significant from each other means that these modes do offer explanatory power. These results
suggest that the a priori modal definitions assumed here are reasonable. These results suggest
that measures that reduce the frequency or intensity of acceleration events may have significant
benefits.
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Modal emission rates tend to be similar for the same vehicle even if the distribution of the
amount of time spent in each mode differs. Thus, modal emissions can be used as a means for
benchmark comparison of the same driver/vehicle pair operating on different routes. If the
modal emissions are similar, asis expected, then differencesin trip emissions will be attributable
to differencesin the distribution of driving modes. Thus, in addition to being a useful output of a
model, evaluation of modal emissions isimportant in developing the model and understanding
factorsthat lead to differences in mesoscale emissions predictions.

The above considerations typically apply both to light duty and heavy duty vehicles. However,
for heavy duty vehicles, as previously discussed, other factors may potentially be significant,
such as the passenger/cargo load. The modal behavior of diesel engines may differ from that of
gasoline engines, such as for HC emissions. As previously noted, the emission rate of HC tends
to beinsensitive to large variations in equivalence ratio. Because the average equivalence ratio
may differ among the driving modes, but within the range for which HC emission rates are
relatively insensitive, it isaso likely that diesel HC emissions may not differ substantially
among the driving modes. Therefore, the modal definitions used for heavy duty vehicles may
produce different results from those obtained for light duty vehicles.

2.2.3 Macroscale Analysisfor On-Road Vehicles

Macroscale refers to analysis over alarge regiona area (e.g., county, state, nation), for which
emissions are estimated using aggregated analysis techniques (NRC, 2000; EPA 2001). Asa
general rule, it is preferred to obtain macroscal e estimates based upon aggregate of datafrom a
finer resolution scale. Specificaly, for example, it is better to start with second-by-second on-
board emissions data than it would be to start with trip-average based dynamometer test data.
With finer resolution data, there is always the option of partitioning or analyzing the datain ways
to take into account key explanatory microscale or mesoscal e variables that might affect
macroscale emissions, or that might allow the same data and model to be used for multiple
purposes in analyzing problems at al three scales. For example, because real world emissions
are often highly influenced by localized high emission rates, macroscale emissions may be
influenced by peak measures of vehicle equivalence ratio, fuel use, or power demand, rather than
average values of these. At the sametime, it is till possible to ook at the effect of trip-average
explanatory variables. Relations between emissions and explanatory variables such astrip
average speed and average ambient temperature might be examples for this type of analysis.
Some of these variables, such as ambient temperature, do not fluctuate substantially during a
typical trip and therefore are more naturally treated as trip-average or macroscale variables.

As part of previous work, researchers at NCSU devel oped rel ations between emissions and
explanatory variables including average speed, ambient temperature, humidity, air condition
usage, traffic flow, vehicle type, driver effect, and signal coordination condition using Analysis
of Variance (ANOVA) techniques (Frey et al., 2001). Based upon these analyses significant
parameters were identified and their relation to emissions were developed. Asjust one example,
in Figure 2-6 arelation between corridor average speed and HC emissions are given for repeated
runs of one of the tested vehicles driven on a specific corridor.
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Figure 2-6. Illustration of a Macroscale Relationship between Corridor Average HC emissions
and Corridor Average Speed (Source: Frey et al., 2001).

Each point in Figure 2-6 represents run-based averages of HC emissions, given in alog grams
per miles basis, as collected by on-board equipment corresponding to the corridor average speed
measured for that run. HC emissions vary from 0.08 to 0.35 grams per mile whereas speed varies
from 15 to 40 mph for this particular vehicle over the multiple runs. Thereis an inverse relation
between HC emissions and average speed, as indicated by non-parametric regression fit to the
data. Thereisaso substantialy variability in the data not explained by the trend line, indicating
that amodel based only on average speed has limited explanatory power. For example, for a
given average speed, the unexplained variability in HC emissions is approximately plus or minus
30 percent.

Previous work by the project team (Frey et al., 2001) has revealed that there are statistically
significant trends between trip or segment emissions with respect to macroscopic traffic
parameters such as number of stops and control delay. Thus, these macroscopic traffic
parameters offer some explanatory power with respect to emissions.

Chapters 3 and 4 provide the details of the data and analyses employed to develop conceptual
models for both LDGV and HDDV, respectively.
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2.3  Technical Approach for Nonroad Vehicles

The previous section has focused on on-road vehicles. In this section, the focusis on nonroad
vehicles. There are some key differencesin the factors that influence nonroad vehicle emissions
that lead to substantial differencesin how such vehicles should be analyzed, compared to on-
road vehicles.

It is useful to begin with some examples of nonroad vehicles as a basis for discussing approaches
for estimating their emissions. It should be noted that thereis a great deal of variability among
nonroad vehicle categories, and a three-month project is not able to address all of these. EPA
provided datafor only three compression ignition (Cl) construction vehicles as the basis for
exploring conceptual approaches to model development. Thus, it is not possible to explore
guantitatively a methodology for spark ignition (SI) nonroad data in this project. An example of
an important SI nonroad source category islawn and garden equipment. At the sametime, it
should be noted that the current laboratory-based approaches for measuring emissions from both
Cl and Sl nonroad sources share many similarities. Test procedures based upon weighted
averages of emissions measured over multiple steady state modes are commonly used. The
testing modes are typically characterized by a specified engine load range, sometimesin
combination with a specific engine RPM. Frey and Bammi (2002a) report on development and
analysis of alawn and garden (L& G) equipment database, while Frey and Bammi (2002b) report
on development and analysis of a construction, farm, and industrial (CFl) equipment database,
with more specific information regarding specific testing cycles used, such as the SAE J1088
procedure used for lawn and garden equipment and the 21-mode and similar tests used for CFI.
Thus, it is conceivable that an approach that has been tested for CI data may also prove useful in
the future for SI data. The steady-state modal-based test methods have been applied in the past to
both gasoline and diesel nonroad vehiclesin many emission source categories. As an additional
example, emissions from railroad diesel locomotives are typically measured at one of alimited
number of throttle settings, which is also suggestive of amodal approach to emissions
measurement. Thus, thereis ahistory in which amodal approach has been used to measure
emissions from avariety of nonroad vehicles.

Cl nonroad sources are manifold, and it is not likely that a technique developed specific to one
will be applicable to another, at |east in terms of specific definitions of individual modes.
Perhaps stated another way, a single technique applied to al ClI sources may help explain some
variability in emissions. However, if activity patterns specific to particular ClI nonroad source
categories are not considered, opportunities may be lost to better explain emissionsin individual
cases. For example, consider a backhoe versus arailroad locomotive. A backhoe may typically
operate over avery small area, with most of the engine load associated with the weight of
material in the backhoe's bucket and the range of motion of the backhoe in lifting and turning
with the load. In contrast, the railroad "road" locomotive may travel at constant speed over a
long distance, with engine load influenced by road grade and the weight and load of the train.
Railroad engines that operate over the road are typically operated at specific throttle settings
which vary at different points during the trip. Backhoes may typically operate with more
transient engine loads.
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2.3.1 Microscale Analysisfor Nonroad Vehicles

Many nonroad emission sources are measured using "mode" based approaches (e.g., Bammi and
Frey, 2002a&b). The definition of modes for nonroad sources is different than that used for on-
road sources. For nonroad sources, modes typically refer to specific combinations of throttle
setting, engine speed, engine load, and/or torque. Such modes are not directly related to vehicle
speed and acceleration as are the modes typically used for on-road sources.

For the prediction (validation) data set, EPA provided data regarding emission rates of NOy and
CO,, and regarding relative humidity, ambient temperature, barometric pressure, engine RPM,
and exhaust flow (a surrogate for load). Therefore, these five latter quantities are the available
primarily candidates for development of a conceptual model. Static data regarding the
characteristics of the nonroad vehicle, such as engine size, number of cylinders, rated
power/speed, weight, model year, mileage/hours, fuel delivery system, and fuel type, were also
provided. However, because data were provided for only three individual nonroad vehicles,
there is not sufficient datato develop amodel that is afunction of alarge number of static
attributes.

The analysis of nonroad vehicles will differ in some ways than that for on-road vehicles. For
example, vehicle speed is not a useful explanatory variable for many nonroad sources, although
it isimportant for both LDGV and HDDV vehicles. However, comparison of engine parameter
traces, such as traces for engine RPM and exhaust flow (a surrogate for engine load) gives some
useful information regarding the events causing high emissions for nonroad vehicles. This
analysisislikely to be vehicle technology-specific since different vehicle technology classes
might have activity patterns that influence emissions (e.g., consider the example of the backhoe
versus the railroad locomoative). For this reason, statistical methods and knowledge from current
measurement techniques for nonroad vehicles were utilized to help understand and identify these
effects.

The main focus of this particular subtask, therefore, is on microscale second-by-second analysis
of datato gain fundamental insight into factors influencing variability in emissions, with the
purpose of devel oping a meso-scale model based upon modes. A meso-scale model can be used
to estimate emissions at higher levels of aggregation, such as for macroscale analyses. Data
visualization includes devel opment of time traces and scatter plots of second-by-second data.
Statistical methods were used guided by hypotheses regarding physical principles underlying
emissions. A key objectiveisto identify variables that are more readily observable in order to
reduce the data input requirements for estimating nonroad vehicle emissions. It is aso possible
that static features of the equipment, such as engine size or rated horsepower, may play an
important role in dividing the nonroad data into separate categories for analysis.

Although not likely to be directly relevant to the scope of the current project, along-term area of
promise for nonroad sources is the use of GPS-based techniques to identify emissions hotspots.
Identification of hot-spots and correlation with other activity datawill give more insight to
events causing high emissions.
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Table 2-1. Test conditions for 13-mode and 21-mode Test Procedures.

13-modetest 21-modetest
Mode | Engine Speed Mode | Mode | Engine Speed Mode
g(r pr%) Load Weight g(r pr%) L oad Weight
1 Low Idle None | 0.0667 1 Low Idle None | 0.0667
2 “Intermediate | None 0.08 2 “Intermediate | None | 0.0444
3 Intermediate | 12.5% | 0.0444
3 Intermediate | 25% 0.08 4 Intermediate | 25% | 0.0444
5 Intermediate | 37.5% | 0.0444
4 Intermediate | 50 % 0.08 6 Intermediate | 50% | 0.0444
7 Intermediate | 62.5% | 0.0444
5 Intermediate | 75 % 0.08 8 Intermediate | 75% | 0.0444
9 Intermediate | 87.5% | 0.0444
6 Intermediate Full 0.08 10 Intermediate Full 0.0444
7 Low Idle None | 0.0667 11 Low Idle None | 0.0667
8 Mfr's. Rated Full 0.08 12 Mfr's. Rated Full 0.0444
13 Mfr's. Rated | 87.5% | 0.0444
9 Mfr's. Rated 75 % 0.08 14 Mfr's. Rated 75% | 0.0444
15 Mfr's. Rated | 62.5% | 0.0444
10 Mfr's. Rated | 50 % 0.08 16 Mfr's.Rated | 50% | 0.0444
17 Mfr's. Rated | 37.5% | 0.0444
11 Mfr's. Rated | 25% 0.08 18 Mfr's.Rated | 25% | 0.0444
19 Mfr's. Rated | 12.5% | 0.0444
12 Mfr's. Rated | None 0.08 20 Mfr's. Rated | None | 0.0444
13 Low Idle None | 0.0667 21 Low Idle None | 0.0667

* Peak torque speed or 60 % of rated speed, whichever is higher
Source: (Hare and Springer, 1973).

2.3.2 M esoscale Analysisfor Nonroad Vehicles

In devel oping emissions estimation methodol ogy for nonroad vehicles, one of the approachesis
to determine modal emissions rates. Current methodology for nonroad vehicle emissions
estimation is based upon laboratory-based modal emissions estimates. For example, for CFl
nonroad vehicles test cycles are typically characterized by a number of steady-state "modes.”
Each steady-state mode typically involves operation at a specified engine speed or type of speed
and load (i.e. idle, low, intermediate or rated) for a given length of time. For CFl engines, the
typical tests used include the 8-mode, 13-mode, 21-mode and 23-mode procedures. Asan
example of thistype of test, the modes are summarized for both the 13-mode and 21-mode tests
in Table 2-1. These two tests are used for Cl-based CFl sources. In these cases, engine speed
(RPM) and engine load are the key determinants of each mode.

Modal analysis can be developed using engine RPM, and load asindicated in Table 2-1, and
based upon the lessons learned from microscal e analysis of the data. For example, from second-
by-second traces of emissions versus time compared with engine RPM versus time, engine load
versus time, and other time traces, it is possible to identify, qualitatively, situations that lead
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Table 2-2. Results of the Uncertainty Analysis of Mean NOx and THC Emission Rates for
Diesel and Gasoline fueled CFI Enginesin units of g/hp-h.

Categor Pollut- Units # of Fi_tte(_j Mea | 95% CI on Rel ati.ve
egory ant Data | Distri. n® Mean ” Uncertainty °
Gasoline NOy g/hp-hr 4 WE 458 | 3.11-6.33 -32% t0+38%
THC g/hp 4 WE 105 | 822-123 -22% to+17%
Diesd 2S NOy g/hp 4 WE 168 | 13.2-20.2 -21% to+20%
THC o/hp 4 WE 149 | 0.78—-222 -48% to+49%
g/gal 15 LN 149 126 -177 -15% to+19%
NOy g/hr 20 GA 1670 | 1220 - 2140 -27% to+28%
Diesd 4S g/hp-hr 37 LN 846 | 7.62-9.37 -10% to+11%
g/gdl 15 GA 16.7 | 11.5-223 -31% to+34%
THC g/hr 20 GA 133 90.3-176 -32% t0+32%
g/hp-hr 37 WE 125 | 0.93-1.58 -26% to+26%

& Mean of 500 Bootstrap Samples

® Numbers shown here are for the 95 percent confidence interval of the mean obtained from bootstrap simulation in
terms of absolute emission rates

¢ Numbers shown here are for the 95 percent confidence interval of the mean obtained from bootstrap simulation in
terms of relative deviation from the mean.

WE =Weibull, LN= Lognormal, GA = Gamma

to periods of high emissions. With thisinsight, definitions of modes are developed and tested to
arrive at a set of modes that lead to statistically significant differences in emissions wherever
possible. We seek to avoid creating alarge number of modes that are redundant with each other,
aswell asto avoid creation of modes that are sparsely populated with data. For example, the
modesin Table 1 were clearly defined a priori based upon arbitrary engine speeds and engine
loads. We have not seen any evaluation that offers comment as to whether it isreally necessary
to have as many as 13 or 21 modes to explain variability in emissions. Nor isthere information
reported in the emissions test studies as to whether CFl vehiclestypically operatein all of the a
priori defined modes during real world operation.

Consistent with our objective of quantifying both variability and uncertainty, the range of
variability in the data and the portion of observed variability that cannot be explained by the
model were characterized. Although there were not sufficient datain this project to estimate
emission factors for alarge range of emission sources, examples of recently developed
uncertainty estimates for nonroad emission factors are reported in Table 2-2. The examples are
for CFl emissions for nitrogen oxides and total hydrocarbons for CFl (Frey and Bammi, 2002b).
The variability in emissions was quantified using empirical and parametric distributions.
Bootstrap simulation was used to characterize confidence intervals for the fitted distributions.
Table 2-2 gives results of the uncertainty analysis of mean NO, and THC emission rates for
diesal and gasoline fueled CFI engines in units of g/hp-h.

Results presented in Table 2 show that relative uncertainty in emission rates for THC and NOx
range from plus or minus 10 percent to amost plus or minus 50 percent. As stated by NRC
(2000), determining uncertainty and variability for emissions estimates is important for users to
interpret emission estimates and the appropriate use of those estimates, and can provide
confidence to policy-makers making decisions based on associated anal yses.
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2.3.3 Macroscale Analysisfor Nonroad Vehicles

Current nonroad modeling techniques, such as EPA’s NONROAD and California Air
Resources Board’'s (ARB) offroad models, are based upon macroscale analysis (EPA, 2001). In
this study, results obtained from microscale and mesoscal e estimates are used and aggregated
data are utilized for macroscale level analysis, such asto predict emissions for an entire "trip" or
for atypical period of operation. In macro-scale analyses using current models, emission factors
are typically divided into categories by equipment type and engine size. Thereis not sufficient
datain this project to explore such categories. In future work, with larger data sets representing
alarger number of different pieces of equipment, it will be important to explore whether the pilot
data support disagregation by equipment type and engine size. Possibly, there are some other
factors that should be considered to which emissions may be sensitive, such asthe variation in
the distribution of engine load, which in turn might be a function of the application of the engine.
Examples of applications include bulldozers versus backhoes, which would have different
activity patterns.

Chapter 5 provides the details regarding the data and analysis for the nonroad examples provide
by EPA. Several specific approaches were explored for each of three pieces of equipment,
including the development of atime series model, development of asimple modal model,
development of amodal model with linear regressions in each mode, and development of a
multiple linear regression model. These are detailed in Chapter 5.

2.3.4 Commentson Other Pollutants; PM, Greenhouse Gases, and Air Toxics

EPA did not provide data regarding PM, greenhouse gases (other than CO,), or air toxics as part
of this project. Therefore, emissions of these pollutants cannot be analyzed quantitatively as part
of thiswork. The general methods and procedures demonstrated for HC, CO, NOy, and CO, for
on-road sources, and for NOy and CO, for nonroad sources, are a useful starting point for

devel oping techniques for modeling PM, greenhouse gases other than CO,, and air toxics.
However, without data it is not possible to make other than general statements about what
methods can be used for these other pollutants. However, it must be recognized that there are
substantial data gaps, as limited data are available only for a subset of key air toxicsidentified in
EPA'slist of 33 urban air toxics or in the larger list of almost 200 HAPs. Methods for measuring
these other pollutants using on-board emissions measurement systems are not yet well-
developed. Thus, there will likely continue to be areliance on alternate emissions data for these
pollutants for some time, as discussed in Chapter 7.

24  Summary

This chapter has presented a general approach for analyzing and modeling emissions from
selected mobile source emission categories, and has provided illustrative details and discussion
regarding specific analysis and modeling methods. Key aspects of the approach used in this
work include visualization of data, the use of statistical methods for model development, and
quantification of variability and/or uncertainty in model predictions. The next three chapters
focus on the details of the analysis and model development for LDGV, HDDV, and nonroad
vehicles, respectively.
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3.0 CONCEPTUAL MODELING APPROACH FORLIGHT DUTY GASOLINE
VEHICLES

In this section, the conceptual model devel opment approach for Light-Duty Gasoline Vehicles
(LDGV) is presented. On-board data for selected LDGV s were provided by EPA as the basis for
developing and demonstrating a methodology for modeling CO, NOy, HC, and CO, emissions.
NCSU had no control over study design or data collection pertaining to the LDGV data.

The following section presents data post-processing methods that were required to form an
accurate emissions and explanatory variables database. Quality checks were aso conducted on
datain order to identify and remove any errors from the database. Exploratory analysis of the
datais described in Section 3.2. Section 3.3 describes the development of conceptual model. A
summary of the development and demonstration of the model is given in Section 3.4.

3.1 Data Post-Processing

In this section, methods for data post-processing are discussed. Thiswork isimportant in
developing an accurate database, and it includes developing protocols for data post-processing,
discussion of possible errorsin the dataset, and methods for making corrections.

3.1.1 Database Formation

Datafor Light-Duty Gasoline Vehicles (LDGV) were provided by EPA to NCSU in comma
delimited format. These files were converted into Microsoft Excel™ format since Microsoft
Excel ™ was used as the main environment for data analysis and model development.

A total of 12 files were provided for the purpose of model development. Each file represents data
collected with a different vehicle. These vehicles are of model years between 1996 and 1999 and
have an engine size ranging from 1.9 litersto 3.1 liters. All of these vehicles are fuel injected

(FI) and have 3-way catalysts.

Preliminary analysis of individual files indicated that the format for some files was different
although the same data were reported. A Visual Basic program was written to read files with
different formats and create new files with a consistent format so that a database with asingle
format is obtained. The data fields included in each file are summarized in Table 3-1.

Each Excd file included datafor one vehicle driven on different trips. Trips were separated into
different worksheets for each file using a Visua Basic program. Thisis essential since atripis
the basic unit for our analysis. After separating data into different tripsit was observed that the
number of tripsis not the same for each vehicle. For example, seven trips were conducted with
Vehicle 2, whereas only one trip was driven using Vehicle 18. The durations of the trips were not
the same. The duration of the trips ranged from 124 seconds, for Trip 3 conducted with Vehicle
12, to 4,249 seconds with Vehicle 18.

In the next step of data-processing, variables which might be helpful in explaining variability in

vehicle emissions, but that were not provided in the original data set, were estimated. These
variables include acceleration and power demand.
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Table 3-1. List of Parameters given in LDGV Data Set Provided by EPA

Category Parameters

Vehicle Engine Size; License number;

Characteristics Instrument configuration number

Ambient Relative humidity (%); Ambient temperature (in both °C and °F
Conditions unit); Barometric pressure (in both kPa.and in Hg unit)
Roadway Latitude (degree); Longitude (degree);

Characteristics Altitude (feet); Grade (%)

Vehicle Activities | Mass Air flow (g/sec); Intake air temperature (°F);

Intake air temperature Ford (°F); Coolant Temperature (°F);
Engine load (%); Percent throttle (%); Date; Time,

Vehicle speed (mph); Engine RPM; A/C (on/off);

Fuel Consumption rate (Ib/sec); Intake manifold pressure (in Hg);
Short-term fuel trim bank 1 and 2, lambda bank 1 and 2;
Transmission _gear;

MIL status, Number of diagnostic trouble codes

Vehicle Emission HC, CO, NO, CO, and O, emission
(in PPM, g/sec, g/kg fuel, g, g/mi units)

Acceleration is estimated from the observed speed by taking second-by-second differencesin
speed. However, to account for the effects of road grade, the estimate of acceleration is
modified. Asindicated by Bachman (1999), gravity exerts aforce on avehicle that must be
counteracted. Therefore, the acceleration effect of road grade should be included in order to
estimate the effective acceleration. The effect of road grade on acceleration can be quantified as:

Acceleration (mph/sec) = 22.15 (mph/sec) x Gradient (%) (3-1)

where 22.15 (mph/sec) represents the accel eration due to gravity. For example, a vehicle that
maintains a constant speed along afour percent road grade must accelerate 0.89 mph/sec to
counteract deceleration due to gravity. In this study, second-by-second observed acceleration as
well as acceleration due to gravity were estimated using a Visual Basic program and were
incorporated to the data set.

Vehicle emissions are product of the engine combustion process which is the result of power
requirement or demand from the engine. Previous studies have shown that a relation between
power demand and emissions of some pollutants, such as CO, can be established (e.g., Barth et
al., 1997; Bachman, 1999).

Severa different approaches have been proposed by others for estimating power demand. These
approaches range from complex models where power demand is estimated for different specific
components of engine load to coarse approximations. The selection of an appropriate model
depends on the type of dataavailable. Complex models require detailed information regarding
the vehicle and its environment, such as wind resistance, air density, transmission efficiency and
drive-train efficiency. In this study an approximation widely used by researchersis employed
(e.g., Barth et al., 1997; Bachman, 1999). The equation used for power demand estimation is:
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P=vxa (3-2

where:
P = Power Demand (mph?/sec)
Vv = Vehicle speed (mph)
A = Vehicle acceleration (mph/sec)

For each trip, second-by-second power demand was estimated with a program written in Visual
Basic.

3.1.2 Data Quality Assurance/Quality Check

For quality assurance purposes, the data set for each vehicle trip was screened to check for errors
or possible problems. The types of errorstypically encountered from on-board data collection of
vehicle emissions are explained in elsewhere (Frey et al., 2001). In developing an experimental
design one should consider possible sources of errors for data collection. Since the experimental
design in this study was not developed by NCSU, the NCSU study team had no control over
these errors. Therefore, in this study the focus was to check for errors and correct them if
possible. The most common errors indicated by Frey et al. (2001) are: loss of data; negative
emissions estimates; synchronization errors between engine and gas analyzer data; errorsin
instrument reporting updates; and drift in emissions data. Each of these is reviewed here.

Loss of Data: There might be several reasons for loss of data. On occasion, communication
between instruments might be lost, leading to loss of data. Another reason for missing data may
be the failure of a particular vehicle to report a particular variable. In this study, aVisual Basic
program was written to look for partial or full loss of datain each trip for all available emissions
and explanatory variables. Table 3-2 summarizes the result of this check.

Asseen in Table 3-2, some of the parameters are missing in nearly all of the data sets. For
example, manifold absolute pressure is missing for eight out of the 12 vehicles. Similarly,
throttle percent is missing for eight of the vehicles. The absence of some of these variables meant
that other possible explanatory variables, such as equivalence ratio, could not be estimated.

Negative Emissions Values. Because of random measurement errors, on occasion some of the
measured concentrations might have negative values that are not statistically different from zero
or asmall positive value. However, in situations where zeroing may have occurred in the
presence of reference air containing significant amounts of a pollutant, the instrument may
systematically report negative emission values. In this study, a programin Visual Basic was
written to check for the presence of negative emissions estimates in the data set. It was found that
some trips contained a large frequency of negative values for HC emissions. The trips which had
negative emissions estimates and the number of seconds of such estimated are reported in
Appendix A. For example, Vehicle 12 Trip 1 has 2,036 seconds of negative HC emissions
values, where as the total trip lasted for 2,160 seconds. This problem was discussed with Sensors
Inc., company responsible for data collection. It was suggested by Sensors that negative data
should be set to zero. Therefore, negative HC emissions were set to zero for all of the cases
where negative data were found.
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Table 3-2. Summary of Loss Data Check

Parameters Vehicles Trips | Notes

Mass Air Flow (g/sec) 5,7,15,16 All Missing

Manifold Absolute Pressure (Hg) | 2,6,11,12,13,14,17,18 | All Value equalsto zero
Coolant Temperature (°F) 7 All Missing

Throttle (%) 2,7,11,12,13,14,17,18 | All Missing

A/C compressor (On/Off) 6,7,15,16 All Missing

MIL (On/Off) 7,11,12,13 All Missing

Exhaust Temperature (°F) All the vehicles All Value equals to zero
Torgue (ftlbs) All the vehicles All Value equalsto zero
Inlet Air Temperature (°F) 2,11,12,13,14,15,17,18 | All Missing

Altitude (ft) 7 1 Value equals to zero

Synchronization Errors. From previous research (Frey et al., 2001) it is known that in some
cases, such as because of blockages in the gas sampling line, the time delay of the response of
the gas analyzer may increase, leading to a discrepancy in the synchronization of the gas
analyzer and the engine data streams. It was found from the previous research that the relation
between the time series of CO emissions and engine RPM could indicate the presence of a
synchronization error. CO emissions tend to increase at the same time as arapid increase of
engine RPM. Some spot checks were conducted on the data files for synchronization errors. An
example plot of CO emissions versus engine RPM is presented in Figure 3-1 where part of the
trip for Vehicle 12 Trip 1 is used.

As seen in Figure 3-1, at the 1699™ second there is an increase in engine RPM from 1082 rpm to
approximately 3900 rpm in seven seconds. For the same period CO emissionsincrease from 0.1
to 5.1 volume percent. There seems to be delay of 2 seconds in the CO data. After contacting
Sensors on thisissue, it was reported that during data collection the transfer time for collection of
gas is measured and data are aligned based upon the measured time delay. From the Frey et al.
(2001) work, it was found that small errors in synchronization do not substantially impact
estimate of total trip emissions. Therefore, it is assumed that there is no significant error due to
synchronization in these data.

Freezing of instrument: From previous research, it is known that during data collection
sometimes the instrument “freezes’” and does not update the readings each second although the
vehicle is moving and there is a change in engine and environmental conditions. A lack of
change in reported emissions concentrations might occur when emission readings are very low
and the instrument cannot detect any changes. However, if "freezing" occurs at high emission
values, then there may be an instrument error. A Visual Basic program was written which
checks variables for this kind of error. Variables checked for this error included: Mass Air Flow;
Engine RPM; Torque; Latitude; Longitude; Fuel Consumption (Ib/sec); HC emission (g/sec); CO
emission (g/sec); CO, emissions (g/sec); and NO emissions (g/sec). All of the cases where the
variables were not updated for more than 60 seconds were recorded in atable. In some of these
cases emission levels were very small. In such cases, changes in emissions were most probably
below the detection limit of the instrument and the instrument could not update the readings.
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Figure 3-1. Comparison of Engine RPM with CO Emissions for Checking the Presence of
Synchronization Error for Vehicle 12 Trip 1.

Table 3-3. Summary of Freezing Check for Instrument Readings

Number of Seconds
Vehicle Trip Parameter without Update Frozen Value

7 1 Latitude (deg) 1495 42.304

7 1 Longitude (deg) 1495 -83.711

12 1 NO (ppm) 308 149

13 2 NO (ppm) All 0

15 2 NO (ppm) 79 369

15 2 NO (ppm) 126 137

16 5 NO (ppm) 231 139

These cases were not considered as errors. However, cases where the emission readings did not
update for more than 60 seconds and stayed at high values were considered as errors. Table 3-3
presents the findings where emission levels are stuck high values as well as parameters that have
the same value throughout the trip.

Table 3-3 summarizes the cases where freezing of the instrument occurred at non-zero values or,
in one case, for an entiretrip. For Vehicle 7 Trip 1, the GPS device reported the same reading for
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Figure 3-2. Example Check for Drift Error for Vehicle 2 Tripl for CO Emissions

the entire trip. Therefore GPS data for thistrip were not used. There are four cases where NO
emissions were stuck at high values for more than 130 seconds. After discussing with Sensors,
these data were excluded from analysis since this was probably caused by an error in the
instrument. For Vehicle 13 Trip 2, it was found that NO emissions were reported as zero
throughout the entire trip. Datafor NO emissions for thistrip were also excluded from analysis.
It was observed that data collected for Vehicle 13, except for the first trip, had a problem
reflected in the O, measurements. In these data sets, the O, measurements were in the range of
eight to nine volume percent. The O, level should be much lower than this. The high O, level is
an indication of aleakage of ambient air into the system during data collection. After discussion
with Sensors Inc., datafor Vehicle 13, except for the first trip, were excluded from analysis since
an error in O, level would effect measurements of all other pollutants.

Drift in data: From previous research it was found that a drift in emissions data might occur due
to instrument error. In order to check this problem, one can look at time series plots of emissions
data. If thereisaclear indication of downward or upward trend in the data, and if this trend can
not be explained by changes in explanatory variables, then one might suspect a drift error in the
data set. In this study, spot checks were made to see whether this kind of error was present in the
database. Figure 3-2 presents an example check conducted for Vehicle 2 Tripl for CO emissions.
During the first 300 seconds of the trip CO emissions are relatively high. Thisis due to the cold-
start process. After the first 300 seconds, the emissions stabilize. The minimum emission values
in any timeinterval after the cold-start are consistent, indicating no drift. Similar checks were
conducted for each vehicle and it was determined that there was no drift error in this data set.
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3.2  Exploratory analysis

After database formation and screening the data for errors, an exploratory analysis was
conducted to better understand the variability of vehicle emissions and the basic trends between
explanatory variables and vehicle emissions. This exploratory analysisis a necessary step before
developing any relationships between vehicle emissions and explanatory variables.

This section first presents a summary of the data provided for emissions and engine related
variables. Then variability in the emissions data is presented. Scatter plots were utilized for data
visualization purposes. Spatia analysis of emissionsis aso given. ldentification of cold-start is
subsequently discussed. Finally, the findings of the exploratory analysis are summarized.

3.2.1 DataSummary

After the post-processing procedure was completed, 51 valid trips were obtained for 11 different
vehicles. An example of the summary of the emissions and activity data as well as of
environmental and roadway characteristicsis given for Vehicle 2 in Table 3-4. Summary tables
for the other vehicles are given in Appendix A.

The datain Table 3-4 are divided into several categories. These categoriesinclude: vehicle
characteristics; variables related to vehicle operation; environmental characteristics; and roadway
characteristics.

There were seven trips conducted with Vehicle 2 as shown in Table 3-3. Five of these trips were
conducted on the same day and two of them on another day. The durations of the trips ranged
from 927 seconds to 2,026 seconds. The average speed of the trips differed from each other. The
slowest average speed occurred for Trip 2, with an average speed of 29.8 mph, whereas the
fastest average speed occurred for Trip 3, with an average of 57.9 mph. Ambient weather
conditions during these trips were similar. The average temperature ranged between 19.8 °C and
29.3 °C and average humidity varied between 29 percent and 40 percent. Changesin operation
conditions as well as changes in environmental conditions and roadway conditions resulted in
differences in average emissions. For HC emissions, the highest average emission rate is more
than four times higher compared to the lowest average emission rate. The ratio of the highest trip
average emission rate to the lowest trip average emission rate is smaller for the other pollutants
for Vehicle 2. However, there are other vehicles which have ratios higher than 15, asin the case
of HC emissionsfor Vehicle 17 when comparing Trip 1 and Trip 5, as shown in Appendix A.
These results indicate that there is a considerable amount of variability in the data. The next
section will present thisissue in more detail.
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Table 3-4. Summary of Datafor Vehicle 2

Vehicle Mo 2

Trips Trinl Tripna Trip3 Tripd Tripd | Trip& | Trip?
Vehicle Characieristics

FPlate Mo SCCHAL

Vehicle Make FORD

Vehicle AModel TATRIS GL

Vehicle AModel Year 1997

[Engine Displacemeni(]) 3

Transmission Type LTITO

GYWE 6T

Vehicle Operation

Average Speed (mph) 324 BE 6.0 379 345 307 225
Average Engine Load (%) a0 9 33 34 3 ad 23
Average EFM 1693 1530 2171 2241 1591 1550 1520
Average Throtile (%) 0 0 0 0 0 0 0
dveraze Inlet Air Temperature (F) ML ML it ML Wit it Hik
dverage Coolant Temperature (F) 200 199 202 198 192 187 179
Average MAF (gisec) 1590 1435 2196 2364 1541 1557 1585
Average Fuel (Thisec) 00024 | 00021 | 0.0033 | 0.0036 [ 0.0023 | 0.0024 | 0.0024
Average Power Demand (s*a) 0.a9 148 0.45 0.44 114 1.17 0.85
Average HC (gisec) 00035 | 00021 | 00009 00029 [ 00034 | 00031 ) 0.0022
Average CO (gisec) 00436 | 00329 | 00361 00389 [ 00428 | 00351 | 0.0392
Average CO2 (glzec) 33882 | 30126 | 46758 | 0972 [ 32764 | 33537 | 34104
AverageNO (g/zec) 00091 | 00096 | 00124 { 00121 [ 00075 | 00100 | 0.0051
Environmental Characieristics

Average Amhient Temperature (C) 03 253 283 265 243 19.8 a1y
dverage Amhient Pressure (kP4) Q0.0 Qa0 2.0 2.0 290 280 290
Average Humidity (%6) 29 33 30 34 39 38 40
Roadway Characieristics

Average Latitude (degree) 4225 | 4213 4228 4228 4212 | 4212 | 4213
Average Longitude {degree) -23.00 | #3793 | B34l [ -Baal -B302 | B3| B3
Average Altitude (feet) 21 210 B35 245 T T 124
Average Grade (%) -0.040 | 0251 | -0090 0.02% 0241 | -021é | 0117
Time of Day 17:A1:11 | 18:57:25 | 19:37:49 | 22:00:52 | 2328230 | 30914 | T:42:36
Day of Week Q420 Q020 2120 9120 2120 a1l Bi21
MNumber of Seconds of Data 1115 1036 2026 1931 Y 1051 1118

3.2.2 Variability in Emissions Data

In this section, data are presented to illustrate the variability in observed data. For this purpose,
trip-average emissions rates were utilized. First, inter-vehicle variability is presented. In
estimating inter-vehicle variability, average emission rates were estimated for each vehicle using
the trip-based averages. For vehicles which have multiple trips, a confidence interval for the
mean was estimated. Figure 3-3 presents inter-vehicle variability for CO emissions. Inter-
vehicle variability for other pollutantsis given in Appendix A. Confidence intervalsfor the
mean could not be estimated for Vehicles 13 and 18 since there was only one trip in the screened
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Figure 3-3. Trip-Based Mean CO Emission Rates for Light-Duty Gasoline Vehicles

data set for these vehicles. As noticed in Figure 3-3, the confidence interval on the mean is
typically large on arelative basis since the maximum number of multiple runs with the same
vehicleisnine, for Vehicles 14 and 16. On arelative basis, the typical narrowest confidence
interval for the meanisfor Vehicle 2, at plus or minus 12 percent, and the widest confidence
interval is at plus or minus 98 percent, for Vehicle 7. Therefore, for most of the cases there are
not statistically significant differences between the average CO emissions rates for different
vehicles. However, there are some cases in which a given vehicles appears to be emitting more
than others. For example, the average CO emission rate for Vehicle 2 is significantly higher than
average CO emission rate for Vehicles 5, 6, and 7, since the confidence intervals for the mean
values of Vehicle 2 do not overlap with the confidence intervals on the mean for Vehicles 5, 6,
and 7. The effects of ambient conditions, roadway conditions and vehicle operation conditions
were not controlled during data collection, and these factors may account for some of the
observed differences in average vehicle emissions.

Inter-trip variability was analyzed. The purpose of this analysis was to characterize the range of
variability in trip average emissions among al of the vehicles, to determine whether the data set
isrelatively homogeneous, and to gain insight into whether all of the vehicles can be treated as
one group for purposes of analysis and model development. The trip average HC emission rate
was 0.0018 g/sec for 51 trips conducted with 11 different vehicles. The 95 percent confidence
interval for this mean value ranges from 0.0017 g/sec to 0.0023 g/sec, or arange of
approximately plus or minus 15 percent. Approximately 90 percent of the values are below
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Figure 3-4. HC Inter-Trip Variability and Mean Estimate for Light-Duty Gasoline Vehicles

0.0040 g/sec. Most of the emissions estimates are within arange of an order-of-magnitude (e.g.,
ranging from 0.00030 to 0.0046 g/sec over a 95 percent probability range). In Figure 3-4, the
cumulative distribution function of the datais almost a straight line for data at less than
approximately the 80" percentile, which indicates that these data are approximately uniformly
distributed. Although there is some skewness in the distribution as suggested by the upper tail,
there are no data points that are obvious outliers. Thus, there are no obvious "high-emitter" cases
in thisdata set. Therefore, this data set is deemed to be sufficiently homogeneous that all of the
vehicles within it can and should be treated as a single group for purposes of analysis and model
development. It should be noted that there are some vehicles that have as much variability
among trips as is observed in the overall dataset. For example, for Vehicle 5, the average HC
emissions rate ranges from 0.0007 g/sec to 0.0048 g/sec.

Similar results were obtained for CO, NO and CO, emissions. Most of the emissions estimates
are within arange of an order-of-magnitude for al these pollutants. For CO, emissions range
from 0.0027 to 0.096 g/sec over a 95 percent probability range. For CO,, thisrange is between
0.66 to 5.1 g/sec. Emissions for NO ranges from 0.00057 to 0.012 g/sec over a 95 percent
probability range. Probability distributions for CO, CO,, and NO are given in Appendix A.



3.2.3 ldentification of Explanatory Variables

In this section, factors influencing vehicle emissions are summarized as cited in the literature.
There are mainly four groups of parameters that affect vehicle emissions as indicated by
Guendler (1993). These groups are: (i) vehicle parameters; (ii) fuel parameters; (iii) vehicle
operating conditions; and (iv) vehicle operating environment.

Vehicle Parameters

Vehicle parameters are rel ated to vehicle technology and include vehicle class (i.e., weight,
engine size, horse power), model year, vehicle mileage, fuel delivery system, emission control
system, and on-board computer control system. Studies have shown that vehicle make and model
year are significantly related to vehicle emissions. For example, vehicle emissions are generally
higher for older vehicles (Pollack et al., 1992; Rouphail, 2000; Barth et al., 1997; Stedman and
Bishop, 1999). The effect of other vehicle parameters are investigated in several other research
projects (Bart et al., 1997; Bachman, 1999).

Fuel Parameters

Fuel parameters include fuel type, oxygen content, fuel volatility, hydrocarbons content as
indicated by Guendler (1993). The composition, physical and chemical properties of the fuel can
have significant effects on vehicle emissions (Guender, 1993).

Vehicle Operating Conditions

The starting mode of the vehicle (cold or hot), average vehicle speed, modal activities that cause
enrichment, load (i.e., air condition, heavy load), and driver behavior are examples of vehicle
operating conditions (Guendler, 1993). Cold-start emissions are significantly higher than hot-start
emissions (Singer et al., 1999; An et al., 1996). The magnitude of emissionsis afunction of
commanded air/fuel ratios, catalyst temperature, and engine temperature (Heywood, 1988; Joy,
1992; Pozniak, 1980). In most vehicles, the on-board computer control systemsinitially demand
arich fuel mixture to prevent the engine from stalling (Bachman, 1999).

The equivalenceratio is defined as the ratio of the actual fuel-to-air mass ratio in the engine
divided by the stoichiometric (sometimes referred to as "theoretical") fuel-to-air massratio. If
the engine is operating at stoichiometric fuel-to-air ratio, the equivalence ratio isone. If the
engine is operating with an excess of fuel compared to the air intake, then the engine is running
"fuel-rich" and the equivalence ratio will be greater than one. Conversely, if the engineis
running "fuel lean”, the equivalence ratio will be less than one (Degobert, 1995). Gasoline-
fueled vehicles equipped with athree-way catalyst are computer-controlled to operate very close
to an equivalence ratio of one during most driving. However, if higher vehicle performanceis
required, such as during hard acceleration, the engine will operate in a fuel-rich mode, referred to
as"enrichment.” It iswell known that CO emissions increase during enrichment. NO emissions,
on the other , are highest when the equivalence ratio is approximately one (Degobert, 1995).
Catalytic converters must reach “light-off” temperatures of roughly 300 °C to work efficiently
(Bachman, 1999). Until the catal yst reaches this temperature, the tailpipe emissions are the same
as the engine-out emissions. Once the catalyst warms up, it is effective at substantially reducing
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emissions of CO, HC, and NO. In order to protect the catalyst from overheating during periods
of high engine power demand, the on-board computer of the vehicle commands the engine to
operate fuel-rich. Thisresultsin insufficient oxygen in the exhaust to allow for CO and HC to be
oxidized. Thus, under fuel rich conditions, the catalyst effectivenessis substantially reduced,
and emissions are potentially much higher than during normal vehicle operation.

One of the events that causes enrichment is use of the air conditioner. Air conditioners place an
additional load on the engine. Thisload increases the fuel consumption and can increase the
emissions for a given vehicle speed and road load (EPA, 1993;NRC, 2000).

Driver behavior may also have a significant effect on vehicle emissions since it has an effect on
the frequency and magnitude of enrichment events. Aggressive driving appearsto cause
significantly higher emissions (TRB, 1995; Shih et al., 1997; Shih and Sawyer, 1996; and
LeBlanc et al., 1995).

Vehicle average speed is one of the parameters that has been used as the main explanatory
variable in regulatory models such as the Mobile and EMFAC models. The relation between
emissions and average speed are based upon dynamometer tests using standardized driving
cycles. Speed correction factors were developed based upon driving cycles with different mean
speeds. The FTP emissions (at the mean FTP speed of 19.6 mph) are multiplied by the speed
correction factor for a desired speed to give the emissions at the desired speed. Speed correction
factors are function of vehicle, model year, and pollutant species (NRC, 2000).

Vehicle Operating Conditions

V ehicle operating conditions include the environmental conditions under which the vehicleis
operated, such as humidity, ambient temperature, and road grade.

Ambient temperature is known to affect vehicle emissions. Studies have been conducted to
determine this effect and include them in vehicle emissions models (NRC, 2000). FTP tests are
conducted at 75°F. In order to account for other temperatures, the MOBILE model includes
temperature-correction factors. It has been found by EPA that CO and HC increase gradually
(typically 10-30 percent) with decreasing temperatures from about 80°F to 50°F. Below 50°F,
emissions increase non-linearly (NRC, 2000). Lax (1994) found that there is a 60 percent
increase in HC from 55°F to 35°F (or 3 percent per °F), and a 100 percent increase in CO from
55°F to 35°F (or 5 percent per °F). Humidity is another environmental parameter that might have
an effect on vehicle emissions. Humidity was used with ambient temperature to devel op a heat
index parameter that is used in Maobile 6 to model the effect of A/C (NRC, 2000).

Another parameter that can have an effect on vehicle emissionsis road grade. Road grade affects
vehicle emissions by impacting the load on the engine. Gravity exerts aforce on avehicle that
must be counteracted to maintain a constant speed (Bachman, 1999). In a study conducted by
Cicero-Fernandez and Long (1997), it has been found that there is about 0.04 g/mile increase for
HC for each 1 percent increase in road grade. For CO the reported increaseis 3 g/mile for each 1
percent grade increment. Recent studies include the effect of road grade by estimating the effect
of road grade on acceleration (Bachman, 1999).
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Summary

In this section, variables influencing vehicle emissions were summarized. The explanatory
variables available for model devel opment represent many but not all of the key influences on
emissions identified in the literature review. One of the constraints of this study isthat the
explanatory variables that are available for model validation purposes are only a subset of the
explanatory variables available for model development. Therefore, the conceptual model will
not include variables that are not available in the prediction dataset. The focus of this study was
on using explanatory variables that are available in the prediction dataset or derived variables
that can be estimated from the available ones, such as accel eration and power demand.

3.2.4 Data Visualization

A first step in understanding the relationship between emissions and explanatory variables
includes data visualization. Thisinvolves developing multiple pairwise scatter plots of the
candidate input and output variablesto look for possible empirical relationships among them.
The process of visualization of data also gives the analyst an appreciation for the variability in
the data that may not be explained by any of the candidate input variables. Statistical software
such as SPLUS iswell suited to this type of work and was used in this study.

As an example for data visualization, a scatter matrix prepared in S-Plus for HC emissions and
possible explanatory variables for Vehicle 2 is given in Figure 3-5. Scatter matrices for other
pollutants for Vehicle 2 are given in Appendix A. Explanatory variables plotted in this figure are:
Vehicle Speed (mph); Vehicle Acceleration (mph/sec); Ambient Temperature (°F); Humidity
(graing/Ib air); Altitude (feet); Grade (percent); AC (on/off); Power Demand (mi%/h?.sec). HC
emissions are reported in grams/second. For this figure, second-by-second data collected with
Vehicle 2 are combined from seven different trips making atotal of 9,254 observations.

The bottom row in Figure 3-5 illustrates the relationship between HC emissions (i.e., y-axis) and
explanatory variables. For example, the cell on the bottom left is a scatter plot of HC emissions
versus vehicle speed. HC emissions tend to go down as vehicle speed increases. The highest HC
emission occurs when vehicle speed is approximately 10 mph. Similarly thereis arelationship
between acceleration and HC emissions. For negative values of acceleration, HC emissions are
very low. The highest HC emissions occur for an acceleration of approximately 2 mph/sec. The
relationship between ambient temperature and HC emissions is noisy. The sameistrue for
relationships between humidity or atitude with HC emissions.

HC emissions are highest when road grade is positive and close to zero. This indicates that grade
has an impact on HC emissions but the effect is moderate. HC emissions when A/C is on do not
appear to be substantially different from when A/C is not used for this particular vehicle. HC
emissions are low for negative power demand estimates. HC emissions tend to go up as power
demand increases, but the largest HC emissions occur at less than the maximum power demand
level. This relation indicates the possible explanatory power of power demand for HC emissions.
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A scatter matrix not only presents the rel ationship between explanatory variables and pollutants,

but also shows relations among explanatory variables. For example, there is arelationship

between power and acceleration, which is shown in the second column and second row from the

bottom. Thisis expected since power demand is estimated from speed and accel eration.

It is clear from investigations of the scatter plots that there is a substantial amount of variability
in emissions data and there is not any single explanatory variable that directly explainsalarge

portion of this variability. It is possible that several variables can explain some part of the

variability. The relationship between explanatory variables and emissions may be complex. This
implies aneed to look at a combination of explanatory variablesin order to explain variability in

emissions. For this purpose, both engineering and statistical techniques need to be applied.
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3.25 Spatial Analysis

Spatia analysis alows an evaluation of how emissions change spatially. Thisisimportant to
help identify possible emission hot-spots throughout the trips. The spatia distribution of
emissions can aso be used to estimate emissions for segments of routes representing different
roadway functional classes and to identify variability in traffic flow and emissions for specific
roadway functional classes. Thus, the influence of functional class on emissions can be
evaluated. In addition, the influence of other possible explanatory factors can be explored, such
as traffic congestion, level of service, road grade, traffic control devices, and others.

Second-by-second geographical location of each vehicleis provided since second-by-second x
and y coordinates are reported from the GPS system during data collection. A first step in spatial
analysisisto visuaize the data using Geographica Information System (GIS) software. For this
purpose, ArcGIS, developed by ESRI, was utilized. One reason for selecting ArcGIS is that the
most recent version includes Visua Basic as the programming environment. This is compatible
with other programs that use Visual Basic, such as Microsoft Excel.

This section presents a summary of the procedure applied for visualizing datain ArcGIS.
Information is provided on how roadway facility types were determined to enable a comparison
of pollutants on different roadway types. Finally, a conceptua approach is given for further
gpatial analysis.

In order to visualize data spatially, a GIS layer showing roadways is required. GIS layers that
show roadways for the U.S. can be obtained from the U.S. Census Bureau’ s Topologically
Integrated Geographic Encoding and Referencing (TIGER) system. However, layers available at
the TIGER website do not contain roadway classes. Therefore GIS datafrom TIGER cannot be
used to identify roadway functional classes. A search conducted on the internet reveal ed that the
Michigan Department of Natural Resources (MDNR) has roadway layers that have roadway
classifications. After contacting MDNR, it was found that the roadway classification they use
was based upon United States Geographical Survey (USGS) topographical maps and not upon
the Federal Highway Administration (FHWA) classification scheme. The classification scheme
used by MDNR has only four classes. Class 1isaprimary route, Class 2 is a secondary route,
and Classes 3 and 4 represent a “road or street”. In contrast, other classification schemes are
more detailed in classifying freeways, primary arterials, minor arterials, secondary roads,
feeder/collector streets and others. Since this was the only publicly available roadway layer that
could be readily found, the conceptual spatial analysis was based on this data set.

In using the data obtained from MDNR, GPS data were projected to a map projection of the
roadway layer. For this reason, trip data were imported to ArcGIS and converted to a GIS layer
using the road layer obtained from TIGER. Thisisrequired since trip data can only be converted
to alayer if it is matched against an unprojected map layer. The trip layer was projected into a
specific map projection of aroadway layer obtained from MDNR using a program given by
MDNR. Finaly, the trip data and the roadway |ayer with roadway classifications was shown
together. An example case for trip datafor Vehicle 11, Trip 1 is shown in Figure 3-6.
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Figure 3-6. Example Spatial Data Visualization for Vehicle 11 Trip 1

In Figure 3-6, there are five different roadway types shown with different colorsin the legend.
With the help of GIS analysis, one can visualize how the trip was conducted. For this particul ar
trip, the trip started in Washtenaw County and ended in Wayne County. Almost the entire trip
was conducted on Class 1 roads with asmall part driven on Class 3 roads.

Similar analysis was conducted for all 51 trips. In order to evaluate the effect of roadway
classification on emissions, roadway layer and trip layers were spatially joined using a Visua
Basic program written in ArcGIS. All of the trips were assigned a roadway type for each second.
An analysis of the effect of roadway type was then conducted using the average emission rates
for different roadway types. Figure 3-7 presents result of such an analysis for CO emissions,

plots for other pollutants are given Appendix A.
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Figure 3-7. Summary for Average CO Emission Rate for Different Roadway Types

In Figure 3-7, thereis no clear difference between the roadway typesin terms of CO emissions.
Roadway type 3 seems to have high values for some trips, but it has low emissions for other

trips. Similar results are obtained for other pollutants aswell. The available roadway
classification may not be the most useful in terms of vehicle emissions. If one wants to determine
the effect of roadway types, developing an appropriate emissions-sensitive scheme is important.

Another type of analysis that can be done using GIS is to determine the effect of road
intersections on vehicle emissions. Locations of traffic signals were not provided in the data set.
There might be GIS layers which contain such information but they are not publicly available. In
this study, an example conceptual case study was used as a means to show how an analysis of the
influence of intersections on emissions can be conducted in the future using GIS analysis.

One method for determining the location of signalized intersectionsis to manually locate these
points on the map and enter them as a separate layer to ArcGIS. Another method is based upon
the fact that roadway lines are drawn from one intersection to another. There are few cases where
two lines connect without representing an actual intersections; however, those cases are typically
errorsin the GIS data and are very rare. Therefore, in this study a program was used to determine
the location of intersections by looking at the connection points of roadway lines. After
determining these points, they were added as an event theme to ArcGIS map. In order to
evaluated the effect of an intersection on emissions, a buffer zone of 200 feet was assumed for
each intersection. This number is arbitrary and was used for example purposes. The idea was that
the influence of traffic control devices on vehicle movement would occur close to the
intersection, and that the control delay and stops at an intersection could influence emissions as
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Figure 3-8. Average HC Emissions for Roadway Classes and Intersection Effect

was observed in the Frey et al. (2001) study. For each road class, data were separated into
categories of "Outside" or "Inside" the intersection influence zone.

Figure 3-8 presents average HC emissions with respect to roadway type and whether inside or
outside the intersection zone, along with 95 percent confidence intervals on the mean, for the
example of Vehicle 11 Trip 1 data. In Figure 3-8, some modes have narrower confidence
intervals than others, because number of data points are different for each mode. For the Class 1
and Class 2 roadways, there was no observed difference in average emissions when comparing
locations "Outside" versus "Inside" the intersection influence zone. The average emission rates
for Class 1 and Class 2 roadways differ by a factor of approximately two. Class 3 roadways
resulted in higher average emissions than for either the Class 1 or Class 2 roadways. For Class 3
roadways, the observed average emissions "Inside" the intersection influence zone were
substantially higher than those "Outside" the zone. It is expected that emissions inside of an
intersection influence zone are higher than those outside of such a zone because factors such as
stops and control delay tend to result in accel erations within the intersection zone that increase
emission rates (Frey et al., 2001). However, for the Class 4 case, the results are counter-intuitive
in that the average emissions "Inside” the zone are estimated to be much lower than those
"Outside" the zone. However, this particular result may be an artifact of very small sample size.

The analysis of emissions with respect to roadway functional class and with respect to an

intersection influence zone is meant to beillustrate of a general approach that can be explored
more thoroughly in the future. The results of the example case study here suggest that some of
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the variability in emissions can be explained not only by roadway functional class, but also with
respect to roadway design or traffic control features.

3.2.6 ldentification of Cold-Start Emissions

Cold-start emissions are significantly higher than hot-stabilized emissions as explained in
Section 3.2.3. The occurrence of a cold-start and its duration is afunction of ambient, engine,
and catalyst temperatures. Engine temperature and catal yst temperature were not measured in the
on-board study. Instead coolant temperature was measured. Therefore, coolant temperature was
investigated for its utility as a surrogate for use in detecting the presence of an cold-start and in
estimating its duration. Information regarding soak time was also used.

The relationship between CO emissions and coolant temperature was investigated. Figure 3-9
presents an example of time series of both CO emissions and coolant temperature for Vehicle 5,
Trip 2. CO emissions were very high for the first 130 seconds, during which coolant temperature
stays lower than 80 °F. At approximately 130 seconds, the coolant temperature and the CO
emissions stabilized. Therefore, it can be concluded that this trip had a cold-start duration of
approximately 130 seconds. Because coolant temperature is only a surrogate for engine
temperature, however, it was decided not to base the identification of the existence and duration
of acold start on the coolant temperature. Instead, an approach was sought in which the
presence and duration of a cold start could be determined based upon the second-by-second time
series of emissions data obtained from on-board measurements.

Statistical techniques based upon non-linear regression were applied to estimate the duration of a
cold-start automatically by determining the time at which emissions stabilized. The objective of
the nonlinear regression was to estimate the duration of the cold start, which is quantified as the
timetc. The premise underlying this method for determining cold start duration is that during
the cold start, thereis a clearly identifiable trend of a decrease in CO emissions with time.
However, once the vehicle reaches hot stabilized operation, CO emissions do not change
substantially when averaged over time. A program was written in SAS that uses non-linear
regression to estimate tc based upon CO emissions. An example of thisanalysisisgivenin
Figure 3-10 for the same trip presented in Figure 3-9. Thereisadownward trend in the
regression fit for the first 192 seconds. After that time, the fit is a horizontal line representing
average CO emissions during hot stabilized operation. In SAS, it is possible to get 95 percent
confidence intervals on the tc value. For this particular case, the 95 percent confidence interval
for tc ranges from 167 seconds to 216 seconds.

The upper bound of the 95 percent confidence interval was used as the assumed cold start
duration, to reduce the probability that cold start data would be mistakenly classified as part of
hot stabilized operation. If a cold-start is present, then tc will typically be apositive number. If
acold start is not present, then tc will typically be zero or a negative value.

The estimation of cold start duration was conducted also for HC and NO emissions, and not just
for CO emissions. The upper limit of the confidence intervals for tc were compared for all three
pollutants. For most of the cases, the results for HC and CO were similar. On the average results
obtained for HC are within 20 percent of results obtained for CO.
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When deciding the duration of cold-start, values for tc estimated from all three pollutants were
taken into account, however, results from HC and CO were given more emphasis since these
pollutants are affected from cold-start more than NO emissions. For cases where different results
were obtained for tc among the three pollutants, data were closely investigated and the soak time
between the particular trip and an earlier one was aso considered, which were provided in the
dataset. Soak time between the trips help identifying the presence of cold-start. For example, if
thereisless than 10 minutes between trips, it is most probable that there is not a cold-start in the
latter trip. For the cases, where different tc were obtained for different pollutants, generaly
highest one is selected to make sure that cold-start emissions are not mistakenly taken as part of
hot-stabilized emissions. This way a decision was reached for each trip for the presence and
duration of cold-start emissions. It was found that 34 of the trips had cold-starts with durations
ranging from 70 to 391 seconds. A table summarizing the result of thisanalysisisgivenin
Appendix A.

Identification of cold-starts was used to categorize data for later analysis, so that hot-stabilized
data could be separated from cold-start data.

3.2.7 Summary of Exploratory Analysis

In this section, relationships between possible explanatory variables and emissions were
investigated. Thisis a necessary step before any of the modeling efforts. The insights obtained
from this section were utilized to develop amodel as explained in the next section.

3.3 Mode Development

The objective of this section is presented along with the requirements of the study. The
methodology used for model development is discussed. Finally, a summary of the model is given
with comparison of observed versus predicted data using the model. Finally, a discussion of
unexplained variability and uncertainty is given.

3.3.1 Objectiveand Preliminary Assessments

In this study one of the objectivesisto develop conceptual models for light-duty gasoline
vehicles for CO, HC, NO and CO, emissions using on-board emissions data provided by the U.S.
Environmental Protection Agency. Developed models were subsequently applied to a
"validation" dataset and predictions for these datasets were obtained, as described in Chapter 6.
Asdiscussed in Section 3.2.3, explanatory variables that were provided in the “validation”
dataset were fewer in number than the explanatory variables provided in the “modeling” dataset.
Therefore, modeling attempts should take this aspect into account to develop models based upon
variables available for prediction purposes. Variables available in the “validation” dataset were:
vehicle speed (mph); time/date; a/c (on/off); temperature (°F); humidity (grains/Ib air); ambient
pressure (in HQ); latitude (deg); longitude (deg); and grade (percent). These variables and others
that can be estimated from these, such as accel eration and power demand, were utilized in
developing models.

An important issue in developing modelsis to identify the nature of the data set that will be used
for modeling calibration purposes. For example, any correlation in the dataset, including
correlation among the explanatory variables as well as autocorrelation if the dataare atime
series, should be identified before moving to the modeling step. In this study, second-by-second
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data were collected using the on-board instrumentation. Given the short averaging time of the
data, there is a strong likelihood that the data are autocorrel ated. Data were checked for
autocorrelation using SAS software.

Figure 3-11 presents autocorrelation assessment results both in numerical values and with a
graphical representation for CO emissions for Vehicle 5, Trip 2. SAS estimates correl ation
between CO emissions at timet and t+k, which represent atime lag of k. In order to determine
whether autocorrelations are significantly different from zero, 95 percent confidence intervals are
estimated. Since the distribution of autocorrelation is approximately normal, two times the
standard error is plotted to the left and right of the vertical axis representing zero autocorrelation,
as shown in Figure 3-11. If autocorrelations fall within the range enclosed by plus or minus two
standard errors, then they are not statistically different from zero (Warner, 1998). However,
most of autocorrel ations shown are positive and extend beyond the confidence interval,
suggesting the presence of statistically significant autocorrelation for CO emissions for multiple
time lags. The autocorrelation values are statistically significant for all time lags up to 21.

The exponential decay trend of the autocorrelation estimates as lag increases suggests the
presence of an autoregressive (AR) process, which means that the observation at time t depends
on the previous values (at time t-1 for example). However, in order to confirm that an AR model
is appropriate, one needs to check partial autocorrelation estimates. The partial autocorrelation at
lag k is the autocorrel ation between X; and X that is not accounted for by lags 1 through k-1.
Partial autocorrelation function (PACF) cuts off at lag k for an AR(k) process, which means that
PACEF results are zero after lag k indicating that an AR(K) is suitable for that process. PACF
estimates for the example case study given in Figure 3-12.

There are values of the partial autocorrelation at lags 1, 2, 3, and 5, which are outside the 95
percent confidence interval. The appropriate AR process is determined by the largest lag for
which statistically significant partial autocorrelation coefficients are observed, even if some of
the intermediate lags appear to be insignificant. Thus, the resultsin Figure 3-12 suggest that CO
emissions have a AR process of 5lags. This meansthat CO emissions at timet are correlated
with CO emissions at timest-1, t-2, t-3, t-4, and t-5, or during the previous five seconds. In order
to confirm this, one needsto fit an AR(5) model to the data and analyze the residuals. If the
residuals are found to be white noise (i.e., there is no autocorrelation in residuals) by doing
statistical tests, such as chi-square tests, then it can be concluded that the identification of the
process is correct. Otherwise, different AR models should be fitted until a model which has
white noise residuals are obtained. Therefore, thisis an iterative process. In this case, an AR(5)
model give white noise residuals, proving that CO emissions have an AR (5) process. Checks for
other pollutants for this dataset and for other vehicles and/or trips showed that data generally
have AR(4) or AR (5) processes.

Time series analysis revealed that data available in this study have autocorrelation and therefore
need to be treated carefully. For example, ordinary least squares regression should be used only
if the residuals are uncorrelated with each other (Brocklebank and Dickey, 1986).
Autocorrelation in the data set might violate this assumption. One method to check whether
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Figure 3-11. Autocorrelation Estimation Result for CO Emissionsfor Vehicle 5 Trip 2
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Figure 3-12. Partial Autocorrelation Estimates for CO Emissions for Vehicle 5 Trip 2
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errors are autocorrelated or not isto fit aregression and get residuals and look at the ACF and
PACF to whether there is an autocorrelation in the residual's (Brocklebank and Dickey, 1986).
These analyses can be done in one step in SAS. Because the time series emissions data for the
LDGV variables can be described by an AR(4) or AR(5) time series model, one possible
modeling approach is to use time series methods to develop functional relationships between
explanatory variables and emissions. However, akey problem in using time series modelsis that
the parameters of such models can be estimated only from a continuous time series. One can
overcome this problem by fitting time series models for each data file, which is a continuous
time seriesin itself, then deciding on a genera time series model by analyzing the parameters of
the individual time series models. However, thisisimpractical and also is very difficult to
achieve. It isimpractical because fitting a time series model is an iterative process and would
take substantial time and effort. It is difficult to obtain one time series model from several
models for individual datasets, because of the high variability in the data. Even if asimilar time
series model isfit to several datasets, such asan AR model, the coefficients of the variables
would probably be very different from each other. If oneisinterested in developing relations
between a response variable and predictor variables, but also needs to consider the history of the
predictor variables, simple time series models can not be used. Time series models referred to as
transfer function models need to be used in such cases (Brocklebank and Dickey, 1986). These
models require fitting time series models for each predictor variable and development of a
relationship between the predictor variable time series models and the response variables using
transfer functions. Another important aspect of time seriesmodelsisthat it isvery difficult to
work with missing datain the time series methodology. Thus, athough time series approaches
offer some theoretical appeal, they were deemed to be impractical as the basis for development
of amodel such asthe NGM, which will require input data from alarge number of vehicles and
trips.

Because time series modeling is deemed not to be a preferred method for practical reasons,
alternatives must be explored. A key criterion for selecting a modeling approach isto find
techniques will which essentially destroy the autocorrelation in the data. Although there may be
some loss of explanatory power associated with ignoring or destroying autocorrelation, it will be
possible to use other modeling approaches that are more practical for taking advantage of the
variety of sources of dataavailable for model devel opment.

One method for reducing the influence of autocorrelation is to bin the data so as to disrupt the
time series. For example, data can be binned with respect to speed and acceleration criteriato
represent different driving modes (e.g., idle, acceleration, cruise, deceleration). Althoughitis
still possible to have segments of time series within agiven bin, the effect of autocorrelation will
be diminished and may be small enough for practical purposes so as not to compromise the
integrity of the model. The potential trade-off between the explanatory power of atime series
approach, and the explanatory power of a binned or modal approach, can be evaluated by
comparing both approaches. Thisisdone more easily for the nonroad data sets and is addressed
in Chapter 5.

With the motivation of removing the influence of autocorrelation, a combination of techniques
based upon modal analysis, regression, and time series methods were employed. In general, the
first step employed was to bin the data, so as to disrupt the time series. Regression methods were



then applied to data within the bins. The methods are briefly reviewed in the next section,
followed by their application to the LDGV database.

3.3.2 Methodsused for Modeling

In this study engineering as well as statistical methods are utilized to develop emissions
estimation models. One of the statistical methods that is used here is Hierarchical Tree-Based
Regression (HTBR). Ordinary Least Squares (OLS) regression is also used for modeling
purposes. For some part of the data, particularly pertaining to cold starts, regression modeling
with time series errorsis also applied. In this section, background information on these statistical
methods is given.

Hierarchical Tree-Based Regression

Hierarchical Tree-Based Regression (HTBR) is aforward step-wise variable sel ection method,
similar to forward stepwise regression. This method is also known as Classification and
Regression Trees (CARTS). Conceptually, HBTR seeks to divide a data set into subsets, each of
which is more homogeneous compared to the total dataset. At agiven level of division, each of
the subsetsisintended to be different in terms of the mean value. Thus, HBTR is a statistical
approach for binning data. More specifically, the method is based upon iteratively asking and
answering the following questions: (1) which variable of all of the variables ‘ offered’ in the
model should be selected to produce the maximum reduction in variability of the response?; and
(2) which value of the selected variable (discrete or continuous) results in the maximum
reduction in variability of the response? The method uses numerical search procedures to answer
these questions. The HTBR terminology is similar to that of atree; there are branches, branch
splits or internal nodes, and leaves or terminal nodes (Washington et al., 1997).

In order to explain the method in mathematical terms, the definitions presented by Washington
et al. (1997) are used. The first step is to define the deviance at anode. A node represents a data
set containing L observations. The deviance, D,, can be estimated as follows:

L
2= Wa—%) (3-3)
1=1
where,
D, = total deviance at node a, or the sum of squared error (SSE) at the node
Yia = |I" observation of dependent variable y at node a
Xa = estimated mean of L observationsin node a

For each of k variables, the algorithm seeks to split the domain of avariable, X;, (wherei hasa
value from 1 to k) into two half-ranges at node a, resulting in two branches and corresponding
nodes b and ¢, each containing M and N of the original L observations (M + N = L) of the
variable X;. The reduction in deviance function is then defined as follows:

Acalix) = Da —Dp — D¢ (3-4)
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where:

A@ix)y = thetotal deviance reduction function evaluated
over the domain of all X;’'s(i.e. for k number of X
variables)

J 2

Dp = D' (Yimp — %)

m=1
\ 2

D¢ = z(yn,c - Xc)

n=1

D, = total deviance at node b

D, = total deviance at node ¢

Ymp = m™ observation of dependent variabley in node b

Yne = n™" observation of dependent variabley in node ¢

Xy = estimated mean of M observationsin node b

X, = estimated mean of N observationsin node c.

The method seeks to find Xy and its optimum split at a specific value of Xy, Xy, so that the
reduction in deviance is maximized.

The maximum reduction occurs at a specific value X, of the independent variable Xy. When
the data are split at this Xy, the remaining samples have asmaller variance than the original
data set. Numerical methods are used to maximize (Equation 3-4) by varying the selection of
which variable to use at a basis for a split and what value to use at the split point.

The iterative partitioning process is continued at each node until one of the following conditions
ismet: (1) the node of atree has met minimum population criteriawhich is the minimum node
size at which the last split is performed; or (2) minimum deviance criteria at a node have been
met. Some software, such as S-Plus™, alow the user to select either criteria. Moreinformation
on regression trees and its application to vehicle emissions can be found in Unal (1997).

Ordinary Least Squares Regression

Ordinary Least Squares (OLS) regression is acommon statistical technique for quantifying the
relationship between a continuous dependent variable and one or more independent variables.
The dependent variables may be either continuous or discrete. This method has been used since
the late 19" century by many analysts. Part of the reason that OLSis so popular isthat it is easy
to comprehend, it isincorporated into most statistical packages, and its statistical properties are
well understood (Washington, 1997). The basic OLS regression equation for asingle variable
regression can be written as follows;

Yi = Bo+Bix X +¢ (3-5
where;
\

value of the response variable in the i™ trial
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BO,Bi = estimators of regression parameters
Xi = value of the predictor variable in thei™ trial
& = random error term, generally required to be

normally distributed with a mean of zero and a
variance of 62

The parameters of the OLS regression equation, ﬁ'o and Bi , are found by the method of |east
squares which requires that the sum of squares of errors be minimized.

In order to fit alinear regression there are key assumptions that should be valid. These include:
(1) X and Y vaues should be randomly selected
(2) The error terms are normally distributed
(3) The error terms have a constant variance
(4) The error terms are independent
(5) The error terms are normally distributed

If the above assumptions are violated the regression equation might yield biased results. A
detailed discussion and presentation on OLS methods is not provided here because of the
widespread knowledge of OLS techniques. For further information, Neter et al. (1996) can be
consulted.

Combination of HTBR and OLS

HTBR methods do not use a priori information on the number of variables and their relationship
with the dependent variable. These models use their data mining properties to identify the
relevant variables. Complex relationships contained in the data can be captured via the process of
stratification of the datainherent in the approach. However, HBTR can aso result in repetitive
and apparently arbitrary stratification of data. For example, it could repeatedly stratify the data
based upon speed and acceleration. Thiswould indicate that some combination of speed and
acceleration are important, but that data should be binned taking both into account
simultaneously.

As suggested by Washington (1999), HTBR lacks some desirable properties of OLS procedures,
such as available statistical tests which might be used to test the differencesin HTBR model
formulations. Without estimated parameters and their related properties, it is difficult to
determine whether patternsidentified in the data are likely to be explained by long-term stable
patterns showing the real relationships in the data, or whether they are just noise reflecting
spurious relationships by random fluctuations in the sample. In other words, there are not explicit
measures of the statistical significance of HTBR results.

In this study, a priori definitions of driving modes were used to bin the data. HBTR was used for
the data for each driving mode to identify which explanatory variables would be most useful in
further stratifying the data. OL S regression was done to capture relationships within the data
Strata.
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Time Series Methods

Time seriesisawide field in statistics and includes a variety of modeling techniques. The type of
time series model that is used here is “Regression with Time Series Errors” (Brocklebank and
Dickey, 1986). This method is suitable for data with autocorrelation and where a regression
equation between response and predictor variablesis sought. Thisisvery similar to OLS
regression except errors are estimated using autoregressive (AR) or moving average (MA)
models. The model isgiven as

Y, =B+ B x Xy + B, X X+t B X X +2Z, (3-6)
where Z; is atime series. The assumption of non-correlation for error termsisimplied in
Equation (3-6) since after the fitting the time series to the error terms for the predicted variable,
only white noise should be left. Identification of the time series model requires looking at
autocorrelation and partial autocorrelation estimates for residual s after fitting the regression,
which was explained briefly in Section 3.3.1. Statistical software such as SAS can provide this
information directly. After deciding on the type of time series model for the errors, one should
identify significant parameters for regression equation. This procedure needs to be iterative
(Brocklebank and Dickey, 1986). Detailed theoretical information on time series models and
applications can be found in Wel (1990).

3.3.3 Data Segregation Using Modal Analysis Approach

Average emissions of vehicles are different in different operational modes of the vehicles. The
analysis of emissions with respect to driving modes, aso referred to as moda emissions, has
been done in several recent studies (Barth et al., 1996; Tong et al., Barth et al., 1997; Bachman,
1999; Frey et al. 2001). Driving can be divided into four modes: (1) acceleration; (2) cruise; (3)
deceleration; and (4) idle. In thiswork, the second-by-second emissions data were divided into
these four modal categories and the average emissions rates for each mode were cal cul ated.

The defining characteristics of adriving mode are somewhat arbitrary. Asan a priori
assumption, the following definitions have been used, based upon the definitions used by Frey et
al. (2001) with the exception of the cold start mode, whose definition isintroduced here. Cold
start has been defined as a mode based upon the duration of the cold start as defined in Section
3.2.6. For hot stabilized operation, four modes of idle, acceleration, deceleration and cruise are
defined. Idleis defined as based upon zero speed and zero acceleration. The definition of the
acceleration mode includes severa considerations. First, the vehicle must be moving and
increasing in speed. Therefore, speed must be greater than zero and the accel eration must be
greater than zero. However, vehicle speed can vary dightly during events that would typically
be judged as cruising. Therefore, in most instances, the acceleration mode is based upon a
minimum accel eration of two mph/sec. However, in some cases, a vehicle may accelerate
dowly. Therefore, if the vehicle has had a sustained acceleration rate averaging at least one
mph/sec for three seconds or more, that is also considered acceleration. Deceleration is defined
inasimilar manner as acceleration, except that the criteria for deceleration are based upon
negative acceleration rates. All other events not classified as idle, acceleration, or deceleration
are classified as cruising. Thus, cruising is approximately steady speed driving but some drifting
of speed isallowed. These definitions are not the same as those used in other studies. However,
whether these definitions are useful or not can be evaluated by analyzing the emissions data.
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Figure 3-13. Average Modal Emission Rates for All Trips

A program was written in Microsoft Visual Basic that determines the driving mode for second-
by-second data and estimates the average value of emissions for each of the driving modes. The
program also calculates the total emissions for thetrip. In order to determine whether modal
analysis has exploratory value or not, average modal emission rates were estimated for each trip.
The average of the estimates for each mode was cal cul ated based upon all vehicles and tripsin
the database. A comparison of the average modal emission rates for each of four pollutantsis
shown in Figure 3-13, along with estimates of the 95 percent confidence intervals on the trip
mean emission rates. The modes shown are cold start, and the four hot stabilized modes of idle,
acceleration, deceleration, and cruise. The cold start mode includes all vehicle activity that took
place during the cold start duration. For example, some vehicles were driven during the cold
Start.

It isclear from Figure 3-13 that the average emission rate during cold start is approximately
comparable to the average hot stabilized acceleration emission rate. For example, for CO, the
average cold start and hot-stabilized acceleration emission rates are not statistically significantly
different from each other. These two rates are aso nearly the same for NO. For HC the average
cold start emission rate is substantially higher than that for hot stabilized acceleration. The
results for CO, are somewhat different in that the cold start emission rate is less than the
acceleration emission rate and is approximately comparabl e to the cruising emission rate.

Setting aside the cold start mode, and focusing only on the four hot stabilized modes, the
comparisons revea similar trends among all four pollutants and are similar to the findings
obtained with different vehiclesin the study by Frey et al. (2001). The emissions during the
acceleration mode are significantly higher than for any other driving mode for hot-stabilized
emissions, for al four of the pollutants measured. Conversely, the emission rate during idling is
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Table 3-5. Result of Pairwise Comparison for Modal Average Estimates in terms of p-value

P-Values for Pairwise T-test
Modes Acceleration Deceleration Cruise
Idle 0.000 0.000 | 0.000
HC | Acceleration 0.000 | 0.270
Deceleration 0.000
Idle 0.000 0.895 | 0.000
CO | Acceleration 0.000 | 0.000
Deceleration 0.000
Idle 0.000 0.590 | 0.000
NO | Acceleration 0.000 | 0.000
Deceleration 0.000
Idle 0.000 0.008 | 0.000
CO, | Acceleration 0.000 0.000
Deceleration 0.000

the lowest of the four modes for all four pollutants. The cruising emission rateistypically
dightly higher than the decel eration emission rate.

In order to check whether average modal emission rates are statistically significantly different
from each other, pairwise t-tests were estimated. Results of the t-tests are presented in Table 3-5
in terms of p-values. P-values less than 0.05 indicate that the particular pair has statistically
significant differences in average estimates. For example, the t-test between idle and acceleration
modes for HC emissions gave a p-value of 0, indicating that average HC emissions are different
for these two modes. Out of 24 possible pairwise comparisons, only three of them gave p-values
higher than 0.05, indicating that average emissions rates for these pairs are not statistically
different from each other. Two of these cases occurred for comparisons of the idle and
deceleration modes for both CO and NO emissions. The other one occurred between acceleration
and cruise modes for HC emissions.

The modal emissions analysis results suggest that the a priori modal definitions assumed here
are reasonable. These modal definitions allow some explanation of differencesin emissions
based upon driving mode, as revealed by the fact that, in most cases, the average modal emission
rates differ from each other. The analysis also indicates that the average acceleration emission
rates for CO and NO are more than a factor of 10 higher than the average idling emission rates,
and that the average acceleration emission rates for CO, and HC are approximately afactor of
five higher than the average idling emission rates. These findings are very similar to those of
Frey et al. (2001) for adifferent set of LDGVs. These substantial differencesin emission rate
have important implications for traffic and air quality management. It should be noted that CO,
emissions are highly correlated with and are a good surrogate for fuel consumption.

3.3.4 Improving Driving Mode Definitions

Modal definitions have a power to explain variability in emissions since average emission rates
for different modes were found to be statistically significant from each other. A further stepis
taken here to improve these modes by stratifying the data within each mode so that emissions
within each strata are more nearly homogeneous.
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Figure 3-14. Example Regression Tree Output for NO Emissions for Acceleration Mode using
Datafor Vehicle 11

In order to improve the driving mode definitions, the HTBR technique was utilized. Trip datafor
each vehicle were combined together and exported to S-Plus for analysis. Then regression trees
were formed using explanatory variables related to vehicle operation and vehicle characteristics
such as vehicle speed, acceleration, power demand, grade, and vehicle engine size. For each
vehicle, regression trees were formed separately for CO, NO, and HC emissions for each driving
mode. For CO, emissions, the original modes were considered to be adequate for their
explanatory power.

An example regression tree output for NO emissions during acceleration for Vehicle 11 isgiven
in Figure 3-14. As seen in Figure 3-14, the first split on emissions occurs for a power demand
cutoff point of 108.2 mi%/h?.sec. In regression trees, the left branch of the tree represents data
with explanatory variable less than the cutoff point, and the right branch represents cases where
the explanatory variable has values higher than the cutoff point. For this case, data with power
demand higher than 108.2 mi%/h?.sec is split to the right and data with power demand less than
108.2 is split to the left. The datain the higher power demand strata have average NO emissions
of 0.036 g/sec. The datain the lower power demand strata have an average emission rate of
0.007 g/sec. Thus, the average NO emission rate for high power demand strata is more than 5
times higher than for the low power demand strata. Therefore, the stratification with respect to
power demand appears to account for some of the variability in the data
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Figure 3-15. Improved Average Modal Emission Rates for All Tripsfor CO

In the HBTR analysis, a maximum number of four nodes or end points, were sought. However,
only two nodes are shown in Figure 3-14 because the first stratification in the tree provided the
most benefit as far as reducing the deviation of the data within each node. There waslittle
explanatory benefit to extending the tree to another set of sub-strata and the cost of doing so
would have been the requirement to segregate data into a larger number of bins.

HBTR analysis was applied individually to all vehicles, al driving modes, and to the NO, CO,
and HC pollutants. In most cases, the first split in the tree was based upon power demand, but
the specific numerical value by which the data were stratified varied. However, in order to
simplify model development, a decision was made to select one cut-off point for a given driving
mode and apply it to all pollutants. Therefore, arepresentative cut-off point for each driving was
selected based upon areview of theresultsfor al pollutants. For example, a cutoff point of 100
mi?/h?.sec was used for the acceleration mode. For deceleration, the cutoff point was chosen as -
100 mi%/h®.sec. For cruise mode, the chosen cut-off was 60 mi?/h?. For theidle mode, the HBTR
analysis did not reveal any stratification that would be useful.

In order to see whether the newly identified strata have potential benefit in explaining variability
in emissions, the average modal emission rates for these new modes were estimated and are
compared in Figure 3-15 for the example of CO emissions. Results for other pollutants are given
in Appendix A. It isclear from the comparison of both averages and confidence intervals for the
averages that the stratification within the modes yields statistically significant bins for both
acceleration and cruising. However, there is no significant difference between the high and low
deceleration modes. Thus, although there is no apparent benefit to stratify decel eration based
upon power demand, it appears to be useful to stratify acceleration and cruise based upon power
demand.
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Figure 3-16. Average Distribution of Time and Emissions with respect to Modes

In addition to devel oping modes that are statistically significantly different from each other,
another consideration in model development isto create modes that are useful in explaining a
substantial contribution to total trip emissions. Figure 3-16 illustrates the distribution of time
spend in each of the five original modes, and the corresponding percentage contribution of each
mode to total trip emissions for each of four pollutants. One key finding is that theidle and
decel eration modes contribute relatively little to total emissions for any of the four pollutants
compared to cruise, acceleration, and cold start emissions. Therefore, there islittle to be gained
by spending resources to improve the explanatory power of the idle and deceleration modes. In
contrast, cruising, acceleration, and cold start, in a general descending order, are the most
important contributors to total emissions. Cruising, which accounts for approximately 50 percent
of the time of an average trip in the calibration database, accounts for almost 60 percent of NO
emissions, 50 percent of CO, emissions, 45 percent of CO emissions, and 40 percent of HC
emissions. Acceleration accounts for only approximately 15 percent of the time of the trip but
for approximately 30 percent of NO, CO, and CO, emissions and approximately 20 percent of
HC emissions. Cold start accounts for an average of only five percent of the time of atrip, but
for approximately 10 to 15 percent of NO, CO, and CO, emissions and more than 20 percent of
HC emissions. In contrast, idle and deceleration combined account for typically less than 10
percent of total trip emissions for each of the pollutants even though they account for
approximately 30 percent of the time of an average trip. The modal distributions for both time
and emissions for each trip are given in Appendix A.

3.3.5 Fitting OL S Regressions

After developing modal definitions, OLS regressions were fit for each mode using selected
explanatory variables. The reasons for selecting explanatory variables were explained in Section
3.2.3. These explanatory variables are: speed; acceleration; power; engine size; ambient
humidity; ambient temperature; altitude; and road grade. Second and third powers of speed and
acceleration were also included in regression analysis.
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In fitting regressions to data, a stepwise regression technique was applied in SAS. This technique
allows the selection of the best model based upon selected criteria. One of the criteriaisto
choose aregression model that has the highest R? value. Another criteriaisto choose a
regression equation that has the lowest Akaike' s Information Criterion (AIC). AIC penalizes for
extra parameters included in the model. One can get incremental but sometimes insignificant
improvements in the R? value by adding more explanatory variables. Therefore selecting a
model based upon lowest AIC will help balance the number of explanatory variables with useful
improvements in the explaining capabilities of the model associated with adding more inputs.

Regressions were fit to each modal data set for each pollutant using SAS. The result from SASis
astatistically significant model with statistically significant parameters. The coefficients of the
regression equations for CO emissions obtained from this analysisis given in Table 3-4. Results
for other pollutants are given in Appendix A.

Asseen in Table 3-4, some of the coefficients are zero. This means that those variables were not
selected in the regression fits. Table 3-4 also presents R? values for each regression equation,
given in the next to last row. The lowest R? valueis 0.1, for the idle mode, and the highest R
valueis 0.43 for the high acceleration mode. These R? values are low to moderate. However,
given that only a selected set of explanatory variables are available for inclusion in the regression
models, it is not surprising that there is alarge portion of variability in the data within each mode
that remains unexplained. Furthermore, it must be kept in mind that these models are only for
bins of data, and that the process of binning the data also accounts for a portion of the variability
in the on-board emissions data.

In the last row of Table 3-4, the correction factor for each regression equation is given. The
correction factor is needed because a natural |ogarithm transform of emissions was used when
developing the regression equations. It is known that when the regression result is back
transformed to estimate grams/sec from a natural logarithm scale, results will be biased in the
absence of a correction. Essentially, the regression for the transformed data is predicting the
median emission rate, and the correction is needed to adjust from the median in the log-
transformed case to the mean of the g/sec case. This problem of back-transformation is not
uncommon in the environmental field, where log transformations are used frequently, as reported
by Gilbert (1987). The regression model was in the form of:

INCO = linear model + € (3-6)

where e isthe residual error term for the linear regression equation which has a mean of zero and
variance of 6% Zero mean and constant variance for the residual terms are the key assumptions
for the OL S regression. However, when we back transform the equation to calculate CO in terms
of grams/second from natural logarithm scale, the residual term is also transformed as shown in
Equation 3-7 below:

CO = exp(linear model )x exp(e) (3-7)

If we refer to the term exp(e) ase€’, then the new residual term €’ is biased and the new residuals
do not have a zero mean. In order to solve this problem several methods have been proposed.
Oneis to modify the regression methodology so that when it is back-transformed the results are
not biased (Heien, 1968; Bradu and Mundlak, 1970). Another approach isto develop a
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Table 3-6. Results of Regression Fit for CO Emissions

High Low High Low High Low
Variable Idle Acceleration | Acceleration | Deceleration | Deceleration | Cruise Cruise
Intercept -1.448 -12.9628 1.7659 -0.0358 2.6553 17.8749 | 3.7128
Engine Size
() -0.96 0.9781 -0.1541 -0.5107 -0.3358 0 -0.1935
Humidity 0 0 -0.0672 -0.0706 -0.0776 -0.1014 | -0.0872
Speed 0 0.1649 0.0376 0.0445 0 0 0.0425
Speed"2 0 -0.0013 0 0 0 -0.0074 | 0O
Speed™3 0 0 0 0 0 0.0001 |O
Accel 0 0 -0.7249 -0.1892 0 0 -0.5009
Accel"2 0 0.0207 0.3437 0 0 0 0.1897
Accel"3 0 0 -0.0363 0 -0.0024 0 0
Temperature | -0.034 -0.0513 -0.0671 -0.0621 -0.0778 -0.0874 | -0.0967
Altitude -0.0008 | 0.0047 0 0.0015 0 0 0.0004
Grade 0 -0.1478 -0.1095 0 0.0981 0 0.0187
AC 0 0 0 0.0062 -0.0052 0 0.0239
Power 0 0.0257 0 0.0146 0 0 0
R-sguare 0.10 0.43 0.28 0.20 0.26 0.32 0.30
Correction
Factor 3.9 2.3 9.7 5.7 51 2.5 3.9

correction factor for the reverse transformed regression equation. To do that, the individua
residual terms were back transformed from the natural logarithm scale to grams/second and
their average was calculated. The average value of the transformed residuals is the correction
factor for the regression equation for calculating the average emissions estimate. The emissions
estimates from the transformed linear regression should be multiplied by the correction factor in
order to calculate a correct average in units of grams per second. As seen in Table 3-6, engine
sizeis selected as a significant parameter for al of the modes for CO, except for the high cruise
mode. However, the coefficient of engine size changes from one case to another. For example,
for high acceleration the coefficient for engine size is 0.98 whereas it is -0.15 for low
acceleration mode. These numbers suggest that the influence of engine size with respect to CO
emissions may be different for different types of operation, or engine size might be functioning
as surrogate for some other explanatory variable that is not directly observable in this study.

3.3.6 Modeing Cold-Start Data

For cold-start emissions, conventional regression cannot be used directly since data for this mode
is comprised of consecutive seconds of data that are autocorrelated. One way to overcome this
problem isto fit aregression model with time series errors. Time series methods were explained
in Section 3.3.1. Although time series models are typically fit to data that represent only one
continuous time series, it is possible to take a simpler approach to capturing some autocorrelation
in aregression model by including error terms for the predicted variable based upon time lags. If
data from multiple sources (e.g., different vehicles and trips) can be assumed to originate from
the same process, then it is possible to combine the data. In this case, there are data regarding
cold start emissions from 34 trips. For illustrative purposes, it will be assumed that al cold-starts
are from the same process and that the cold start data from the 34 trips can be combined into one
datafor analysis. The validity of this approach can be judged based upon the comparison of trip-
average emission rates predicted using this model versus the observed data.
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After combining the cold-start data, a regression model with time series errors was fit to the data.
In this process, explanatory variables that were listed in Section 3.2.3 were utilized. Coolant
temperature was a so included since it was shown earlier that coolant temperature varies
inversely with emissions during the cold start and, therefore, may be useful in explaining some
of the variability in cold start emissions. Using SAS, regressions with time series errors were fit
to CO, NO, and HC data. It was found that acceleration, engine size, ambient temperature, and
coolant temperature were the significant predictive variables for HC emissions. The time series
errors, were modeled using an AR(2) model for HC. For CO emissions, speed, power demand,
and coolant temperature were found to be significant predictive variables, and an AR(2) model
was fit to the error terms. For NO, speed and power were the only predictive variables that were
found to be significant. The error terms for NO emissions were modeled as an AR(4) model. The
model fitted to CO emissionsis given in Equation (3-8):

CO=0.175-0.00083« Cool ant+ 0.0013x Soeed+0.0002< Power—1.197x ¢, , —349x¢, , (3-8)

where;
Coolant = Coolant Temperature (°F)
Speed = Vehicle Speed (mph)
Power = Power Demand (mi?/h?.sec)
g = Error term

Comparison of cold-start emissions predicted using the model given in Equation 3-8 with the
observed datafor trip averagesis given in Figure 3-176 for CO emissions. The results of other
pollutants are given in Appendix A. The R? valueis 0.33, which means that the model can
explain 33 percent of variability in average cold start CO emissions. R? value for NO was found
to be 0.53 and it was 0.09 for HC emissions.

In order to use an equation such as (3-8) for making predictions, it would be necessary to know
the coolant temperature. However, for the model validation activity, coolant temperature was
not available, and in general coolant temperature would be unknown. Therefore, amethod is
needed that enables predictions of cold start emissions without having to know the actual coolant
temperature history for agiven vehicle. An approach is explored here in which the cold start
duration is estimated as afunction of soak time. The estimated cold start duration can then be
used to "look up" a coolant temperature profile for the appropriate vehicle technology group that
corresponds most closely to the estimated cold start duration.

Figure 3-18 presents the relationship obtained between cold start duration and soak time based
upon the available calibration data. The R? value for the relationship was found to be 0.43. It is
possible that the predictive ability of amodel such asthis could be improved by including other
explanatory variables, such as ambient temperature and engine characteristics.

The approach used for making predictions of cold start emissions was to estimate the cold start
duration based upon the known soak time of the vehicle, and to find a coolant temperature
profile corresponding most closely to the estimated cold start duration. In finding asimilar
dataset, one should check the ambient temperature and soak time in order to find a matching data
file.

60



0.25
y = 0.7894x% + 0.0105
—_ »* 2
§ — R =0.3301
= vy i
n +T e +*
=
L n1g -
[T ]
n
£
11}
=]
u E|1 T
=
1)
Fa
Q
£ 005
=]
D T T T T T T T T T
0 0.05 0.1 0.15 0.2 0.25

Predicted CO Emissions (g/sec)

Figure 3-17. Comparison of Cold-Start CO Emissions for Predicted and Observed Data for
Cold-Start

450

400 A y =52.2480n(x) - 74.771

1 RE=0.4724
350

300
250
200

150 +

Cold-5tart Duration (Sec)

100 +

&0

D T T T T T T T T T T T T T T T
1] 100 200 300 400 400 600 700 @00

Soak Time (min)

Figure 3-18. Relationship between Soak Time and Cold-Start Duration

61



3.3.7 Comparison of Observed and Predicted Data

The conceptual models developed for each pollutant are based upon estimation of emissions at a
meso-scale for each of the five modes previously defined (cold start, idle, acceleration,
deceleration and cruise). In some cases, the modes were further divided based upon power
demand, such as for acceleration and cruise. OLS regression equations were used to provide a
microscal e predictive capability within the modes. Cold start was treated differently because of
the autocorrelation of emissions within thismode. Thus, for cold start, OL S regression with time
series errors was used to develop a microscal e predictive capability.

Table 3-7 summarizes the methods used for each pollutant. For example, OLS regressions with
time series errors was used for modeling HC emissions during cold-start. HC emissions during
idle were modeled with OLS regression. OLS regressions were used to model HC emissionsin
each improved driving mode, such as high acceleration and low accel eration modes. For CO,,
OL S regressions were used for the original driving modes (i.e., idle, acceleration, deceleration,
and cruise). The models for each of the four pollutants were used to predict emissions for the
calibration data set based upon the values of the explanatory variables reported in the calibration
dataset. The performance of the models was evaluated by comparing model predictions and
actual observations for trip average emission rates based upon the calibration data set. In
Chapter 6, the models were applied to make predictions for a validation data set that was
different from the calibration data set.

In this section, parity plots are presented to help visualize how well the models are able to make
predictions based upon the calibration data. An example of a parity plot is given for HC
emissionsin Figure 3-19. The parity plots display the observed (actual) trip average emission
rates on the vertical axis versus the predicted emission rates on the horizontal axis. There are 51
points in the figure, representing 51 different trips.

The performance of the model can be evaluated in terms of precision and accuracy. The R?
valueisan indication of precision. Higher R* valuesimply ahigher degree of precision, and less
unexplained variability in model predictions, than lower R? values. The slope of the trend line
for the observed versus predicted values is an indication of accuracy. A slope of one indicates an
accurate prediction, in that the average prediction of the model corresponds to an average
observation. The R? value for Figure 3-19 is 0.45, and the slope of the trend lineis 0.77. These
results indicate that the model can explain approximately half of the variability in the data, and
that there is some bias in the model predictions. The bias can be corrected using the slope and
intercept from the trend line to convert amodel prediction more closely to match the observed
emissions.

Figure 3-19 a so shows the confidence interval on the mean prediction value. The confidence
interval for the mean prediction was estimated using SAS. Details on estimation of confidence
interval for the mean prediction can be found in literature (Neter et al., 1996). As seenin Figure
3-19, confidence interval is narrowest in the average of the prediction, at around 0.002 g/sec for
the predicted HC emissions and widens as moves away from the mean. The range of uncertainty
in the mean for a predicted emission rate of approximately 0.002 g/sec is approximately plus or
minus 15 percent. For a predicted emission rate of approximately 0.001 g/sec, the range of
uncertainty in the mean is approximately plus or minus 25 percent. For a predicted emission rate
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Table 3-7. Summary of Model Developed for Each Pollutant for LDGV

Driving Improved
Modes Modes HC CcoO NO CO,
oLSw/ oLSw/ oLSw/
Cold-Sart TSE* TSE TSE OLS
Idle OLS** OLS OLS OLS
High
) OLS OLS OLS
Acceleration Accﬁ;rlvatlon OoLS
Acceleration OLS OLS OLS
High
) OLS OLS OLS
Deceleration Decﬁs\r/vatlon oLS
Decderation OLS OLS OLS
g:ﬁ;‘e oLS oLS oLS
Cruise L ow oLS
) OLS OLS OLS
Cruise

* OLSw TSE: Ordinary Least Squares Regression with Time Series Errors
** OLS: Ordinary Least Squares Regression

of approximately 0.003 g/sec, the range of uncertainty in the mean is approximately plus or
minus 15 percent. However, in thislatter case, compared to that for a prediction of 0.002 g/sec,
the absolute range of uncertainty islarger even though the relative range of uncertainty is
approximately the same.

Figure 3-20 displays the same data as in Figure 3-20. However, the prediction interval shown in
Figure 3-20 differs from that of Figure 3-19. In Figure 3-20, the prediction interval isa 95
percent range of variability in the observed data that is not explained by the model predictions.
Thisinterval was calculated using the SAS software. Details on estimation of confidence interval
for the mean prediction can be found in literature (Neter et al., 1996). The prediction interval
should be used as an indication of the precision of the model when making predictions of
emissions for individual trips. For a predicted emission rate of 0.002 g/sec, the 95 percent
prediction interval for unexplained inter-trip variability is approximately plus or minus 90
percent. Thisisapproximately asix-fold larger interval than that for uncertainty in the mean.
Thus, the model is expected to give more precise predictions of fleet average emissions than of
individual trip emissions.

The prediction intervals as cal culated here have some limitations. Emissions cannot be negative.
However, the lower bound of the prediction interval in Figure 3-20 is shown to extend into
negative values. The prediction interval is estimated based upon a normality assumption for the
residuals of the regression. However, because emissions must be non-negative, it is not likely
that the residuals are actually normally distributed for small values of emissions. Therefore,
even if the prediction interval as calculated implies negative emission values, a non-negativity
constraint should be imposed when interpreting the interval. Thereisaneed for other methods
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that more correctly address the non-negative nature of emissions data. For example, alog
transformation of emissions estimates will enforce non-negativity in model. Such an approach
can be explored for parity plots (e.g., log-log plots) in future work. The SAS software used to
produce the graphs automatically generated a y-axis that displays negative values. However, all
of the data in the graph, and the values of the trend line within the range of the data, are non-
negative.

Figures 3-21 and 3-22 show the regression result for CO emissions, including the confidence
interval for the mean in the former case and the prediction interval for variability not explained
by the model in the latter case. The R? value for the trend line between the observed values and
the predicted values is 0.44, which is typically larger than the R? values for the individual
regression equations of each of the modes that comprise the model.

Figures 3-23 and 3-24 presents the comparison of observed versus predicted vaue for NO
emissions, including the confidence interval for the mean in the former case and the prediction
interval for variability not explained by the model in the latter case . The R? value for the trend
line between the observed values and predicted valuesis 0.43. A similar comparison for CO,
emissionsis shown in Figures 3-25 and 3-26. The R? for the regression between the predicted
and observed values is 0.8. The maximum R? value for individual regression equations for modes
occur for cruise mode with avalue of 0.33. Thisindicates that dividing the datainto modes
explains a substantial part of variability in CO, emissions. Furthermore, while the R? of the
trend lines for CO, NO, and HC are typically approximately 0.4 to 0.45, the much larger R? of
0.8 for CO; illustrates that it may be possible to obtain precise estimates of CO, emissions even
though predictions for the other pollutants may be less precise.

3.3.8 Quantification of Unexplained Uncertainty and Variability

In developing amodel, it isimportant to quantify the unexplained variability and the uncertainty
in the model predictions. One method for quantifying variability and uncertainty in model
predictions was illustrated in the parity plots based upon results obtained using the SAS
statistical software. In this section, an alternative approach is presented. In the aternative
approach, residuals from each trend line fitted to the parity plots of the observed versus predicted
data was obtained. As an indicator of unexplained variability, the coefficient of variation (CV) of
residuals was determined by dividing the standard deviation of the residuals by the average value
of emissions.

Uncertainty in the model estimates was determined using a bottoms-up approach. The
uncertainty in the mean for each mode was estimated based upon the standard error of the mean.
The OLS regressions were not considered in devel oping these uncertainty estimates. The
procedure for estimating uncertainty in the mean trip emissions prediction is discussed in detail.

Thefirst step in estimating uncertainty in the average model prediction was to estimate the
average emission rates in each mode using data from all of the vehicles and trips, as shown in
Equation (3-9).
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Observed_NO = 0.0004 +0.9292 Predicted_NO
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Table 3-8. Summary for Uncertainty Analysis for the Model and Observed Data

Uncertainty in the Mean Average Unexplained Variability
Prediction in the Model
Standard

Error of the Standard Deviation | Average of Observed
Pollutant Mean Mean C.V. of the Residuals Data C.V.
HC (g/sec) | 0.002 9.01E-05 0.052 0.00097 0.002 0.52
CO (g/sec) | 0.032 0.0029 0.092 0.025 0.035 0.71
NO (g/sec) | 0.004 0.000302 0.082 0.0024 0.004 0.60
CO, (g/sec) | 2.465 0.093 0.038 0.28 2.5 0.11

z‘uijk
_ =3

n

:uij (3'9)

Where,

u; - Average emissionsrate for modei (e.g., idle, acceleration) and pollutant j (e.g., HC, CO)
givenin g/sec

;- Average emissionsrate for modei (e.g., idle, acceleration), pollutant j (e.g., HC, CO) and
tripk (e.g., trip 1, trip 50) given in g/sec

n: Number of trips (i.e., 51)

The standard variance of the mean for each driving mode for each pollutant was similarly
estimated based upon trip data using Equation (3-10):

G 2= nkz{ (1 F +[§;“uk ]2

! n(n-1) (3-10)

where,

o.”: Standard variance of average emissions rate for modei (e.q., idle, acceleration) and

ij
pollutant j (e.g., HC, CO) given in g/sec

The weights assigned to each of the driving modes for the purpose of calculating the standard
variance in total trip emissions were estimated based upon the average time spent in each mode
using Equation (3-11):

n
2 Wi
— k=1

W =

(3-11)
n

where,
w; :  Averageweight for modei (e.g., idle, acceleration) and pollutant j (e.g., HC, CO) given
as afraction of time.
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w;, : Average weight for modei (e.g., idle, acceleration), pollutant j (e.g., HC, CO) and trip k
(e.g., Run 1, Run 50) given as afraction of time.

After getting the average emission rates for each mode for each pollutant, and the corresponding
weight, the overall average emission rate for each pollutant was estimated using the properties of
mean as given in Casella and Berger (1990) in Equation (3-12):

4

K= Z(Wu X ) (3-12)

i=1
where

u; . Averageemissionsrate for pollutant j (e.g., HC, CO) givenin g/sec

Similarly, the standard variance of the total trip emissions were estimated from the modal
emissions standard variances using the properties of variances as given in Casella and Berger
(2990) in Equation (3-13):

2 z 2 2
o, —Z(Wij X0, ) (3-13)
i=1
where

2

o,": Standard variance of average emissionsrate for pollutant j (e.g., HC, CO) givenin g/sec

In order to estimate the Coefficient of Variation (C.V.), the standard error of the mean is divided
by the average value. The standard error of the mean was estimated based upon the square root
of the standard variance, as shown in Equation (3-14).

2
o,

CV. =+ (3-14)
M

where

CV.,; : Coefficient of variation estimated for pollutant j (e.g., HC, CO)

Table 3-8 summarizes the analysis of uncertainty in the mean prediction of the model. The
uncertainty analysisis relevant to the application of the model to make predictions of fleet
average emissions. The results for the coefficient of variation imply that the range of uncertainty
in average predictions is approximately plus or minus 10 percent of the mean value for HC
emissions. For CO emissions the 95 percent probability range is plus or minus 18 percent of the
mean value, and for NO emissions this rangeis plus or minus 16 percent. The range of
uncertainty in average predictions for CO, emissionsis approximately 7 percent. Thus, the range
of uncertainty for the average prediction of an emission rate istypically less than plus or minus
20 percent in all cases. These uncertainty ranges are applicable to predictions near the average
of all of thetrip emissions. The uncertainty ranges would be wider on an absolute basis for
predictions for trip emissions lower or higher than the average trip.

In contrast to an assessment of uncertainty in fleet average emissions, if the model were to be
used to make predictions of emissions for an individual trip, then the lack of precision of the
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model is reflected by the unexplained variability not captured by the model. The results of the
analysis of unexplained variability imply that the 95 percent prediction interval for an individual
trip is more than approximately plus or minus 100 percent on average for HC, CO, and NO
emissions. For CO,, thisrangeis plus or minus 22 percent. Thus, thereis substantially more
imprecision in model predictions when applied to individual trip emissions than fleet average
emissions.

34  Summary of the Developed M odel

This chapter has illustrated the major stepsin the development of amodal model of real-world
tail pipe emissions using data obtained from on-board measurements.

There are key stepsin model development that were not part of the scope of work at NCSU.
These include defining a study objective, developing a study design, and executing the study
designin all of itselements. The key characteristics of study design are addressed in detail in
Chapter 8.

The key stepsin model development that were part of this study include the formation of a
database from data reported by the on-board emissions contractors (or EPA), data quality
assurance and quality control, exploratory analysis of the data, and fitting of a model to the data.
The QA/QC activitiesincluded searching for common types of errors that can occur when using
on-board instruments. In some cases, some data were excluded from the final database in order
not to include known or suspected errorsin the analysis and model calibration effort.
Exploratory analysisincluded a variety of techniques. Thefirst was development of a summary
of the content of the database, including average values and other information. Variability in the
emissions data between vehicles and between vehicle-trips was evaluated. Possible explanatory
variables were identified. Methods for visualizing the data, such as using multiple scatter plots,
were employed to help in identifying patternsin the data. Data were also analyzed spatially
using GIS methods. Statistical methods were employed for identifying cold-startsin each trip
data set.

Because of the autocorrelation in the data, and the difficulty in working with time series models,
an approach based upon binning of the data to reduce the influence of autocorrelation was
pursued. The approach involves definition of driving modes for hot stabilized operation based
upon criteria applied to the speed trace associated with the trip. The criteriainclude specific
conditions of speed and accel eration, sometimes involving multiple seconds of data. The
statistical significance of comparisons of the average emissions for each pollutant among the
four hot stabilized modes of idle, acceleration, deceleration, and cruise was assessed. These four
driving modes are typically statistically significantly different from each other for agiven
pollutant with respect to the average emission rates. Therefore, the modal definitions are
confirmed to have useful ability to explain differences in vehicle emissions based upon different
types of vehicle activity during real-world driving.

HBTR methods were used to determine whether the four driving modes should be subdivided

into additional modes. In most cases, criteriafor subdividing the modes based upon estimated
power demand were found to provide additional capability to capture variation in the observed
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emissions data. The modal approach represents a mesoscal e approach that can be easily
aggregated to predict macroscale (e.g., trip average) emissions.

For each modal dataset, OL S regression techniques were applied to illustrate the devel opment of
additional explanatory capability with microscal e second-by-second data. Because these data
were segregated from the original time series into much shorter discontinuous time series, which
in turn is expected to reduce the influence of autocorrelation, it was judged acceptable to use
regression methods applied to the modal data.

The OLS regression models fit to the modal data offered some additional explanatory capability.
These models are illustrative in nature. Some of the coefficients obtained from the analysis, such
asfor road grade, are not physically intuitive. However, this can be associated with lack of
sufficient variability in candidate explanatory variables. The methodology is applicable to larger
scale applications to larger databases. In most cases, the relationships obtained with OLS
regression were reasonable and useful.

Cold start emissions received attention in thiswork. Because the average emission rate during
cold start is comparable to that of acceleration and large in magnitude compared to other modes,
and because cold start can contribute to a substantial fraction of total trip emissions, it was
justifiable to devote considerabl e effort to devel oping and exploring methods for characterizing
cold start emissions. A statistical method for estimating the duration of cold starts was
developed, tested, and found to be useful. A statistical relationship regarding soak time and cold
start duration was explored. A regression approach with time series errors, which is different
than time series applied to predictive variables, was employed as a means for improving the
explanatory power the cold start mode.

The performance of the models were evaluated using parity plots and statistical intervals with
respect to atrend line. Two types of statistical intervals were developed. One type of interval,
which we refer to as a prediction interval, represents the unexplained variability in observed
emissions that is not captured by the model. This measure of precision isimportant to consider
when making predictions for emissions for individua trips. The other interval, which we refer to
as a confidence interval, represents the 95 percent confidence interval on the mean prediction.
Thisinterval is applicable to estimating model precision when making predictions for average
emissions over a sufficiently large fleet. The prediction interval is needed in this study when
making comparisons between model predictions and observed values in the validation case study
described in Chapter 6.

Overal, the techniques applied to develop theillustrative conceptual model were useful in
screening the data, creating a data base, exploring the data base, devel oping the model,
characterizing model performance, and quantifying the variability and uncertainty in model
predictions. These techniques can be applied to larger data sets than were available in this work
for the purpose of developing a nationally representative model of LDGV tailpipe emissions.
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40 CONCEPTUAL MODELING APPROACH FOR HEAVY DUTY DIESEL
VEHICLES

In this section, the conceptual model development approach for Heavy-Duty Diesel Vehicles
(HDDV) is presented. On-board data for selected HDDV s were provided by EPA as the basis for
developing and demonstrating a methodol ogy for modeling CO, NOy, HC, and CO, emissions.
NCSU had no control over study design or data collection pertaining to the HDDV data.

The following section presents data post-processing methods that were required to form an
accurate emissions and explanatory variables database. Quality checks were also conducted on
datain order to identify and remove any errors from the database. Exploratory analysis of the
datais described in Section 4.2. Section 4.3 describes the development of conceptual model. A
summary of the development and demonstration of the model is given in Section 4.4.

4.1  Data Post-Processing

In this section, methods for data post-processing are discussed for heavy-duty diesel vehicles
(HDDV). Thiswork was important in developing an accurate database, and it included
developing protocols for data post-processing, discussion of possible errorsin the dataset, and
methods for making corrections.

4.1.1 Database Formation

Datafor Light-Duty Diesdl Vehicles (HDDV) were provided by EPA to NCSU in comma
delimited format. These files were converted into Microsoft Excel ™ format since Microsoft
Excel™ was used as the main environment for data analysis and model development.

A total of 12 files were provided for the purpose of model development. Each file represents data
collected with different vehicle. Four of these vehicles are of model years of 1995 and the rest
are 1996. All vehicles have the same engine properties. For example, al engines are 8.5 liter. All
vehicles have oxidation catalyst. The buses were reported to have been operated on regular
routes, but it was also reported that the buses did not board or discharge any passengers during
data collection.

Preliminary analysis of individua filesindicated that the format of the files was the same for all
of the vehicles. Therefore no post-processing was needed for formatting. The data fields included
in each file are summarized in Table 4-1.

Each Excdl file includes data for one vehicle driven on one trip. Some of the trips have more
than 2 hours of data or over 7,200 seconds of data. In order to approximate averaging times that
might be more appropriate for air quality modeling or other purposes, data for each vehicle was
separated into trips of half an hour. After this processing, there were 54 “trips’ for the HDDV
database.
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Table 4-1. List of Parameters given in HDDV Data Set Provided by EPA

Category Parameters

Vehicle Engine Size; License number;

Characteristics Instrument configuration number

Ambient Relative humidity (in both %, graing/lbair units); Ambient
Conditions temperature (°C); Barometric pressure (in mbar)
Roadway Latitude (degree); Longitude (degree);

Characteristics Altitude (feet); Grade (%)

Vehicle Activities | Coolant Temperature (°F); Engine load (%); Percent throttle (%);
Date; Time; Vehicle speed (mph); Engine RPM; A/C (on/off);
Fuel Consumption rate (in gallon/sec, grams/sec, and miles/gallon
units); Oil temperature (°F); Oil pressure (kPa); Engine pressure
(kPA); Exhaust flow (scfm); torque (Ib-ft); Brake horse power
(bhp)

Vehicle Emission HC, CO, NO, CO, and O, emission
(in PPM, g/sec, g/kg fuel, g/bhp-hr units)

In the next step of data-processing, variables that might be helpful in explaining variability in
vehicle emissions, but that were not provided in the original dataset, were estimated. These
variables include acceleration and power demand. Methods explained in Section 3.1.1 were
utilized for this purpose.

4.1.2 Data Quality Assurance/Quality Check

For quality assurance purposes, the data set for each vehicle trip was screened to check for errors
or possible problems. In developing an experimental design one should consider possible sources
of errorsfor data collection. Since the experimental design in this study was not devel oped by
NCSU, the NCSU study team had not control over these errors. Therefore, in this study, the
focus was to check for errors and correct them is possible. The types of errors checked are
similar to the ones explained in Section 3.1.2.

Loss of Data: After checking the database for loss of data, it was observed that some trips had
cases where HC emissions are missing for more than 100 seconds. For example, Vehicle 1 Trip 1
had missing HC data for 343 seconds. Vehicles 2, 9, and 11 have similar problem. No correction
has been done for this problem.

Negative Emissions Values. Asexplained in Section 3.1.2, sometimes emissions are reported as
negative, because of random measurement errors. It was observed that for some trips NO
emissions had negative data for the concentration column presented in ppm units. However, the
corresponding g/sec column for these data have zero emissions. Therefore there are no negative
data as g/sec in the database. Since g/sec data are used for analysis no correction has been done
for ppm data.

Synchronization Errors. Data were checked for synchronization errors data. An example of

synchronization check isgiven in Figure 4-1 for Vehicle 1 Trip 1. Asseenin Figure 4-1 thereis
no synchronization error for HDDV data. Thisisindicated by the sharp rise in CO emissions
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concurrent with asharp rise in engine RPM at approximately 135 seconds into the trip and again
at approximately 190 seconds into the trip.

Freezing of instrument: The database for HDDV was checked for data freezing. However, no
error was identified for this kind of problem.

Drift in data: Another type of possible error isadrift in emissions data. HDDV data were
checked for this type of error. Example check for Trip 1 isgiven in Figure 4-2 for CO emissions.

As seen in Figure 4-2, the minimum CO emissions do not have any upward or downward trend.
The average of CO emissions stays approximately the same throughout the trip. Another finding
from this analysisisthat there is not any cold-start process for HDDV data. There is not any part
of thetrip in which CO emissions were substantially higher than for the rest of thetrip asin the
case of LDGV. Therefore, in analysis of HDDV data, CO emissions for the entire trip were
treated as generated from a hot-stabilized process.

4.2  Exploratory Analysis

After database formation and screening the data for errors, an exploratory analysis was
conducted to better understand the variability of vehicle emissions and the basic trends between
explanatory parameters and vehicle emissions for HDDV data. This exploratory analysis was a
necessary step before devel oping any relationships between vehicle emissions and explanatory
variables.

This section first presents summary of the data provided for emissions and engine related
parameters. Then variability in the emissions data is presented. Scatter plots were utilized for
data visualization purposes. Finally, the findings of the exploratory analysis are summarized.

4.2.1 Data Summary

After the post-processing procedure was completed, 54 valid trips were obtained for 12 different
buses. An example of the summary of the emissions and activity data as well as environmental
and roadway characteristicsis given for all vehiclesin Table 4-2. Table 4-2 presents a summary
of combined data for vehicles.

The datain Table 4-2 were divided into several categories. These categories were: vehicle
characteristics; parameters related to vehicle operation; environmental characteristics; and
roadway characteristics.

There are 12 vehicles as shown in Table 4-2. The duration of data collection ranged from 5,283
seconds to 10,347 seconds. The slowest average speed occurred for Vehicle 13, with an average
speed of 13 mph, whereas the fastest average speed occurred for Vehicle 11 with an average of
23.6 mph. Ambient weather conditions during these trips were similar. The average temperature
ranged between 17 °C and 26 °C and the average humidity varied between 24 percent and 53
percent. Changes in operation conditions, as well as changes in environmental conditions and
roadway conditions, resulted in differencesin average emissions. For HC emissions, the highest
average emission rate is more than 12.7 times higher than the lowest average emission rate. This
ratio is smaller for other pollutants: 3.2 for CO; 1.36 for CO; and 2.8 for NO. These results
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Table 4-2. Summary of Datafor HDDV Database

BusNo 1 2 4 5 6 7 8 9 10 11 14 15
Bus Characteristics

License 382 384 386 383 381 380 379 377 363 361 372 364
Engine Displacement 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
Vehicle Operation

[Aver age Speed (mph) 19.9 18.2 17.3 18.2 16.3 13.0 15.1 12.1 13.8 23.6 21.4 17.7
Aver age Engine L oad (%) 37.4 29.9 31.1 32.6 31.0 33.5 39.8 35.4 31.5 38.2 39.2 36.3
IAver age RPM 1219 1133 1164 1118 1146 1093 1182 1127 1138 1241 1171 1194
[Aver age Calculated Engine Power (bhp) 85.21 64.15 62.93 | 67.19 | 65.61 | 72.90 84.75 77.34 64.34 83.35 72.31 77.02
IAver age Torque (ftlbs) 294 231 231 244 231 247 298 262 236 303 288 274
IAver age Throttle (%) 4 3 3 3 3 3 3 3 3 4 3 3
JAver age Coolant Temperature (F) 176 179 180 180 190 188 183 182 181 147 165 186
[Aver age Fuel (g/sec) 3.382 2.538 2.511 | 2.658 | 2.790 | 2.986 3.208 2.980 2.468 2.993 2.975 2.861
[Average HC (g/sec) 0.0015 0.0019 | 0.0015 | 0.0018 | 0.0006 | 0.0011 | 0.0018 | 0.0006 | 0.0003 | 0.0013 | 0.0024 | 0.0034
[Average CO (g/sec) 0.0528 0.0362 | 0.0470 | 0.0262 | 0.0342 | 0.0524 | 0.0307 | 0.0283 | 0.0217 | 0.0181 | 0.0166 | 0.0206
[Aver age CO2 (g/sec) 10.9199 | 82025 | 8.0378 | 8.6010 | 9.0960 | 9.8224 | 10.5254| 9.7097 | 7.9950 | 9.6236 | 9.4992 | 9.2206
[Aver ageNO (g/sec) 0.1749 0.1296 | 0.1247 | 0.1349 | 0.1028 | 0.1077 | 0.1086 | 0.0769 [ 0.0628 | 0.1702 | 0.1058 | 0.1410
Environmental Characteristics

[Aver age Ambient Temperature (C) 22 18 20 21 22 24 24 26 26 17 21 21
[Aver age Ambient Pressure (mbar) 995 993 986 984 988 973 974 973 966 971 982 985
Aver age Humidity (%) 25 24 35 40 38 51 53 47 58 31 29 31
Roadway Characteristics

[Aver age L atitude (degr ee) 42.250 42.245 | 42.249 | 42.228 | 42.274 | 42.250 | 42.259 | 42.253 | 42.280 | 42.304 | 42.260 | 42.235
[Aver age L ongitude (degr ee) -83.662 | -83.755 | -82.685] -83.762 | -83.728 | -83.719 | -83.706 | -83.698 | -83.752 | -83.929 | -83.691 | -83.648
Aver age Altitude (feet) 257.5 268.3 2411 | 271.0 | 271.3 | 279.7 236.1 264.2 270.8 263.0 201.3 244.1
[Time of Day 9:21AM | 14:30AM | 8:53AM | 1:21 PM| 3:24 PM| 3:26 PM| 7:09 PM | 12:27 PM| 5:34 PM| 7:58 AM | 8:03 AM | 1:.07 PM
Day of Week Wed Wed Fri Fri Mon Tue Tue Wed Wed Thur Fri Fri
Number of Seconds of Data 3140 8461 10347 | 7951 7295 8023 7888 8091 8069 5644 5283 5688

indicate that there is some variability in the data. The next section will present thisissue in more

detail.

4.2.2 Variability in Emissions Data

In this section, data are presented to illustrate the variability in observed data. For this purpose,
trip-average emissions rates were utilized. First inter-vehicle variability is presented. In
estimating inter-vehicle variability average emission rates were estimated for each vehicle using
the trip-based averages. Since for each vehicle the data were divided into multiple time periods
based upon an example averaging time of 30 minutes, confidence intervals for the mean were
estimated based upon this averaging time. For some vehicles, confidence intervals were wider
due to fact that the number of tripsis small. For example for Vehicle 1 there were only two trips,
whereas there were six trips for Vehicle 4. Figure 4-3 presents inter-vehicle variability for CO
emissions. Inter-vehicle variability for other pollutants are given in Appendix A. For most of the
vehicles, average CO emissions are not statistically significantly different from each other since
the confidence intervals are very wide due to the small number of trips. However, some vehicles
are emitting more than others. For example, the average CO emission rate for Vehicle 7 is
statistically significantly higher than the average CO emission rate for Vehicles 2, 5, 6, 8, 9, 10,
11, 14, and 15. It seems from Figure 4-3 that there are three different clusters of average CO
emissions. Vehicles 10 trough 15 seems to emit the lowest average CO emissions. Vehicles 5, 6,
8, and 9 seem to be moderate emitters, whereas Vehicles 1, 2, 4, and 7 seem to have the highest
emissions on arelative basis. However, this trend is not present for other pollutants.

Inter-trip variability was also analyzed for HDDV data. The purpose of this analysis wasto

characterize the range of variability in trip average emissions among al of the vehicles, to
determine whether the data set is relatively homogenous, and to gain insight into whether all of
the vehicles can be treated as one group for purposes of analysis and model development. The
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Figure 4-4. HC Inter-Trip Variability and Mean Estimate for Heavy-Duty Diesel Vehicles

trip average NO emission rate was 0.114 g/sec for 54 trips (averaging periods) conducted with 12
different vehicles. The 95 percent confidence interval for the mean value ranges from 0.105 g/sec
to 0.123 g/sec, or arange of approximately plus or minus 7 percent. Approximately 90 percent of
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the values are below 0.17 g/sec. Most of the emissions estimates are within arange of an order-
of-magnitude (e.g., ranging from 0.06 to 0.18 g/sec over a 95 percent probability range). In
Figure 4-4, the cumulative distribution function of the data is approximately a straight line for
several portions of the data which indicates that these data are approximately piecewise
uniformly distributed. Although there is some skewness in the distribution as suggested by the
upper tail, there are no data points that are obvious outliers. Thus, there are no obvious "high-
emitter” casesin this data set. Therefore, this data set is deemed to be sufficiently homogeneous
that all of the vehicles within it can and should be treated as a single group for purposes of
analysis and model development. It should be noted that there are some vehicles that have as
much variability among trips asis observed in the overall dataset.

Similar results were obtained for CO, HC and CO, emissions. Most of the emissions estimates
are within arange of an order-of-magnitude for all of these pollutants. For CO, emissions range
from 0.014 to 0.059 g/sec over a 95 percent probability range. For CO,, this range is between 5.3
to 11.9 g/sec. Emissions for HC ranges from 0.0002 to 0.003 g/sec over a 95 percent probability
range. Probability distributions for CO, CO,, and NO are given in Appendix A.

4.2.3 ldentification of Explanatory Variables

In this section, factors influencing vehicle emissions are summarized as cited in the literature.
There are mainly four groups of parameters that affect vehicle emissions as indicated by
Guender (1993). These groups are: (i) vehicle parameters, (ii) fuel parameters; (iii) vehicle
operating conditions; and (iv) vehicle operating environment.

Vehicle Parameters

Vehicle parameters are related to vehicle technology and include vehicle class (i.e., weight,
engine size, horse power), model year, vehicle mileage, emission control system. Studies have
shown that vehicle class and weight are significantly related to vehicle emissions. For example,
vehicle emissions increase as the vehicle weight increases (Clark et al., 2002). The effect of
other vehicle parameters, such as type of exhaust after treatment and vehicle age, were
investigated in several other research projects (Hawker et al., 1998; Clark et al., 2000; Y anowitz
et al., 2000).

Fuel Parameters

Fuel differences might affect heavy-duty engine emissions significantly (NRC, 2000). As
reported by Clark et al., (2002), fuel differences might account for 25 percent changesin NOy
emissions.

Vehicle Operating Conditions

Vehicle applications and duty cycles can have an effect on emissions as noted by Clark et al.
(2002). The primary difference between different operations is the change in average speed and

events requiring full engine power. Recent study by Clark et al. (2002) notes that changes in duty
might have of an effect of ten percent increase in NOy emissions.
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For HDDV, equivalence ratio is one of the parameters that affects emissions the most. The brake
mean effective pressure increases with equivalence ratio, so higher equivalence ratio corresponds
to higher engine power output (Flagan and Seinfeld, 1988). CO and PM emissions drop sharply
with increasing equivalence ratio, whereas HC and NO emissions drop sharply as equivalence
ratio isincreased above about 0.2, reaching relatively low levels at an equivalence ratio of about
0.4 (Degobert ,1995). Driver behavior and vehicle speed are two parameters that have significant
effect on vehicle emissions since they have an effect on the power required from the engine
(Clark et al., 2002).

Vehicle Operating Conditions

V ehicle operating conditions include the environmental conditions under which the vehicleis
operated, such as humidity, ambient temperature, and road grade.

Thereislittle known about the effect of ambient conditions on HDDV emissions. EPA is
currently conducting studies to answer this question (NRC, 2000).

Another parameter that can have an effect on vehicle emissionsis road grade. Road grade affects
vehicle emissions by impacting the load on the engine. As stated by Clark et al. (2002), road
grade can increase NOx emissions from HDDV by 250 percent.

Summary

In this section, variables influencing vehicle emissions were summarized. The explanatory
variables available for model development represent many but not all of the key influences on
emissions identified in the literature review. One of the constraints of this study is that the
explanatory variables that are available for model validation purposes are only a subset of the
explanatory variables available for model development. Therefore, the conceptual model will
not include variables that are not available in the prediction dataset. The focus of this study was
on using explanatory variables that are available in the prediction dataset or derived variables
that can be estimated from the available ones, such as accel eration and power demand.

424 DataVisualization

In order to find relationships among the variables, data visualization was conducted for the
database. For this purpose scatter matrices were prepared using S-Plus. In this section an
example will be given for visualizing the relation between possible explanatory variables and
NO emissions for Vehicle 1, as shown in Figure 4-5.

Explanatory variables plotted in this figure are: Vehicle Speed (mph); Vehicle Acceleration
(mph/sec); Ambient Temperature (°F); Humidity (graing/lb air); Altitude (feet); Grade (percent);
Power Demand (mi®/h?.sec). HC emissions are reported in grams/second. For this figure, second-
by-second data collected with Vehicle 2 are combined from five different trips making a total of
8462 data points.

The bottom row in Figure 4-5 gives the relation between NO emissions (i.e., y-axis) and
explanatory variables. For example, the cell on the bottom left represents a scatter plot of NO
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Figure 4-5. Example Scatter Matrix for NO Emissions for Data Collected with Vehicle 1

emissions versus humidity. As can be seen in the figure, the relationship between NO emissions
and humidity is noisy. NO emissions tend to increase when road grade is positive and close to
zero. The relationship between NO emissions and altitude is very noisy. The same is true for the
relationship between speed and NO emissions. There is apositive increase in NO emissions as
acceleration increases. NO emissions are low for negative power demand estimates. NO
emissions tend to go up as power demand increases, but the largest NO emissions occur at less
than the maximum power demand levels. This relation indicates the possible explanatory power
of power demand for NO emissions.

Thereis asubstantial amount of variability in emissions data and there is not any explanatory
variable that directly explain alarge portion of this variability. Asin the case for LDGV data,
several variables can explain some part of the variability. This means that one needsto look at a
combination of explanatory variables in order to explain variability in emissions. For this
purpose, both engineering and statistical techniques need to be applied.
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425 Summary of Exploratory Analysis

In this section relationship between possible explanatory variables and emissions were
investigated. Thisis a necessary step before any of the modeling efforts. The insights obtained
from this section is utilized to build model as explained in the next section.

4.3  Model Development

The objective of this section is presented a ong with the requirements of the study. A summary
of the model is given with comparison of observed versus predicted data using the model.
Finally, adiscussion of unexplained variability and uncertainty is given.

4.3.1 Objectives

In this study one of the objectivesisto develop conceptual models for heavy-duty diesel vehicles
for CO, HC, NO and CO, emissions using on-board emissions data provided by the U.S.
Environmenta Protection Agency. Developed models will be applied to a "validation" dataset
and predictions for these datasets will be obtained. As discussed In Section 4.2.3, explanatory
variables that were provided in the “validation” dataset will be fewer than the explanatory
variables provided in the “modeling” dataset. Therefore, modeling attempts should take this
aspect into account to develop models based upon variables available for prediction purposes.

Variables available in the “validation” dataset are: vehicle speed (mph); time/date; a/c (on/off);
temperature (°F); humidity (graing/Ib air); ambient pressure (in Hg); latitude (deg); longitude
(deg); and grade (percent). These variables and variables that can be estimated from these, such
as power demand, are utilized in developing model for HDDV data.

Considerations for autocorrelation in the data provided that were given for LDGV data are also
applicable for HDDV data, since these data are also time series. Therefore, one needsto be
careful when working with classical statistical models, such as OL S regression, with these data.

For HDDV data, an approach similar to the LDGV modeling method given in Section 3.3.1is
taken. OL S regressions were fit to data at the end nodes of regression trees that were formed
from modal analysis. The next section explains the modal analysis conducted for these data.
Improvements to modal definitions were made. Results are given for OLS regressionsfit to the
data with specific modes.

4.3.2 Data Segregation Using Modal Analysis Approach

For modal analysis, mode definitions similar to those for the LDGV data, as given in Section
3.3.3, were utilized. Since there is no cold-start for HDDV data, there are four modes: idle;
acceleration; deceleration; cruise. A program was written in Microsoft Visual Basic that
determined the driving mode for second-by-second data and estimated the average value of
emissions for each of the driving modes. The program also calculated the total emissions for the
trip (averaging time period).
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In order to see whether modal analysis has an explanatory power or not, average modal emission
rates were estimated for each trip. Then the average of these estimates was calculated for al of
the trips. Figure 4-6 presents a comparison of average modal emission rates for different
pollutants. The comparison includes 95 percent confidence intervals on the mean emission rates.

The average emissions during the accel eration mode were significantly higher than for any other
driving mode for al of the pollutants, except for HC. Conversely, the average emission rate
during idling was the lowest of the four modes for all four pollutants. The average cruising
emission rate was typically higher than the average decel eration emission rate, except for HC

C1 Idle

E Acceleration

L1 Deceleration

B Cruise

Figure 4-6. Average Modal Emission Rates for All Tripsfor HDDV

P-Values for Pairwise T-test
Modes Acceleration Deceleration Cruise
Idle 0.000 0.006 | 0.000
HC | Acceleration 0.146 | 0.004
Deceleration 0.617
Idle 0.000 0.895 | 0.000
CO | Acceleration 0.000 | 0.000
Deceleration 0.000
Idle 0.000 0.590 | 0.000
NO | Acceleration 0.000 | 0.000
Deceleration 0.000
Idle 0.000 0.008 | 0.000
CO, | Acceleration 0.000 | 0.000
Deceleration 0.000
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emissions. In order to check whether the average modal emission rates were statistically
significantly different from each other, pairwise t-tests were estimated. Results of the t-tests are
presented in Table 4-3 in terms of p-values. The cases where the p-value is less than 0.05
indicates that a particular pair has statistically significant differences in the average estimates.
For example, the t-test between idle and accel eration modes for HC emissions produced a p-
value of 0, indicating that average HC emissions are different between two modes. Out of 24
possible pairwise comparisons, only four of them gave p-values higher than 0.05, indicating that
average emissions rates for these pairs are statistically not different from each other. Two of
these cases occurred for HC emissions, between the decel eration and acceleration pair, and
between the deceleration and cruise pair. The other two occurred between theidle and
deceleration modes for both CO and NO emissions.

The modal emissions analysis results suggest that the a priori modal definitions assumed here
are reasonable. These modal definitions do allow some explanation of differencesin emissions
based upon driving mode, as revealed by the fact that, in most cases, the average modal emission
rates differ from each other. However, for HC, thereisrelatively little variability among the four
modes. As described in Section 2.2.1, HC emissions are expected to be relatively constant, on
average, in contrast to the other pollutants.

4.3.3 Improving Driving M ode Definitions

The modal definitions given in this study have a power to explain variability in emissions since
average emission rates for different modes are found to be statistically significantly different
from each other. In this study, further improvements for modal definitions were obtained using
the HTBR method as explained in Section 3.3.4. For this purpose, explanatory variables related
to vehicle operation and vehicle characteristics such as vehicle speed, acceleration, power
demand, road grade and vehicle model year were utilized.

After analyzing the results from HTBR analysis, it was determined that acceleration equal to 2
mph/sec should be used as a cutoff point for acceleration mode for CO emissions. For other
pollutants no reasonable cutoff variable was found that provided any useful improvement.

In order to see whether the newly identified modes have potential benefit in explaining
variability in CO emissions, the average moda emission rates for the new modes were estimated
and are compared in Figure 4-7. The highest average CO emission rate occurs for the high
acceleration mode. The next highest average emission rate is for the low acceleration mode. The
cruise mode has the third highest average emission rate. The 95 percent confidence intervals on
the mean modal emissions are also shown in Figure 4-7. Since the confidence intervals for the
mean are not overlapping, except for the idle and cruise modes, it can be concluded that by
dividing the acceleration mode into two parts, the modal analysisisimproved.

Another important aspect of modal analysisis the distribution of time and total emissions with
respect to modes. For this purpose, the distribution of time and emissions were estimated for
each averaging time period. The average of these distributions was estimated. Figure 4-8
presents a bar chart with the result of thisanalysis.

In addition to devel oping modes that are statistically significantly different from each other,
another consideration in model development is to create modes that are useful in explaining a
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substantial contribution to total trip emissions. Figure 4-8 illustrates the distribution of time
spend in each of the four original modes, and the corresponding percentage contribution of each
mode to total trip emissions for each of four pollutants. Asobserved in Figure 4-8, the trip time
is approximately equally divided among the four principle driving modes. However, the total
emissions are not equally divided among the modes. The acceleration mode comprises alarger
proportion of total emissions compared to its proportion of trip time. For example, for CO,
acceleration contributes approximately 60 percent of the total emissions for the trip even though
it represents only approximately 20 percent of the trip time, on average. Acceleration contributes
more than 40 percent of the total average NO emissions, almost 60 percent of total CO,
emissions, and approximately 30 percent of total HC emissions. In contrast, the idle mode
comprises more than 20 percent of the duration of the trip but less than 10 percent of NO, CO,
and CO, emissions, and approximately 15 percent of the HC emissions. The decel eration mode
also contributes a smaller share to total emissions compared to its share of timein thetrip. The
cruising mode contributes approximately its time-based share to total emissions, but the specific
contribution varies. For example, cruising contributes approximately 35 percent to total NO
emissions, 30 percent to HC emissions, and 30 percent to CO, emissions, but only 20 percent to
HC emissions. Overall, the key implication of Figure 4-8 is that the acceleration mode is the
single most important of the four modes because it makes the largest contribution to total
emissions. Cruiseisthe second most important mode from this perspective. Decel eration and
idle are of comparable importance, and combined contribute less to total emissions for NO, CO,
and CO; than either of the other modes alone, with the exception of HC emissions.

4.3.4 Fitting OL S Regressions

After developing modal definitions, OLS regressions were fit for each mode using explanatory
variables. Reasons for selecting explanatory variables were explained in Section 4.2.3. These
explanatory variables are: model year; humidity, speed; acceleration; temperature; atitude;
grade; pressure; and power. Second and third powers of speed and acceleration were also
included in the regression analysis.

In fitting regression to the data, a stepwise regression technique was applied in SAS as explained
in Section 3.3.5. Theresult from SASis a statistically significant model with statistically
significant parameters. The coefficients of the regression equations for NO, emissions obtained
from thisanalysisare given in Table 4-4. For HC emissions, the OLS regression did not result in
amode that can sufficiently explain variability in emissions. More detailed discussion on
modeling of HC emissionsis given in Section 4.3.6. Coefficients for the OLS regressions for
CO and CO, are given in Appendix B.

As seen in Table 4-4, some of the coefficients are zero. This means that those variables were not
selected in the regression fits. R? values for each regression equation are given. The lowest R?
valueis 0.02, for the idle mode, and the highest one is 0.31 for the cruise mode. These R? values
are low to moderate. However, given that only a selected set of explanatory variables are
available for inclusion in the regression models, it is not surprising that there is alarge portion of
variability in the data within each mode that remains unexplained. Furthermore, it must be kept
in mind that these models are only for bins of data, and that the process of binning the data also
accounts for aportion of the variability in the on-board emissions data.
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Table 4-4. Results of Regression Fit for NO Emissions for HDDV

Variable Idle Acceleration Deceleration Cruise
Intercept 691.6 -690.9 1309.5 -412.1
Model Y ear -0.3500 0.3530 -0.6807 0.2117
Humidity 0 -0.0152 0.0601 -0.0139
Speed 0 -0.0684 -0.2135 -0.0862
Speed2 0 0.0039 0.0037 0.0039
Speed"3 0 0 0 0
Accel 0 0.2094 0.1317 1.3932
Accel"2 0 -0.0003 0.0085 -0.3599
Accel"3 0 0 0 -0.5161
Temperature 0.0217 -0.0609 -0.1134 -0.0725
Altitude 0.0006 -0.0005 0 -0.0003
Grade 0 -0.0474 -0.0758 -0.0458
Pressure 0.0029 -0.0139 0.0478 -0.0109
Power Demand 0 0 0.0214 0.0062
R-square 0.02 0.20 0.28 0.31
Correction
Factor 13 0.3 1.9 14

Asseenin Table 4-4, model year is selected as a significant parameter for al of the modes for
NOy. However, the coefficient of model year differs among the modes. For the idle mode the
coefficient for model year is-0.35 whereas it is 0.35 for acceleration mode. For the deceleration
modeit is-0.68 and for the cruise mode it is 0.21. These numbers suggest that increasing model
year decreases emission for idling and decel eration modes whereas it increases emissions for
acceleration and cruise modes. This result might be due to differences in vehicle design, or
model year might be functioning as surrogate for avariable that is not available in this study.

4.35 Comparison of Observed Data with Predictions

In order to determine whether the overall model performs well, trip-average emissions
estimations from the model were compared to observed data. The model used for each pollutant
issummarized in Table 4-5. For example, OL S regressions were used for modeling HC
emissions in each driving mode. For CO emissions, separate OL S regressions were used for low
and high accel eration modes, whereas for the other pollutants all accelerations were combined
into one mode, with one associated OL S regression.

The models for each of the four pollutants were used to predict emissions for the calibration data
set based upon the values of the explanatory variables reported in the calibration dataset. The
performance of the models was evaluated by comparing model predictions and actual
observations for trip average emission rates based upon the calibration data set. In Chapter 6, the

models were applied to make predictions for avalidation data set that was different from the
calibration data set.
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Table 4-5. Summary of Model Developed for Each Pollutant for LDGV

Driving
Modes HC CcoO NO CO,
Idle OLS* OLS OLS OoLS
High oLS
Acceleration oLS OLS oLS
Low oLS
Acceleration
Deceleration OoLS OLS OLS OoLS
Cruise OoLS OLS OLS OoLS

* OLS: Ordinary Least Squares Regression

A parity plot for CO emissionsis given in Figure 4-9 with 95 percent confidence interval on the

mean prediction value. Figure 4-10 presents asimilar graph with a 95 percent prediction interval

on theindividual predictions. The theory for estimation of confidence intervals for the mean and
for individual predictions can be found elsewhere (Neter et al., 1996).

Asseen in Figure 4-9, the trend line between the observed and predicted trip-average CO
emissions has a better R? value than the regression equations for individual modes. An R? of 0.55
indicates that the combined model can explain 55 percent of the variability in average trip
emissions for CO, whereas the highest R? value achieved for individual modes was 0.31 for the
cruise mode as given in Table 4-4. As seen in Figure 4-9, there is one point in the plot that has a
prediction Of .04 g/sec compared to observed value of 0.09. The R? value can increase up to 0.62
if thisisdata point isignored. However, thereis no basis for discarding this particular data point.
In the last row of Table 4-4, the correction factor for each regression is reported. Details of the
correction procedure are given in Section 3.3.5.

The performance of the model can be evaluated in terms of precision and accuracy. The R?
valueisan indication of precision. Higher R* valuesimply ahigher degree of precision, and less
unexplained variability in model predictions, than lower R? values. The slope of the trend line
for the observed versus predicted values is an indication of accuracy. A slope of one indicates an
accurate prediction, in that the average prediction of the model corresponds to an average
observation. The slope of the trend linefor CO is 1.11, which is close to one. It should also be
observed that the range of variability in average emissions for the averaging time selected and
for the available database is not very large. The lowest trip average value is approximately 0.01
o/sec, and the second highest value is approximately 0.06 g/sec. The highest value of 0.09 g/sec
is not within the main cluster of data, although there is also no basis for discarding it. Thus, the
range of variation in observed emissionsis less than an order of magnitude, and in most cases it
is approximately one half order-of-magnitude. The model predicts, on average, a variation from
0.015 g/sec to 0.05 g/sec, which is approximately a factor of three variation and is not
substantially less than the variation within the main cluster of data. Therefore, from perspectives
of the R?, slope of the trend line, and variability captured by the model, it appears that this model
is performing reasonably well.
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Figures 4-11 and 4-12 show the relationship between the observed and predicted trip-average for
NO emissions. Asin the case for CO emissions, the overall R? valueis better than the R? values
for regression equations for the individual modes. The R? value of 0.49 indicates that the
combined model can explain 49 percent of the variability in average trip emissions for NO,
whereas the maximumR? value for individual modes was for cruise mode with an R? of 0.31.

The comparison of model predictions and observed values for CO, emissionsis given in Figures
4-13 and 4-14. The R? for the trend line between the predicted and observed values is 0.8, which
indicates that the model explains 80 percent of the variability in trip-based averages. The
maximum R? value for the individual regression equations for the modes occurred for the cruise
mode, with avalue of 0.33. The much higher R? value for the combined model indicates that
dividing the data into modes explains some part of variability in CO, emissions. The model tends
to overpredict CO, at the low end of emission rates, as indicated by the negative intercept of the
trend line. Thus there appear to be some biasesin this model. However, the slope and intercept
of the trend line can be used to correct for biases when making predictions.

4.3.6 Model Developed for HC Data

Fitting OLS regressions for HC data for each mode did not result in amodel with much
explanatory power. For thisreason, a detailed investigation was conducted to find an
explanatory variable that would work for HC emissions. In the literature, there has not been
much research reported for HC emissions from HDDV, since these emissions are quite low. It is
known that one of the variables that affects HC emissionsis the equivalence ratio. It has been
reported that HC emissions drop sharply as the equivalence ratio is increased above about 0.2,
and that emissions dlightly increase when the equivalence ratio is higher than 0.7 (Flagan and
Seinfeld, 1986).

In order to see the relationship between equivalence ratio and HC emissions, the equivalence
ratio for HDDV was estimated using air intake rate and fuel intake rate. In the data provided to
NCSU by the EPA, air intake rate was not given. Therefore, air intake was estimated using mass
balance equations. Equations for these estimates are given in Appendix B. Asanillustration of
the method, the results of equivalence ratio estimation for Vehicle 1 Trip 1 are given in Figure 4-
15. There are 1,141 data points, each representing one second of data.

The relationship between the estimated Equivalence Ratio and HC emissionsis noisy. There
seems to be aweak upward trend among the lower bound of emissions versus equivalence ratio.
However, the highest HC emissions occur for low equivalence ratios. As an aternative, HC
emissions were normalized by brake horse power and the normalized emissions were plotted
versus equivalenceratio in Figure 4-16. Thereisaclear relationship between equivalence ratio
and normalized HC emissions. The highest HC emission occurred at low values of equivalence
ratio, between equivalence ratios equal to zero and 0.4. This finding coincides with the theory as
reported in literature by Flagan and Seinfeld (1986). Therefore, one can in principle estimate HC
emissions normalized to brake horsepower using equivalence ratio.
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In order to estimate equivalence ratio one needs to have information on fuel flow and air intake.
These parameters were not provided in the “validation” dataset. Second-by-second brake
horsepower was not provided either. Therefore it was not possible to estimate HC emissions
using this approach in the validation study. Other explanatory variables such as power demand
and acceleration were analyzed with respect to their explanatory power for HC emissions.
However, none of these parameters were found to be useful. Therefore it was decided to use
modal analysis as the model for HC emissions for HDDV data. Comparison between the
observed and the predicted HC emission for HDDV using only modal analysisisgiven in Figure
4-17.

The predictive capability of the model for HC emissionsis very weak. The prediction of the
model ranges only from 0.0012 g/sec to 0.0016, whereas observed values range from 0.00015 to
0.0038 g/sec. The R? valueis very low and can explain less than one percent of the variability in
the data. Thismodel is not much better than simply using an average HC emissions estimate for
all of the trips based upon the observed data. However, as noted above, HDDV HCC emissions
are considered to be low, and even the high end of the observed range represents alow emission
rate.

Therelatively poor performance of the modal-based model for HC is not an inherent limitation
of the modal modeling approach. Instead, it isaresult of the lack of availability of asuitable
explanatory variable for model development purposes. For example, amodal definition based
upon equivalence ratio would be more useful for HC than one based upon speed and
acceleration. The modal approach works very well for the other three pollutants. HC is unique
among the four pollutants in being relatively insensitive to the set of explanatory variables that
are available in the validation data set.

4.3.7 Quantification of Unexplained Variability and Uncertainty

In developing amodel it isimportant to quantify the unexplained variability and uncertainty. In
order to characterize unexplained variability, the residuals from each trend line fitted to the
observed and predicted data are obtained. The coefficient of variation (C.V.) of the residuals
was determined by the method given in Section 3.3.6.

Uncertainty in model predictions for mean emissions was determined by estimating the average
emissions and the standard variance of emissions for individual modes for each trip. The trip
averages and trip standard variances were estimated using weighted averages as explained in
Section 3.3.6. Results of the variability and uncertainty estimation are given in Table 4-6.

The uncertainty analysisis relevant to the application of the model to make predictions of fleet
average emissions. The results for the coefficient of variation imply that the range of uncertainty
in average predictions is approximately plus or minus 10 percent of the mean value for HC and
CO emissions, plus or minus 5 percent of the mean value for NO emissions, and plus or minus 3
percent of the mean value for CO, emissions. Thus, the 95 percent confidence interval for the
mean prediction is less than approximately plus or minus 10 percent in all cases. The uncertainty
in the mean for HC emissions, for which it was difficult to develop a useful model based upon
the available explanatory variables, was comparable to that for the other pollutants. Thus, it
appears to be the case that a detailed model is not necessary for HC, because the precision of the
model prediction is comparable to that for the other pollutants.
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Table 4-6. Summary for Uncertainty Analysisfor the Model and Observed Data

Uncertainty in the Mean Prediction Variability in the Model
StDev
Poll. Mean (Mean) C.V. S. E. of the Residuals | Average of Observed Data | C.V.
HC (g/sec) | 0.001 7.2E-05 0.052 0.0007 0.002 0.33
CO (g/sec) | 0.032 0.0017 0.051 0.0097 0.032 0.30
NO (g/sec) 0.11 0.0029 0.026 0.025 0.11 0.21
CO, (g/sec) | 8.9 0.14 0.016 0.77 9.01 0.09

In contrast, if the model were to be used to make predictions of emissions for an individual trip,
then the lack of precision of the model is reflected by the unexplained variability for individual
trips not captured by the model. The results of the analysis of unexplained variability imply that
the 95 percent prediction interval for an average individual trip is approximately plus or minus
66 percent for HC emissions, plus or minus 60 percent for CO emissions, plus or minus 42
percent for NO emissions, and plus or minus 18 percent for CO, emissions. Thus, the range of
uncertainty for prediction of emissions of an individual trip is much larger than the range of

uncertainty for prediction of average emissions for afleet.
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44  Summary of the M odel

This chapter hasillustrated the major stepsin the development of amodal model of real-world
tailpipe emissions for HDDV using data obtained from on-board measurements.

Similar to LDGV there are key steps in model development that were not part of the scope of
work at NCSU. These include defining a study objective, developing a study design, and
executing the study designin all of its elements. The key characteristics of study design are
addressed in detail in Chapter 8.

The key stepsin model development that were part of this study include the formation of a
database from data reported by the on-board emissions contractors (or EPA), data quality
assurance and quality control, exploratory analysis of the data, and fitting of a model to the data.
The QA/QC activitiesincluding searching for common types of errors that can occur when using
on-board instruments. In some cases, some data were excluded from the final database in order
not to include known or suspected errorsin the analysis and model calibration effort.

Exploratory analysisincluded a variety of techniques. The first was development of a summary
of the content of the database, including average values and other information. Variability in the
emissions data between vehicles and between vehicle-trips was evaluated. Possible explanatory
variables were identified. Methods for visualizing the data, such as using multiple scatter plots,
were employed to help in identifying patterns in the data.

Because of the autocorrelation in the data, and the difficulty in working with time series models,
an approach based upon binning of the data to reduce the influence of autocorrelation was
pursued. The approach involves definition of driving modes based upon criteria applied to the
speed trace associated with the trip. The criteriainclude specific conditions of speed and
acceleration, sometimes involving multiple seconds of data, that are used to segregate the
database. The statistical significance of comparisons of the average emissions for each pollutant
among the four modes of idle, acceleration, deceleration, and cruise was assessed. These four
driving modes are typically statistically significantly different from each other for agiven
pollutant with respect to the average emission rates. Therefore, the modal definitions are
confirmed to have useful ability to explain differences in vehicle emissions based upon different
types of vehicle activity during real-world driving.

HBTR methods were used to determine whether the four driving modes should be subdivided
into additional modes. In one case, acceleration mode, criteria for subdividing the modes based
upon acceleration were found to provide additional capability to capture variation in the
observed emissions data. The modal approach represents a mesoscal e approach that can be
easily aggregated to predict macroscale (e.g., trip average) emissions.

For each modal dataset, OL S regression techniques were applied to illustrate the devel opment of
additional explanatory capability with microscale second-by-second data. Because these data
were segregated from the original time series into much shorter discontinuous time series, which
in turn is expected to reduce the influence of autocorrelation, it was judged acceptable to use
regression methods applied to the modal data.
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The OLS regression models fit to the modal data offered some additional explanatory capability.
These models are illustrative in nature. Some of the coefficients obtained from the analysis, such
asfor road grade, are not physically intuitive. However, this can be associated with lack of
sufficient variability in candidate explanatory variables. The methodology is applicable to larger
scale applications to larger databases. In most cases, the relationships obtained with OLS
regression were reasonable and useful. For HC emissions HTBR and OL S analysis did not give
an efficient model. Therefore, modal analysis was used as the basic model for HC emissions.

The performance of the models was evaluated using parity plots and statistical intervals with
respect to atrend line. Two types of statistical intervals were developed. One type of interval,
which we refer to as a prediction interval, represents the unexplained variability in observed
emissions that is not captured by the model. This measure of precision isimportant to consider
when making predictions for emissions for individua trips. The other interval, which we refer to
as a confidence interval, represents the 95 percent confidence interval on the mean prediction.
Thisinterval is applicable to estimating model precision when making predictions for average
emissions over a sufficiently large fleet. The prediction interval is needed in this study when
making comparisons between model predictions and observed values in the validation case study
described in Chapter 6.

Overal, the techniques applied to develop the illustrative conceptual model were useful in
screening the data, creating a data base, exploring the data base, devel oping the model,
characterizing model performance, and quantifying the variability and uncertainty in model
predictions. These techniques can be applied to larger datasets than were available in this work
for the purpose of developing a nationally representative model of HDDV tailpipe emissions.
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50 CONCEPTUAL MODELING APPROACH FOR SELECTED NONROAD
VEHICLES

This chapter focuses on the development of conceptual emissions models for selected nonroad
vehicles. EPA provided three hours of second-by-second calibration data for each of three
vehicles, including a bulldozer, a compactor, and a scraper. From these data, conceptual models
were developed for predicting NOy and CO, emissions. Several different methods were
explored, including binning the data into modes, supplementing the modal model with OLS
regression, multiple regression, and time series analysis. The methods were compared with
regarding to explanatory power and ease of implementation.

5.1  Data Post-Processing

In this section, methods for data post-processing are discussed for nonroad vehicles. Thiswork is
important in developing an accurate database.

5.1.1 Database Formation

Data for nonroad vehicles were provided in atab delimited format. These files were converted
into Microsoft Excel™ format since Microsoft Excel™ was used as the main environment for
data analysis and model development.

Three files were provided for the purpose of model development. Each file represents data
collected with a different vehicle. All of the vehicles were diesel fuelled and the engines were
manufactured by Caterpillar. All of these vehicles were six cylinder vehicles with fuel-injection.
Preliminary analysis of individual files indicated that the format was the same for all vehicles.
Therefore, no post-processing was needed for formatting.

The datafieldsin each file included: date of data collection; time of data collection; relative
humidity (%); ambient temperature (°C); exhaust temperature (°C); mass air flow temperature
(°C); barometric pressure (kPa); engine RPM; mass air flow (scfm) SATP (kPa); exhaust flow
(scfm); fuel flow (kg/h); NOx emissions (in ppm and g/hr units); CO, emissions (in percent and
kg/h units); NOx/Fuel ratio.

Data for each vehicle were used to create an Excedl file for one vehicle driven on one trip. Each of
the files has three hours of data. For the purposes of model development using modal and
regression approaches, the three hours of data for each vehicle were used without subdividing the
datainto trips. It wasfound that file for bulldozer and the scraper represented a continuous trip,
whereas data for compactor represented three trips. Thefirst trip for the compactor was very
short at only five minutes in duration. The second trip for compactor was almost one hour 45
minutes in duration and the third trip was one hour and seven minutesin length.

5.1.2 Data Quality Assurance/Quality Check

For the modal and regression anal yses, the nonroad equipment data streams were screened for
cases of zero engine RPM and inspected for cases of zero NO emissions. For the bulldozer,
there were 309 records (seconds of data) with zero engine RPM. Since these records imply
either no vehicle activity, and/or a data collection problem, these records were deleted in creating
a screened data base. No cases of zero NO, emissions were observed after the zero engine RPM
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records were deleted. For the compactor, five records were deleted that contained zero values
for RPM, and 258 records were deleted that contained zero values for NO,. For the scraper, 4
records were deleted that contained zero values for engine RPM, and 103 records were del eted
that contained zero values for NO.

5.2  Exploratory Analysis

After database formation and screening the data for errors an exploratory analysis was conducted
to better understand the variability of vehicle emissions and the basic trends between explanatory
parameters and vehicle emissions for nonroad data. This section first presents summary of the
data provided for emissions and engine related parameters. Variability in the emissions data are
presented. Scatter plots were utilized for data visualization purpose. The identified explanatory
variables used for model development arelisted. A summary of the exploratory analysisis
presented.

5.2.1 DataSummary

A summary of the emissions and activity data as well as environmental and roadway
characteristicsis given for al vehiclesin Table 5-1.

The datain Table 5-1 are divided into several categories. These categories are: vehicle
characteristics; parameters related to vehicle operation; and environmental characteristics.

Duration of trips for individual vehicles ranged from 380 seconds to 10,800 seconds. The
average engine RPM varies among the equipment and between trips. The minimum average
engine RPM occurred for Compactor Trip 1, with an average of 685 whereas the highest average
RPM occurred for Compactor Trip 3, with an average of 2,526. Ambient weather conditions
were different for the different vehicles. For the Bulldozer, the average temperature was 29 °C,
whereas it was less than 10 °C for trips conducted with the compactor. Average relative humidity
was ranged between 48 percent to 71 percent. For CO, emissions, the highest average emission
rate was more than four times higher than lowest average emission rate. Thisratio was
approximately 15 for NO, emissions.

Inter-trip variability analysis was not conducted for the nonroad data because the number of trips
was limited. However, emission estimates for different trips of the compactor imply that inter-
trip variability can be very high. For example, the average NOx emissions from Trip 2 were
approximately three times higher than the NO, emissions from Trip 1. Similarly, the average
CO; emissions from Trip 3 were approximately 4.5 times higher than the CO, emissions from
Trip 1. Inter-vehicle variability is also substantial for the nonroad data. As givenin Table 5-1,
the average NOy emissions rate for the bulldozer was almost three times higher than the NOy
emission rate from the scraper and seven times higher than the average of the three trips for the
compactor. For CO, emissions, the differences were less pronounced. For example, the CO,
emission rate from the bulldozer was approximately 1.5 times higher than for the.
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Table 5-1. Summary of Datafor the Nonroad Database.

Compactor Compactor Compactor
Bulldozer | Scraper Trip 1 Trip 2 Trip 3
Vehicle Characteristics
Model Year 1990 2001 1980 1980 1980
Rated Power 305 515 170 170 170
Vehicle Operation
Average RPM 1466 1557 685 2295 2526
Average Exhaust Flow (scfm) 599 427 194 301 346
Average NO, Emissions (g/hr) 1894 673 128 386 288
Average CO, Emissions (kg/hr) 98 67 24 70 107
Environmental Characteristics
Ambient Temperature (°C) 29 15 8 6 3
Ambient Pressure (kPa) 61 100 100 98 99
Relative Humidity (%) 67 48 57 64 71
Time of Day 6:30 AM | 7:30 AM 18:05 PM 9:15 AM 8:15 AM
# of Seconds of data 10800 10695 380 6405 4015

5.2.2

I dentification of Explanatory Variables

The analysis of potential explanatory variables was limited to those variables that would be
available in the validation data set. Although other variables were available in the calibration

data set, such as mass air flow, fuel rate, and some others, they were not used in model

development because they would not be available in the validation data set. Of the five variables
that are available in the validation data set, which include exhaust flow, engine RPM, ambient
temperature, barometric pressure, and relative humidity, it is clear that exhaust flow and engine
RPM are the two variables that are most highly correlated with emissions of both NO, and CO..
Therefore, these two variables were the main focus of model devel opment efforts. Because
temperature and humidity were highly correlated in the data for all three nonroad pieces of

equipment, it was judged that it would not be appropriate to include both in the model
development. An arbitrary choice was made to use ambient temperature as the surrogate

measure for the simultaneous inversely proportional covariation of temperature and humidity.
Barometric pressure was al so considered as a possible explanatory variable.

5.2.3 Data Visualization Using Scatter Plots

Scatter plots for both NOy and CO, emissions are given with respect to each of five possible
explanatory variables for each of the three pieces of nonroad equipment. The five possible
explanatory variables are exhaust flow, engine RPM, ambient temperature, barometric pressure,
and relative humidity. Exhaust flow is a surrogate for engine load. The emission rate of the two
pollutants, the exhaust flow and the engine RPM were normalized with respect to the maximum
values of each quantity for each piece of equipment. Thiswas done to ssmplify the graphical
presentation of results. All values of the two pollutants, exhaust flow, and engine RPM are

shown as between zero and one in the scatter plots and parity plots.

For all three pieces of equipment, the emission rate of both pollutants is highly correlated with
the exhaust flow rate. For illustrative purposes, trend lines are shown in each scatter plot, along
with an R? value. Because the data are autocorrel ated, the R? value obtained based upon ordinary
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least squares (OLS) regression is presented not as a quantitative indication of alinear
relationship but as a qualitative indicator.

Asatypical case, consider the scatter plots for the bulldozer for normalized NO, emissions
versus each of the five candidate explanatory variables shown in Figure 5-1. Scatter plots are
useful, but have some limitations. In particular, when there are many data points with similar
values, it is difficult to interpret the density of the datain a particular region of the graph.
However, in spite of thislimitation of scatter plots, some general inferences can be made about
the relationship between NO, emissions and each of the explanatory variables. NOy emissions
are afunction, at least in part, of exhaust flow rate, asillustrated in Figure 5-1(a). Thereis
almost alinear trend in average NO, emissions for a given exhaust flow and the normalized
exhaust flow rate. However, there is aso substantial variability in NOy emissions for any single
point estimate of normalized exhaust flow.

Figure 5-1(b) illustrates that thereis aso arelationship between NO, emissions and engine RPM.
However, thisrelationship is complex. On average, NO, emissions increase with an increasein
engine RPM. However, at high RPM, there appears to be a domain in which average NOy
emissions may actually decrease with an increase in engine RPM. In fact, although not shown
here, inspection of other scatter plots during data analysis reveals that the maximum exhaust
flow rate does not occur at the maximum RPM, but at approximately 90 percent of the maximum
RPM. Figure 5-1(b) indicates that the highest values of NO, emissions occur at approximately
90 percent of maximum RPM. Figure 5-1(a) indicates that the highest values of NO, emissions
occur at or near the maximum exhaust flow. Therefore, it is reasonable to conclude that the
maximum emissions are associated with the highest exhaust flow rates and with engine RPM at
approximately 90 percent of the maximum value. The comparison of Figures 5-1(a) and 5-1(b)
suggest that most of the observed variability in NOy emissionsislikely to be explained by a
combination of exhaust flow and engine RPM.

There appear to be relationships between NOx and both ambient temperature and relative
humidity. However, although not shown here, the exploratory analysis also revealed that
ambient temperature and relative humidity were highly correl ated with each other for this
particular dataset. For example, at atemperature of approximately 25 °C, the relative humidity
was 85 percent. At atemperature of approximately 33 °C, the relative humidity was 38 percent.
During the data collection, it is apparent that there was a steady increase in temperature and a
corresponding steady decrease in the relative humidity. A significant portion of the decreasein
relative humidity can be attributed to an increase in the capacity of the atimosphere to hold water
vapor as the temperature increases. For example, if the relative humidity is 85 percent at 25 °C,
the atmosphere can hold approximately 0.016 Ib of moisture per Ib of dry air. At atemperature
of 33 oC, and with the same amount of moisture per dry air, the relative humidity is only
approximately 52 percent. With an observed humidity of only 38 percent at 33 °C, it islikely
that some moisture was removed from the air during the time that the ambient temperature was
increasing. Because the observed temperature and humidity are closely related to each other,
they cannot both be used in a statistical analysisto develop an explanatory model of emissions.
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Figure 5-1. Scatter Plots of Normalized Second-by-Second NO, Emissions versus Candidate
Explanatory Variables for Bulldozer, with Trend Lines Indicated

103



y=1.0818x - 0.1885

& 08 R?= 09328
5]
E 0K §
]
" ]
£ 0.4
s
= 024

1]

o 0z 0.4 a6 05 1
Hormalized Exhaust Flow

(a) Normalized CO, Emissions vs. Normalized Exhaust Flow

1

S 084 y=11242¢- 04089
(=) z
R?= 05333

T 06
B
‘B 0.4
E
5
2 0.2

o s e o o e

i . |
i 0.2 0.4 06 0.3 1

Hormalized RPM

(b) Normalized CO, Emissions vs. Normalized Engine RPM

1

wonsd YT D.ZDQDSX - 0.056
< R“=0.0706
5]
T 064
il
k] ]
£ 0.4
]
= 024
o T T T T T T T
0 5 10 15 20 25 el 35 40 45

Ambient Temp (C)

(c) Normalized CO, Emissions vs. Ambient Temperature (°C)

1

05 4

0K §

0.4

Hormalized CO2

024

o ] L
601 602 603 G604 605 BOE 607 B0.5 G089 &1 611 B61.2

Barometric Pressure

(d) Normalized CO, Emissions vs. Barometric Pressure

1
og | ¥=-00082c+ 05278
g R?= 00952
(8]
T 06
B
3 04
Z 04
£
=]
2 02
0 . . . ; . 4
0 10 20 a0 40 50 &0 70 &0 a0
Relative Humidity

(e) Normalized CO, Emissions vs. Relative Humidity
Figure 5-2. Scatter Plots of Normalized Second-by-Second CO, Emissions versus Candidate
Explanatory Variables for Bulldozer, with Trend Lines Indicated
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With the caveat that ambient temperature and relative humidity are highly correlated in the
bulldozer data set, the relationship of NOy emissions with respect to each one appears to be
intuitively reasonable. If all else were constant, NO, emissions would be expected to decrease
with an increase in humidity levels, or to increases with an increase in temperature. However,
because temperature and humidity are changing in inverse proportion, it is not possible to
determine whether the change in average NOy emissions is influenced more by temperature or by
humidity in this case.

Figure 5-1(d) illustrates that NO, emissions appear to be increasing with barometric pressure, on
average. All else being constant, it would be expected that NOx emissions would increase with
an increase in barometric pressure if the increase in barometric pressure also influenced the
maximum pressure during the combustion process. Therefore, the observed average trend is
intuitively reasonable. However, there does appear to be adomain in Figure 5-1(d) for the upper
half of the barometric pressure data where NO is not a linear function of barometric pressure.

The scatter plots for CO, emissions from the bulldozer have similar features to those for NOy
emissions, as evident from a comparison of Figures 5-2 and 5-1. In fact, although not shown
here, CO, and NO, emissions are highly correlated with each other. Therefore, it is expected in
this case that a similar modeling approach should be appropriate for both of these pollutants.
Factors that cause an increase in NOx emissions, such as higher fuel flow reflected by higher
exhaust flow and higher engine RPM, also cause an increase in CO, emissions. In fact, CO;
emissions are a surrogate for fuel flow, since the vast majority of the carbon in the fuel is emitted
in the form of CO,. Although not shown, a scatter plot of CO, versus fuel flow based upon the
data provided by EPA illustrated that there was an almost perfect linear relationship between the
two, with hardly any scatter. Of course, such aresult could also be afunction of how fuel flow
may be estimated by some instruments.

For the most part, the inferences from the scatter plots for NO, and CO, for the compactor,
shown in Figures 5-3 and 5-4, respectively, and for NOy and CO, for the scraper, shown in
Figures 5-5 and 5-6, respectively, reveal similar trends to those for the bulldozer. Thereis some
variation regarding the degree of explanatory power from one case to another. For example,
there is more scatter in the relationship between NO, emissions and exhaust flow for the
compactor compared to that for the bulldozer. However, qualitatively, the results are similar.
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Figure 5-3. Scatter Plots of Normalized Second-by-Second NO, Emissions versus Candidate
Explanatory Variables for Compactor, with Trend Lines Indicated
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Figure 5-4. Scatter Plots of Normalized Second-by-Second CO, Emissions versus Candidate
Explanatory Variables for Compactor, with Trend Lines Indicated
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Figure 5-5. Scatter Plots of Normalized Second-by-Second NO Emissions versus Candidate
Explanatory Variables for Scraper, with Trend Lines Indicated
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5.3 Mode Development

The development of alternative conceptual models for emissions of NO, and CO, from three
examples of nonroad equipment is presented in this section. Several methods were explored in
order to evaluate the explanatory power of alternative approaches, including modal analysis,
regression anaysis, and time series analysis.

5.3.1 Objectives

In this study one of the objectives was to develop conceptual models for nonroad vehicles for
NOy and CO, emissions using on-board emissions data provided by EPA. The models were later
applied to a"validation" data set, as described in Chapter 6, and predictions for these datasets
were obtained. Explanatory variables that were provided in the “validation” data set were fewer
than the explanatory variables provided in the “modeling” or calibration data set. Therefore, a
decision was made to develop models the based only upon variables that were later available for
prediction purposes. Variables available in the “validation” dataset are: time/date; temperature
(°C); relative humidity (percent): barometric pressure (kPa); engine RPM; and exhaust flow
(scfm).

As noted in Chapter 3 for the case of the LDGV data, the second-by-second measurements of
vehicle performance and emissions represent time series. Therefore, a component of the work
for the nonroad conceptual model development was to quantify the autocorrelation in the data. If
there is substantial autocorrelation, then a time series approach might be appropriate for making
predictions for individual vehicles based upon one continuous time series of data.. However, as
noted in Chapter 3, atime series approach is not expected to be practical for the NGM because it
isdifficult to devel op such models based upon multiple time series for different trips with the
same vehicles or for different vehicles. A key question, however, is whether thereis aloss of
explanatory capability if atime series approach is not used. In order to compare the explanatory
capability of atime series approach with other methods, one of the alternative conceptual
modeling approaches included for the nonroad cases was a time series approach. In addition, a
relatively smple modal approach was employed. Asathird aternative, amodal approach
combined with OLS regressions for data within each mode was explored. Finally, for
comparison purposes only, amultiple OL S regression approach was also explored. These
methods are explained in the next sections.

5.3.2 Time Series Approach

In the time series approach, NO, and CO, emissions were modeled using regression with time
series errors. Details of this method is given in Section 3.3.6. The reason for using atime series
for errorsisthat the nonroad data are atime series and there is autocorrelation in the data. In
order to show the presence of autocorrelation in the data, the autocorrelation coefficients for
compactor Trip 2 for NO, emissions estimated using SAS are given in Figure 5-1. The
autocorrelation estimates are significantly different from zero up to lag 11. Thisindicates that
there is autocorrelation in the data. The exponential decrease of the autocorrel ation estimates
suggests an that autoregressive (AR) process can be fit to NOy data.

The time series models that were fit to data are summarized in Table 5-2. There are atotal of six
models, representing two pollutants for each of three vehicles. Four out of the six models are
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Autocorrelations

Lag Covariance Correlation -1 9876543210123 4567178291 Std Error
0 0.024376 1.00000 | |********************| 0
1 0.021269 0.87254 | R E ko ko ko | 0.025811
2 0.018732 0.76847 | [ %ok ok sk ko ko k ke x | 0.040996
3 0.015810 0.64861 | [ %k ok ko ko k ko | 0.049674
4 0.012760 0.52345 | | %ok ko ko | 0.055028
5 0.010115 0.41495 | | %ok koek % | 0.058251
6 0.0081114 0.33276 | [ %ok ok ek | 0.060188
7 0.0064554 0.26483 | | %%k % | 0.061401
8 0.0053552 0.21969 | i | 0.062158
9 0.0045766 0.18775 | | %% | 0.062673

10 0.0039429 0.16175 | | %% | 0.063046
11 0.0035044 0.14376 | R | 0.063322
12 0.0031012 0.12722 | L e | 0.063539
13 0.0027615 0.11329 | AR | 0.063709
14 0.0024546 0.10070 | [ %% | 0.063843
15 0.0021727 0.08913 | | %% . | 0.063949
16 0.0019729 0.08094 | | %% . | 0.064031
17 0.0018180 0.07458 | |* . | 0.064100
18 0.0016128 0.06616 | | * | 0.064157
19 0.0013617 0.05586 | | * | 0.064203
20 0.0011243 0.04612 | | * | 0.064235
21 0.00090454 0.03711 | | * | 0.064257
22 0.00063796 0.02617 | | * | 0.064272
23 0.00036546 0.01499 | | | 0.064279
24 0.00013033 0.00535 | | | 0.064281

"." marks two standard errors
Figure 5-7. Autocorrelation Coefficients Estimates for Compactor Trip 2

Table 5-2. Results of Regression with Time Series Models Fit to Nonroad Data

Vehicle Pollutant | Model Explanatory Variables for Regression
ambient temperature, barometric pressure,
Bulldozer CO; AR(4) RPM, Exhaust Flow
Relative Humidity, ambient Temperature,
NOx AR(4) barometric pressure, RPM, Exhaust Flow
Compactor CO, AR(4) RPM, Exhaust Flow
NOx AR(4) RPM, Exhaust Flow
CO; AR(2) RPM, Exhaust Flow
Scraper
NOx AR(2) RPM, Exhaust Flow

based upon an autoregression time series model with alag of 4 time steps, referred to as an
AR(4) model. The other two models are of the AR(2) type. Differencesin the autoregressive
process for different vehicles might be due to differences in their engine designs or history.
Table 5-2 also lists the explanatory variables used in the regression part of the model. All of the
variables shown were statistically significant. Coefficients of an example regression equation
with time series errors, for NOy emissions from compactor, are given in Table 5-3. Coefficients
of other regression equations are given in Appendix C.
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Table 5-3. Coefficients for Regression Equation Fit to Compactor NOy Data

Parameter | Estimate | Error Pr > |t
Intercept 0.00004 | 0.0008 0.04
AR(1) 0.28 0.026 | <0.001
AR(2) 0.05 0.027 0.049
AR(3) -0.08 0.027 0.001
AR(4) -0.15 0.026 | <0.001
RPM 0.00005 | 8.8E-06 | <0.001
Exhaust Flow 0.003 0.00003 | <0.001
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Figure 5-8. Observed NO Emissions versus Predicted using Regression with Time Series Model
for Bulldozer Data

In Table 5-3, the parameters for regression equation are given along with the coefficients and p-
value showing whether the parameters are significant. All of the parameters have p-values lower
than 0.05, indicating that they are significant at a significance level of 0.05. The p-value for
AR(2), representing the lag 2 term in the model, is very closeto 0.05, and it iskept in the
regression eguation since coefficients for higher autoregressive parameters are significant. The
regression equation for this model is as follows:

NO, =0.00004+0.00005< RPM+0.003x Exh+0.28x¢, , +0.05xe, , —0.08xe, , —0.15x¢, ,

where:
Exh.

& =

= Exhaust Flow (scfm)
Error term

(5-1)

Using Equation 5-1, it is possible to estimate NO, emissions. It should be noted that one needs
the first four seconds of emissions datain order to predict emissions for timet. In this study, the
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first four seconds were estimated using the regression part of the equation, without time series
errors. Then the regression with time series was used to get estimates for the fifth and subsequent
seconds. In order to evaluate the explanatory power of the model, observed NO, emissions are
plotted versus the model predictionsin Figure 5-8. The trend line for the observations versus the
predictions has an R? of 0.87, indicating that this model can explain 87 percent of the variability
in the second-by-second data. The slope of the trend iswithin 15 percent of one, and the
intercept is small compared to the average and span of the data, suggesting that the model can
make somewhat accurate estimates of emissions.

5.3.3 Modal and Regression Methods for M odel Development

In this section, the application of model and regression modeling methods to the three nonroad
data setsis described. Asnoted in the previous sections, the nonroad second-by-second data are
autocorrelated. Therefore, the time series approach is a theoretically appealing method for
analyzing and modeling the data. However, an alternative to using time seriesisto divide the
datainto categories. When the data are binned into categories, the time seriesis divided into
discontinuous segments, with adjacent segments separated into different bins. The process of
binning the data can be atechnique for destroying autocorrelation in the data. It is possible that
the process of binning autocorrelated data may result in some loss of explanatory power,
especialy on a second-by-second basis. However, the impact of such aloss of explanatory
power on mesoscale or microscale predictions may be small. Thus, we consider amodal or
binning approach as an alternative to the time series approach of the previous section.

For each of the three pieces of equipment, the data were binned based upon exhaust flow rate,
which was found from the scatter plotsin the exploratory analysis to be the variable most highly
associated with a change in average NOy and CO, emissions. In deciding upon the endpoints of
each bin, consideration was given to several factors. These factors included:

Number of bins—idedlly, asfew as possible

Fraction of total emissionsrepresented by each bin —idedly, as close to the inverse of the
number of bins as possible

Trend for average NOy emissions —ideally, there should be awell-defined trend (preferably
amonotonic increase) in average NO, emissions with respect to bins for increasing
values of exhaust flow rate

Coefficient of Variation of Each Bin —idedly, the coefficient of variation for NOy
emissions, representing the standard deviation of NO, emissions within a bin divided by
the mean NOy emissions within a bin, should be as small as possible. The modes are
more useful in explaining differencesin emissions if the values of the CV for adjacent
bins are small, indicating that the adjacent bins are clearly different in terms of NO
emissions.

Same approach for CO, asfor NOy — because CO, and NOy are highly correlated for all
three pieces of equipment, the same bins were used for both pollutants.

Table 5-4 illustrates the results of the binning process for the bulldozer. A total of 15 binswere
defined. The bins were defined with respect to the normalized exhaust flow rate. Approximately
20 percent of the calibration data involved normalized exhaust flows of less than 0.25. However,
the contribution to total emissions of this particular mode is only four percent for the calibration
data. The average normalized NOx emission rateis 11 percent of the maximum observed
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emission rate. The coefficient of variation of 0.25 implies that the standard deviation in thisbin
is 25 percent of the average value, or approximately 0.03 on anormalized NO, emissions basis.
In fact, this bin appears to be distinct, in terms of NO, emissions, from the 2™ mode, which has a
normalized NO, emissions average of 0.28 and a coefficient of variation of 0.32. The latter
indicates that the standard deviation in the 2™ bin is 0.09 in terms of normalized NO, emission
units. Each successive bin has a higher average NO, emission rate, and typically the coefficient
of variation decreases as the emission rate increases. For the bins with the highest emission rate,
the coefficients of variation are less than 10 percent of the mean value. Some of the modes
account for more than 10 percent of the total NOy emissions in the calibration data set, such as
Modes 10, 11, and 12.

The modal definitions appear to be effective at accounting for variation in CO, emissions. The
average CO, emission rate in each bin increases monotonically from Modes 1 through 15. The
coefficient of variation tends to decrease, in most cases, as the average emission rate increases.
Because the total emissions from the vehicle are influenced more by periods of high emission
rate than by periods of low emission rate, it is desirable for the model to offer the most precision
in estimating the highest emission rate, which this one appears to do for both pollutants. In fact,
Modes 7 through 15 have a coefficient of variation of 0.10 or less, which isa good result.

The average emission rates vary from 0.11 to 0.95, on anormalized basis, for NOx and from
0.0510 0.94, on anormalized basis, for CO,. Therefore, it appears that variability in average
emissions among the modes is a factor of 8.6 for NOy and a factor of almost 19 for CO,. Thisis
asubstantial range of variation and indicates that the modal approach offers some ability to
discriminate among different emission rates. More importantly, the average emission rates when
comparing Modes 1 and 15 are clearly significantly different from a statistical perspective. For
example, for NO, emissions, the average value of Mode 15 is approximately 30 standard
deviations from the average of Mode 1, using the standard deviation of either Mode 1 or Mode
15 asthe basis for the comparison. Thisis a statistically significant difference.

Tables 5-5 and 5-6 show the results of the modal models for the compactor and the scraper,
respectively. For illustrative purposes, two slightly different objectives were used in developing
these two models. For the compactor, the objective was to define the bins in terms of arbitrary
but equally wide, with respect to exhaust flow rate, bins, with less attention paid to the fraction
of total emissions represented by each bin. The result isthat there are some bins that represent a
large fraction of the total emissions. For example, Modes 5 and 6 together account for over one
half of the total NOy emissions. For the scraper, the objective was to define modes that
explained approximately equal proportions of the total emissions. Therefore, with the exception
of Mode 10, each mode accounts for approximately 10 to 15 percent of the total emissions, with
no single mode accounting for more than 15 percent of the total NO, emissions. The mode with
the lowest emission rate accounts for 39 percent of the operating time.

Both the bulldozer and the scraper have monotonic increases in both NOy and CO, emission as
exhaust flow increases. However, the scraper has a peak in average NOy emissions associated
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Table 5-4. Summary of Modal Emission Model for Bulldozer

Normalized | Fraction | Fraction of Normalized NO, Normalized CO,
Exhaust of Time | Emissions Emissions Emissions

Mode Flow Rate | inMode | inMode | Average Ccv Average Cv
1 0-0.25 0.20 0.04 0.11 0.25 0.05 0.25
2 0.25- 0.50 0.05 0.03 0.28 0.32 0.25 0.36
3 0.50 - 0.60 0.03 0.02 0.41 0.19 0.39 0.20
4 0.60 - 0.70 0.08 0.08 0.50 0.18 0.46 0.19
5 0.70- 0.725 0.05 0.05 0.57 0.13 0.51 0.13
6 0.725-0.75 0.08 0.09 0.60 0.11 0.54 0.11
7 0.75- 0.775 0.07 0.08 0.63 0.12 0.58 0.10
8 0.775- 0.80 0.06 0.07 0.67 0.13 0.64 0.10
9 0.80 - 0.825 0.06 0.08 0.72 0.11 0.68 0.08
10 0.825- 0.85 0.08 0.11 0.78 0.09 0.74 0.07
11 0.85- 0.875 0.09 0.13 0.82 0.07 0.79 0.06
12 0.875- 0.90 0.08 0.12 0.87 0.07 0.85 0.06
13 0.90 - 0.925 0.04 0.07 0.90 0.06 0.89 0.05
14 0.925- 0.95 0.01 0.02 0.92 0.04 0.92 0.04
15 0.95 - 1.00 0.00 0.01 0.95 0.03 0.94 0.04

CV = Coefficient of variation (standard deviation divided by the mean)

Table 5-5. Summary of Modal Emission Model for Compactor

Normalized | Fraction | Fraction of Normalized NO, Normalized CO,
Exhaust of Time | Emissions Emissions Emissions
Mode Flow Rate | inMode | inMode | Average Ccv Average Cv
1 0.50 0.23 0.05 0.12 1.85 0.11 0.73
2 0.70 0.08 0.07 0.53 0.24 0.41 0.19
3 0.75 0.03 0.03 0.67 0.21 0.52 0.13
4 0.80 0.08 0.10 0.75 0.23 0.57 0.12
5 0.83 0.18 0.24 0.78 0.24 0.62 0.11
6 0.85 0.26 0.33 0.75 0.25 0.66 0.11
7 0.88 0.10 0.12 0.68 0.26 0.72 0.11
8 0.90 0.04 0.04 0.64 0.22 0.76 0.12
9 1.00 0.01 0.01 0.62 0.39 0.81 0.15

CV = Coefficient of variation (standard deviation divided by the mean)

Table 5-6. Summary of Modal Emission Model for Scraper

Normalized | Fraction | Fraction of Normalized NOy Normalized CO,
Exhaust of Time | Emissions Emissions Emissions
Mode Flow Rate | inMode | inMode | Average CcVv Average cv
1 0.41 0.39 0.10 0.08 0.76 0.20 0.69
2 0.57 0.11 0.10 0.31 0.34 0.30 0.33
3 0.65 0.08 0.11 0.44 0.26 0.41 0.32
4 0.72 0.09 0.14 0.51 0.21 0.48 0.24
5 0.76 0.07 0.12 0.59 0.17 0.56 0.20
6 0.80 0.06 0.11 0.65 0.15 0.62 0.18
7 0.85 0.07 0.13 0.69 0.13 0.66 0.16
8 0.89 0.07 0.15 0.72 0.09 0.71 0.12
9 0.93 0.05 0.12 0.76 0.08 0.73 0.11
10 1.00 0.02 0.04 0.80 0.07 0.76 0.10

CV = Coefficient of variation (standard deviation divided by the mean)
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with Mode 5, which represents exhaust flow of 0.80 to 0.825 of the maximum value in the
database. Thus, the emissions behavior of the compactor is different in this respect compared to
the other two pieces of equipment. However, although the average NO, emissions reach a peak
at Mode 5, the average CO, emissions increase monotonically as exhaust flow increases from
Mode 1 through Mode 9. In fact, average CO, emissions increase monotonically with exhaust
flow in al three cases.

The modal models for each piece of equipment offer some explanatory power. However, itis
possible to attempt to improve the modal models by incorporating functional relationships
between emissions and one or more explanatory variables within the data for each mode. A
simple approach to doing this was explored in these examples based upon the use of ordinary
least squares (OLS) regression for one explanatory variable at atime for the datain each bin.
These models are referred to as “Modes with OLS".

As an example, consider NO, emissions for the bulldozer. The results of the OL S regression
analysis of each individual possible explanatory variable are shown in Table 5-7. For each bin of
modal data, alinear regression with intercept b and slope m was fit to the data to attempt to
explain the variability in NOy emissions as a function of either engine RPM, exhaust flow,
ambient temperature, barometric pressure or humidity along. The R? values reported in the table
indicate whether the linear model offered any explanatory power. In this particular case, the
explanatory power of engine RPM and exhaust flow is almost negligible for almost all of the
modes. Of course, the binning of the data took into account a significant portion of the
explanatory power of exhaust flow with respect to emissions. The data within each binis
relatively homogeneous with respect to exhaust flow. Therefore, it is expected that the
explanatory power of exhaust flow as a predictive variable in OLS would be very small. There
appears to be aweak depending of emissions within each bin on ambient temperature or
humidity, such asfor Modes 5 and 12. Thereis aso aweak dependence of emissions on
barometric pressure.

For CO,, the results are somewhat different, asillustrated by a comparison of Table 5-8 to Table
5-7. Engine RPM has an R? value of 0.5 or more for Modes 11 and 12 in Table 5-8. Exhaust
flow has very low R? values as expected. Ambient temperature, relative humidity, and
barometric pressure have R* values exceeding 0.4 in some cases.

In inspecting the results for the compactor and the scraper, it appears that engine RPM has useful
explanatory power in several cases. For example, for the compactor, Table 5-9 shows results for
NOy emissions and Table 5-10 shows results for CO, emissions. For the higher emission modes,
such as Mode 8 and Mode 9, engine RPM has an R? of greater than 0.3 in one case for both NOy
and CO,. Table5-11 shows results for NO, emissions and Table 5-12 shows results for CO;
emissions for the scraper. This case shows the strongest dependence of the emissions data within
each mode on engine RPM. For NOy, the R? values exceed 0.5 for eight of the modes, and for
CO, the R? values exceed 0.3 for eight of the modes.

To simplify the model development process, it was decided to choose only one supplemental
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Table 5-7. Summary of OLS Regression Equations for NO, Emissions as a Function of an
Individual Candidate Explanatory Variable, for the Bulldozer.

Candidate Explanatory Variables
Engine RPM Exhaust Flow Amb. Temp. Bar. Pressure | Rel. Humidity
Mode| b [m[RF|[ b | m|R|b|m|[R|[b[m[R]b|m|FR
1 0.12 | -0.02 0.02 0.03 041 0.03 0.12 0.00 0.00 | -14.0 0.23 0.50 0.10 0.00 0.00
2 -0.01 041 026 | -0.13 0.99 0.48 0.22 0.00 0.01 | -30.8 0.51 0.69 0.30 0.00 0.00
3 0.26 0.19 0.05 0.11 0.53 0.04 0.30 0.00 0.04 | -28.6 0.48 0.56 047 0.00 0.04
4 0.44 0.06 0.00 | -0.04 0.82 0.06 0.26 0.01 015 | -37.0 0.62 0.52 0.63 0.00 0.16
5 0.69 | -0.13 0.01 | -0.77 1.88 0.03 0.25 0.01 0.21 | -33.7 0.56 0.42 0.74 0.00 0.23
6 0.48 0.13 0.01 | -0.59 161 0.03 041 0.01 0.10 | -28.0 0.47 0.35 0.72 0.00 0.12
7 0.18 0.48 0.07 | -0.44 1.40 0.02 0.50 0.00 0.04 | -30.0 0.50 042 0.71 0.00 0.05
8 0.46 0.23 0.01 | -1.07 221 0.03 0.63 0.00 0.00 | -26.1 0.44 0.28 0.71 0.00 0.01
9 0.61 0.12 0.00 | -1.29 248 0.05 0.63 0.00 0.02 | -16.2 0.28 0.11 0.79 0.00 0.04
10 0.42 0.39 0.02 | -0.90 2.01 0.04 0.61 0.01 0.09 0.73 0.00 0.00 0.90 0.00 0.13
11 112 | -0.32 0.01 | -1.00 211 0.06 0.64 0.01 0.14 9.67 | -0.15 0.04 0.95 0.00 0.19
12 129 | -047 0.02 | -0.66 172 0.04 0.68 0.01 0.18 12.6 | -0.19 0.09 0.99 0.00 0.22
13 0.97 | -0.08 0.00 0.39 0.55 0.01 0.68 0.01 0.17 150 | -0.23 0.13 1.02 0.00 0.20
14 0.67 0.29 0.01 0.15 0.82 0.02 0.86 0.00 0.02 520 | -0.07 0.02 0.97 0.00 0.02
15 133 | -042 0.04 0.81 0.15 0.00 0.76 0.01 0.02 0.64 0.01 0.00 1.03 0.00 0.00

b = intercept, m = slope, R* = coefficient of determination

Table 5-8. Summary of OLS Regression Equations for CO, Emissions as a Function of an
Individual Candidate Explanatory Variable, for the Bulldozer.

Candidate Explanatory Variables
Engine RPM Exhaust Flow Amb. Temp. Bar. Pressure | Rel. Humidity
Mode| b [ m[R[b[m|[R|b|m|[R|b|[m|[R|b|m|FR
1 0.06 | -0.02 0.05 | -0.09 0.71 0.38 0.03 0.00 0.02 | -0.09 0.00 0.00 0.07 0.00 0.04
2 0.05 0.29 012 | -0.18 1.06 051 0.35 0.00 0.02 | -23.7 0.40 0.38 0.19 0.00 0.02
3 046 | -0.08 0.01 | -0.02 0.75 0.07 0.46 0.00 001 | -129 0.22 0.11 0.36 0.00 0.01
4 081 | -0.38 0.12 0.10 054 0.03 0.43 0.00 0.00 | -20.3 0.34 0.16 0.48 0.00 0.00
5 121 | -0.75 0.29 0.11 0.55 0.00 0.35 0.01 0.08 | -10.6 0.18 0.06 0.59 0.00 0.08
6 117 | -0.67 021 | -0.72 171 0.04 0.37 0.01 0.10 154 | -0.02 0.00 0.64 0.00 0.12
7 1.03 | -0.48 011 | -1.04 213 0.07 0.40 0.01 0.15 487 | -0.07 0.01 0.70 0.00 0.17
8 135 | -0.77 020 | -1.13 2.24 0.06 0.46 0.01 0.16 9.50 | -0.15 0.06 0.75 0.00 0.19
9 148 | -0.86 020 | -1.05 214 0.08 054 0.01 0.12 | 10.38 | -0.16 0.08 0.78 0.00 0.15
10 154 | -0.87 0.17 | -1.06 214 0.09 0.54 0.01 024 | 1997 | -0.32 0.29 0.86 0.00 0.29
11 241 | -1.77 055 | -1.46 2.61 0.14 0.55 0.01 037 | 2538 | -0.41 0.48 0.94 0.00 041
12 263 | -1.97 053 | -1.37 251 0.12 0.57 0.01 045 | 2499 | -0.40 051 1.00 0.00 0.49
13 250 | -1.79 0.37 | -0.62 1.66 0.06 0.62 0.01 034 | 2619 | -0.42 0.56 1.04 0.00 0.40
14 199 | -1.19 021 0.72 0.22 0.00 0.67 0.01 0.29 | 22.36 | -0.35 0.53 1.09 0.00 0.32
15 274 | -2.00 042 | -0.27 1.26 0.15 0.87 0.00 0.00 | 2761 | -0.44 0.48 193 | -0.01 0.17

b = intercept, m = slope, R* = coefficient of determination
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Table 5-9. Summary of OLS Regression Equations for NO, Emissions as a Function of an
Individual Candidate Explanatory Variable, for the Compactor.

Candidate Explanatory Variables
Engine RPM Exhaust Flow Amb. Temp. Bar. Pressure | Rel. Humidity
Mode| b [m[RF|[ b | m|R|b|m|[R|[b[m[R]b|m|FR
1 -0.06 0.54 0.19 | -0.34 157 0.28 0.04 0.02 0.09 | -1.14 0.01 0.02 0.58 | -0.01 0.09
2 0.28 0.30 0.06 | -0.12 1.07 0.24 0.40 0.02 0.16 1.38 | -0.01 0.07 0.86 | -0.01 0.13
3 0.72 | -0.07 0.00 | -1.61 313 0.11 0.54 0.02 0.13 172 | -0.01 0.15 0.99 | -0.01 0.10
4 0.66 0.11 0.00 | -0.69 1.85 0.02 0.67 0.01 0.06 218 | -0.01 0.19 1.01 0.00 0.04
5 0.50 0.32 0.02 104 | -0.33 0.00 0.62 0.03 0.19 227 | -0.02 0.15 139 | -0.01 0.16
6 0.35 0.46 0.03 185 | -1.31 0.00 0.52 0.05 0.37 213 | -0.01 0.06 179 | -0.02 0.32
7 0.39 0.34 0.03 389 | -3.73 0.02 0.48 0.04 0.35 224 | -0.02 0.06 157 | -0.01 0.30
8 0.34 0.36 0.11 0.09 0.62 0.00 0.48 0.03 0.48 -81 0.82 0.70 137 | -0.01 0.46
9 -0.04 0.86 0.36 582 | -5.66 0.26 0.37 0.05 0.67 -111 112 0.79 175 | -0.02 0.67

b = intercept, m = slope, R® = coefficient of determination

Table 5-10. Summary of OL S Regression Equations for CO, Emissions as a Function of an
Individual Candidate Explanatory Variable, for the Compactor.

Candidate Explanatory Variables
Engine RPM Exhaust Flow Amb. Temp. Bar. Pressure | Rel. Humidity
Mode| b [m[R|[ b | m|R| b m|[R|[b[m[R][b|m|FR
1 -0.02 0.39 0.66 | -0.13 0.85 0.54 0.10 0.00 0.03 | -0.91 0.01 0.10 0.28 0.00 0.07
2 0.18 0.29 0.13 | -0.07 0.80 0.34 051 | -0.01 0.21 0.25 0.00 0.01 0.19 0.00 0.16
3 0.35 0.21 0.08 0.28 0.32 0.01 0.57 | -0.01 0.12 0.18 0.00 0.07 0.38 0.00 0.08
4 0.45 0.14 0.04 | -0.51 1.37 0.08 0.61 | -0.01 0.12 0.20 0.00 0.09 042 0.00 0.09
5 0.56 0.07 0.01 | -0.81 175 0.03 0.69 | -0.01 0.30 0.22 0.00 0.07 0.32 0.00 0.26
6 0.54 0.14 0.02 | -0.91 1.88 0.03 0.76 | -0.02 0.45 0.30 0.00 0.03 0.23 0.01 0.39
7 0.47 0.29 013 | -1.15 217 0.04 0.82 | -0.02 0.46 0.33 0.00 0.02 0.28 0.01 0.38
8 0.38 0.46 047 | -0.51 143 0.01 0.86 | -0.02 0.46 245 | -0.24 0.15 0.34 0.01 041
9 0.65 0.20 0.07 | -0.83 1.78 0.10 0.90 | -0.02 0.39 279 | -0.27 0.18 0.39 0.01 0.35

b = intercept, m = slope, R® = coefficient of determination
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Table 5-11. Summary of OLS Regression Equations for NO, Emissions as a Function of an
Individual Candidate Explanatory Variable, for the Scraper.

Candidate Explanatory Variables
Engine RPM Exhaust Flow Amb. Temp. Bar. Pressure | Rel. Humidity
Mode| b [m[RF|[ b | m|R|b|m|[R|[b[m[R]b|m|FR
1 -0.03 0.35 0.56 | -0.09 0.64 0.40 0.04 0.00 0.02 8.96 | -0.09 0.00 0.17 0.00 0.03
2 032 | -0.01 0.00 | -0.16 0.97 0.16 0.16 0.01 0.03 347 | -0.03 0.00 0.51 0.00 0.03
3 0.86 | -0.54 043 | -0.34 1.28 0.07 0.35 0.01 0.01 246 | -0.24 0.00 0.53 0.00 0.00
4 101 | -0.61 054 | -0.33 1.22 0.04 0.49 0.00 0.00 44.1 | -0.44 0.02 0.51 0.00 0.00
5 114 | -0.68 0.61 | -0.61 1.62 0.04 0.71 | -0.01 0.02 48.0 | -0.48 0.03 043 0.00 0.02
6 125 | -0.76 0.65 | -0.18 1.07 0.02 0.90 | -0.02 0.09 328 | -0.32 0.01 0.34 0.01 0.07
7 133 | -0.80 0.60 | -0.14 1.00 0.02 1.01 | -0.02 0.16 43.8 | -043 0.03 0.26 0.01 0.14
8 143 | -0.86 0.61 | -0.17 1.03 0.04 0.96 | -0.01 0.13 51.0 | -0.50 0.05 042 0.01 0.12
9 1.60 | -1.02 0.58 0.00 0.83 0.03 0.95 | -0.01 0.09 40.8 | -0.40 0.06 0.52 0.01 0.08
10 171 | -111 0.63 0.45 0.36 0.01 0.88 | -0.01 0.02 42.0 | -041 0.11 0.70 0.00 0.01

b = intercept, m = slope, R* = coefficient of determination

Table 5-12. Summary of OLS Regression Equations for CO, Emissions as a Function of an
Individual Candidate Explanatory Variable, for the Scraper.

Candidate Explanatory Variables
Engine RPM Exhaust Flow Amb. Temp. Bar. Pressure | Rel. Humidity
Mode| b [ m[R[b[m|[R| b |m|[R|b|[m|[R|b|m|FR
1 0.20 | -0.02 0.00 025 | -0.19 0.01 048 | -0.02 0.16 291 | -2.92 035 | -0.23 0.01 0.14
2 040 | -0.14 0.07 0.03 0.55 0.06 0.28 0.00 0.00 -8.1 0.08 0.00 0.34 0.00 0.00
3 0.82 | -0.52 033 | -041 1.34 0.06 0.33 0.00 0.00 255 | -0.25 0.00 0.47 0.00 0.00
4 091 | -0.52 034 | -0.44 1.34 0.05 0.44 0.00 0.00 46.4 | -0.46 0.02 0.50 0.00 0.00
5 1.00 | -0.54 0.30 | -0.69 1.70 0.03 0.60 0.00 0.00 514 | -0.51 0.02 0.49 0.00 0.00
6 113 | -0.64 0.36 | -0.26 1.13 0.02 0.86 | -0.01 0.06 237 | -0.238 0.01 0.33 0.01 0.05
7 124 | -0.72 035 | -0.31 117 0.02 0.97 | -0.02 0.10 318 | -0.31 0.01 0.27 0.01 0.09
8 139 | -0.83 036 | -0.11 0.94 0.02 0.98 | -0.02 0.11 354 | -0.35 0.01 0.36 0.01 0.10
9 170 | -1.17 0.39 0.14 0.65 0.01 1.01 | -0.02 0.10 37.8 | -0.37 0.03 0.37 0.01 0.09
10 202 | -151 054 0.55 0.23 0.00 091 | -0.01 0.03 535 | -0.53 0.08 0.60 0.00 0.02

b = intercept, m = slope, R* = coefficient of determination
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explanatory variable for usein OLS regression for each mode. Based upon areview of results
for al three pieces of equipment, a judgment was made to select engine RPM as the
supplemental explanatory variable. In principle, multiple regression models could be developed
for each mode that would also include barometric pressure and either temperature or humidity.
As previously noted, temperature and humidity are highly correlated in these data sets, so both
cannot be selected for amodel. However, given the highly correlated nature of temperature and
humidity, and the inability to separate their effects, it was decided not to include them here.

As an aternative to amodal approach, amultiple OLS regression approach was aso explored. It
is recognized that this approach is not appropriate from a strictly statistical perspective, given the
autocorrelated nature of the data and the lack of binning to destroy autocorrelation. However, an
objective was to compare the multiple OL S regression approach with the time series approach to
determine if accounting for autocorrelation increased the explanatory power of the model to a
significant degree when compared to an approach that does not properly account for
autocorrelation. Therefore, the “naive” application of multiple OLS regression to the
autocorrelated nonroad data sets is intended mainly to help identify or understand the potential
benefits of atime series approach, but is not recommended as an approach to use in future model
development. The results of the multiple OLS regressions are summarized in Tables 5-13, 5-14,
and 5-15 for the bulldozer, compactor, and scraper, respectively.

The performance of the modal, modal and OLS, and multiple OLS approaches are evaluated
using parity plots of observed emissions versus predicted emissions, as shown in Figures 5-9
through 5-14. Figures 5-9 and 5-10 show results for NOx and CO,, respectively, for the
bulldozer. Figures5-11 and 5-12 show results for NOy and CO,, respectively, for the compactor.
Figures 5-13 and 5-14 show results for NOy and CO,, respectively, for the scraper. Each figure
displays three panels, with panel (a) showing results for the modal model, panel (b) showing
results for the modal model with linear OLS regression based upon engine RPM for each mode,
and panel (c) showing results for the multiple OLS regression model.

There are some general features common to all of the figures. A choice was made to plot
observed values versus predicted val ues because we were interested in the question of how to
convert predicted values to a correct average observed value if the model predictions were
biased. However, in all cases, the trend lines shown in each panel and in each figure have a
slope very close to or identically equal to one. The slope of the trend line indicates that the
models are accurate in predicting second-by-second emissions. The slope does not indicate
whether the model is precise.

The degree of scatter of the observed values above and below the trend line is an indication of
the precision (or lack thereof) of the model predictions. However, because the scatter plots are
based upon in excess of 10,000 second-by-second data points, it is difficult to judge the density
of data values in specific regions of each graph. Therefore, the scatter plots can give a
misleading sense of unexplained variability in the predictions. For example, in Figure 5-9(a), the
vertical lines represent the predicted emissions for each mode. The predictions appear asif they
are vertical lines because the plot symbols are large enough to overlap each other. The highest
density of predicted values occurs near the average of the observed values for a given mode.
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Table 5-13. Summary of Multiple OLS Regression Equations for NO, and CO, Emissionsas a
Function of Four Candidate Explanatory Variables, for the Bulldozer.

Normalized NO, Emissions

Normalized CO, Emissions

Description Coefficient t-statistic Coefficient t-statistic
Intercept -15.09 -33 5.16 13
Ambient Temperature 0.01 27 0.00 18
Barometric Pressure 0.25 33 -0.09 -13
Normalized Engine RPM -0.26 -37 -0.36 -57
Normalized Exhaust Flow 1.13 197 1.34 259
Adjusted R* 0.937 0.950
Standard Error 0.071 0.064
Sample Size 10491 10491

Table 5-14. Summary of Multiple OLS Regression Equations for NO, and CO, Emissions as a
Function of Four Candidate Explanatory Variables, for the Compactor.

Normalized NOy Emissions

Normalized CO, Emissions

Description Coefficient t-statistic Coefficient t-statistic
Intercept 151 37 -0.67 -44
Ambient Temperature 0.03 54 -0.01 -75
Barometric Pressure -0.02 -45 0.01 35
Normalized Engine RPM 0.28 20 0.17 35
Normalized Exhaust Flow 0.81 57 0.87 166
Adjusted R® 0.770 0.945
Standard Error 0.154 0.057
Sample Size 10537 10537

Table 5-15. Summary of Multiple OLS Regression Equations for NO, and CO, Emissionsas a
Function of Four Candidate Explanatory Variables, for the Scraper.

Normalized NO, Emissions

Normalized CO, Emissions

Description Coefficient t-statistic Coefficient t-statistic
Intercept 33.65 14 101.52 29
Ambient Temperature 0.00 5 -0.01 -18
Barometric Pressure -0.34 -14 -1.02 -29
Normalized Engine RPM -0.15 -28 -0.27 -33
Normalized Exhaust Flow 1.19 214 1.05 130
Adjusted R 0.920 0.770
Standard Error 0.078 0.113
Sample Size 10693 10693
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Figure 5-9. Comparison of Second-by-Second Observations with Three Alternative Model
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Figure 5-10. Comparison of Second-by-Second Observations with Three Alternative Model
and/or Regression Based Models for CO, Emissions from the Bulldozer.
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Figure 5-11. Comparison of Second-by-Second Observations with Three Alternative Model
and/or Regression Based Models for NOy Emissions from the Compactor.
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and/or Regression Based Models for CO, Emissions from the Scraper.
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Figure 5-15. Example of the Depiction of Variability in Modal Predictions Using Box and
Whiskers (Box represents 50 percent of the predicted values, whiskers represent 95 percent of
the predicted values).

Therefore, the highest density of predicted valuesistypically close to the trend line. However,
the scatter plot gives a misleading appearance of a uniform distribution of data with respect to
thetrend line. Asan alternative to the scatter plot in Figure 5-9(a), the same information is
displayed using boxes and whiskersin Figure 5-15. The boxes denote the range that encloses 50
percent of the observed values, and the whiskers (vertical lines) denote the range that encloses 95
percent of the observed values. It isclearer from Figure 5-15 than from Figure 5-9(a) that the
modal estimates of emissions are clustered close to the trend line, and that the typical values of
observed emissions, therefore, are consistent with model predictions.

The degree of scatter of the data with respect to the trend lines in Figure 5-9 is comparable for al
three of the models. The R? values are very similar for thetrend linesin all three cases. The
combination of amodal emission model with OLS regressions for engine RPM, depicted in
Figure 5-9(b), leads to more variability in the predicted values compared to the 15 discrete
predictions observed in Figure 5-9(a). However, there is not a significant increase in explanatory
power of the “Modes with OLS’ model compared to the “Modes Only” model. Therefore, in
this case, simply dividing the bulldozer activity into modes enables a large degree of explanatory
power. The multiple OLS approach has a slightly lower R? value than the “Modes Only”
approach. From apractical perspective, the multiple OLS approach offers no predictive
advantage, and it is not strictly appropriate because of the autocorrelation in the data. Therefore,
of the three models shown in Figure 5-9, the “Modes Only” model offers the advantages of being
the simplest, of dividing the time series into segments that reduces the influence of
autocorrelation in the model, and of offering substantial explanatory power. Similar results were
obtained for the models for CO, emissions for the bulldozer, asillustrated in Figure 5-10.

For the compactor, the explanatory power of the “Modes Only” model for NO, emissions was
not as high as for the bulldozer. There was a dlight improvement in explanatory power when
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OL S regressions were done for each mode using engine RPM as an explanatory variable. The
multiple OL'S regression approach had the highest R? value but is theoretically |ess appealing
because of the time series nature of the data. For CO, emissions from the compactor, the
“Modes Only” model offers a high degree of explanatory power. The “Modes with OLS’ model
does not offer much improvement in explanatory power.

For NOy emissions from the scraper, the “Modes Only” and the “Modes with OLS’ approaches
offer similar explanatory power, with the latter being dlightly better. Qualitatively, the
comparison is similar for CO, emissions from the scraper. However, the explanatory power for
CO; emissions from the scraper is less than that for NO, which isthe inverse of the result
compared to the compactor.

Overal, the simple modal approach employed to demonstrate a conceptual method performed
reasonably well compared to more complicated alternatives. The modal approach isintuitive,
and it is easy to combine data from multiple sources into a given bin. The modal approach can
be complemented with regression analysis of the data within each mode in an effort to improve
explanatory power. There was not a significant increase in explanatory power when OLS was
used in combination with the modal approach. However, one likely reason for the lack of
significant improvement in the model is the relatively homogenous nature of the data that were
used to calibrate the model. The data came from one piece of equipment operated during one
day under ambient conditions that do not represent seasonal variation, for example. Itislikely
that the equipment was operated by a single operator during that time. Thus, the activity pattern
and the ambient conditions were relatively similar over the duration of the data collection. If
data were collected for multiple operators, multiple days (with more variability in ambient
conditions) or for multiple applications of the equipment to different tasks, then there would be
more variability in the data set and key explanatory variables might emerge more clearly in
addition to exhaust flow and engine RPM.
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6.0 VALIDATION OF THE CONCEPTUAL MODELS

In this chapter, validation case studies for the LDGV, HDDV, and nonroad conceptual models,
presented in Chapters 3, 4, and 5 respectively, are presented. The validation exercise involved
making predictions of emissions based upon activity data provided by EPA for selected vehicles.
The actual observed emissions for the selected vehicles were withheld by EPA until after NCSU
reported the predictions in a presentation to EPA on January 22, 2002.

As noted in Chapter 2, possible causes of error in model predictions could include the following:

- The model may beincompletein that it does not have a sufficient set of explanatory
variables,

- the model may not have the most appropriate functional form;

- themodel may have been calibrated with data that contained measurement errors;

- thevalidation data may contain measurement errors for either the explanatory
variables and/or the observed emissions,; and/or

- thevalidation data set may have been obtained under conditions substantially
different than those for the data used to calibrate the model.

- dataentry errors.

The most likely cause of disagreement between model predictions and observed values for the
validation exercise is that the models may be incomplete. Thisis because the models are based
upon alimited set of explanatory variables. The choice of explanatory variables, as explained in
Chapters 3, 4, and 5, was based upon the anticipated availability of activity datafor usein the
validation component of this project.

Section 6.1 presents the validation case study for LDGVs. Section 6.2 presents the validation
case study for HDDVs. The nonroad validation case study is given in Section 6.3. A summary
of the key findings from the validation case studiesis given in Section 6.4

6.1 Light Duty Gasoline Vehicles

The objective of this section isto report predictions made with the conceptual LDGV emissions
models for CO, NO, HC, and CO, applied to a prediction data set provided by EPA. The
prediction data set contained only a selected set of explanatory variables, as explained in Chapter
3. Predictionsfor the validation data set were done using the methodology explained in Chapter
3. Figure 6-1, presents the steps for the prediction process.

A first step in the prediction process, asillustrated in Figure 6-1, was to determine whether a
cold start was likely to be present in the validation data sets and, if so, the likely duration of each
cold start. Information was available in the prediction data set from which to estimate the soak
time prior to startup of the vehicle. Using a statistical relationship between cold start duration
and estimated soak time presented in Chapter 3, an estimate of the expected cold start duration
was made for each trip in the prediction data set. Table 6-1 summarizes the analysis for cold-
start determination. The soak time reported in Table 6-1 was provided by EPA. Using the
relationship between soak time and cold-start duration, which is given in Figure 3-18,
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Figure 6-1. Simplified Schematic of Emissions Estimation Steps

Table 6-1. Determination of Cold-Start for Prediction Dataset

Soak Time Duration of Possible
Vehicle | Trip (minutes) Cold-Start (seconds) | Decision
1 1 8.9 39 | Hot-Stabilized
3 2 76.6 152 | Cold-Start
3 3 27.9 99 | Cold-Start
8 4 897.4 280 | Cold-Start
8 5 3770.0 355 | Cold-Start
8 6 25.7 95 | Cold-Start

the duration of the possible cold-start was estimated. For example, for Vehicle 8 Trip 4, the cold-
start was estimated to last for 280 seconds. Based upon these estimates, it is decided whether
each trip had a cold-start or not. For Vehicle 1, Trip 1, the soak time was sufficiently short that a
decision was made to model the emissions based upon hot stabilized driving modes only. For
the other five trips for which predictions were made, the soak time was sufficiently long that a

cold start was assumed.

After determining whether a cold start exists, the next step shown in Figure 6-1 was to estimate
the emissions during cold start by assuming a specific cold start activity pattern. The regression
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model with time series terms developed for the cold start mode, as described in Chapter 3,
requires an assumption regarding the coolant temperature time series profile during the cold start.
Because coolant temperature was not provided for the prediction data set, a method was
developed to estimate atypical coolant temperature time series by comparing the estimated cold
start duration for each prediction trip to the cold start durations in the calibration data base.

From the calibration data base, an actual coolant temperature profile corresponding most closely
to the estimated cold start duration for each prediction case was selected. The selected coolant
temperature profile was used as the basis for estimating second-by-second cold start emissions.
Cold start emissions were estimated using the regression model with time series errors presented
in Chapter 3, applied to the respective prediction case.

A key step in emissions estimation was cal culation of the values of derived variables, such as
acceleration and power demand, based upon the second-by-second speed data provided in the
“prediction” dataset. The derived variables were estimated using the methodology explained in
Chapter 3.

The approach for estimating hot stabilized emissions required binning each second of activity
datain the validation activity data set into one of the hot stabilized driving modes. These modes
include idle, low acceleration, high acceleration, low cruise, high cruise, low deceleration, and
high deceleration, as defined in Chapter 3. The binning of data into these modes was based upon
criteria of speed, effective acceleration, and power demand. Within each of the driving modes,
OL S regressions unique to each mode were used to estimate second-by-second emissionsin units
of g/sec, which were summed to estimate the total mass emission rate for each mode. A Visual
Basic program was written to estimate emissions automatically for each second in atrip. The
OL S regression equations were |og-transformed, as described in Chapter 3. Therefore, when
back-transforming emission estimates, corrections for the log transformation were made as
described in Section 3.3.5.

The model developed in this study predicts grams/second emissions for each trip. Therefore, in
order to get the total emissions for that trip, grams/second emission rates were multiplied by the
total time spent in each trip. The trend lines shown in the parity plots comparing observed values
to predicted valuesin Section 3.3.7 were used to correct for biases in the model predictions. The
corrected emissions estimate was obtained by entering the predicted emission rate into the
respective equation for the appropriate pollutant trend line shown in Section 3.3.7.

For each prediction, a prediction interval is given. The prediction interval is based upon the
inter-trip variability in emissions that is not explained by the model, asillustrated in the parity
plots of Chapter 3. Because the conceptual model is being used in this case to make predictions
for individual vehiclesfor individual trips, the appropriate measure of imprecision of the model
isthe unexplained inter-trip variability. On average, if the model predictions are accurate, it is
expected that the prediction interval will enclose the true (observed) values with a 95 percent
frequency. Of course, with a prediction data set of only six trips, it is possible that the frequency
with which the prediction intervals enclose the true values may be less than 95 percent for any
specific set of six predictions.
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In some situations, the prediction interval as estimated using the SAS software may imply a
lower bound of less than zero. Because emissions cannot be less than zero, it is not possible to
have a prediction interval include negative emissions values. Therefore, in situations where the
approximate prediction interval implies a negative value, it was assumed that the actual
emissions must be not less than zero. Asnoted in Chapter 3, statistical methods that result in
non-negative prediction intervals should be pursued in future work, such as the use of log-log
plots when developing trend lines, as opposed to the linear plots used as examplesin this work.

The average emission rates associated with the predicted emissions for each trip were compared
to the range of average emissions rates among all of the tripsin the calibration data set. In
general, the average emission rates for the validation cases were within the range of the observed
variability in average trip emissions rates for the calibration data set.

The predictions obtained from the conceptual models for LDGV are given in Tables 6-2 through
6-5for HC, CO, NO, and CO, emissions, respectively. The observed values, obtained from EPA
after these predictions were reported to EPA, are also presented in these tables. Table 6-6
presents the prediction interval estimated for each prediction. Figures 6-2 through 6-5 present the
comparison of predicted values with the observed values for HC, CO, NO, and CO, emissions,
respectively. The prediction intervals for each estimate are also shown in these figures.

The comparison of model predictions and observed values for HC are given in Table 6-2 and
shown in Figure 6-2. The figure includes the prediction intervals that are summarized in Table
6-6. For three of the individual trip predictions, the observed value is enclosed by the prediction
interval, indicating agreement between the model and the observed data. In three cases, the
observed values are outside the range of the prediction interval. Intwo of these cases, the model
under-predicts emissions, and in one case the model over-predicts emissions. On average, it
appears that the model under-predicts the average of the six trip emissions by approximately 28
percent. However, this comparison is substantially influenced by the third trip prediction, where
the model predicts HC emissions of 1.99 grams versus an observed value of 6.24 grams. If the
third trip is set aside, the average predicted value for the other five tripsis 1.84 grams compared
to an average of the observed values of 1.89 grams, which is a difference of only two percent.

The ambient conditions for Trips 3, 5, and 6 were different than those of the calibration data set.
For example, the average relative humidity in the calibration data set was 53 percent, whereas it
was approximately 80 percent for these three tripsin the validation data set. Therefore, it
appears that the model was extrapolated in making predictions for the validation data set for
thesetrips. Furthermore, Trips 2 and 3 in the calibration data set were made with the same
vehicle. The predicted HC emissions were substantially lower than the observed emissions for
this particular vehicle. Infact, as described later, the predicted emissions for CO and NO for the
two trips made with this vehicle were a so noticeably lower than the observed emissions,
although for both CO and NO the observed emissions were enclosed by the 95 percent prediction
interval. Itispossiblethat there is some characteristic of this vehicle that differs from the
vehicles contained in the calibration data set. Thus, the reasons for poor model performance for
some of the trips may be attributable to vehicle-specific factors and different ambient conditions
than those observed in the calibration data set.
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Table 6-2. Summary of Predicted Vaues for the “Prediction Dataset” for Light Duty Gasoline

Vehiclesfor HC (grams)

Predicted | Observed Predicted | Observed | Fleet Fleet
Trip| Value Value | Vehicle| Value Value | Predicted | Observed
1 2.62 2.93 1 2.62 2.93
2 1.5 3.02 3 1.77 4.63
3 1.99 6.24 187 561
4 2.65 1.56 ' '
5 1.34 1.30 8 1.68 1.16
6 1.06 0.63
Table 6-3. Summary of Predicted Vaues for the “Prediction Dataset” for Light Duty Gasoline
Vehiclesfor CO (grams)
Predicted | Observed Predicted | Observed Fleet Fleet
Trip| Value Value | Vehicle| Value Value | Predicted | Observed
1 325 36.8 1 325 36.8
2 20.2 35.1 3 21 401
3 21.7 45.1 28.7 30.6
4 58.4 36.2 ' '
5 24.2 19.8 8 32.6 22.2
6 15.2 10.4

Table 6-4. Summary of Predicted Vaues for the “Prediction Dataset” for Light Duty Gasoline

Vehiclesfor NO (grams)

Predicted | Observed Predicted | Observed Fleet Fleet
Trip| Vaue Value | Vehicle| Value Value | Predicted | Observed
1 6.1 51 1 6.1 51
2 34 74 3 3.2 7.8
3 3.0 8.3 45 6.7
4 6.7 10.8 ' '
5 4.6 4.4 8 4.8 6.6
6 3.0 4.5
Table 6-5. Summary of Predicted Vaues for the “Prediction Dataset” for Light Duty Gasoline
Vehiclesfor CO; (kg)
Predicted | Observed Predicted | Observed | Fleet Fleet
Trip| Vaue Vaue | Vehicle| Vaue Vaue | Predicted | Observed
1 12.9 10.5 1 12.9 10.5
2 S5 >.2 3 6.8 6.6
3 8.2 8.1 6.3 56
4 3.4 2.9 ' '
5 4.0 35 8 3.8 3.3
6 3.9 3.4
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Table 6-6. Summary of Confidence Range for Prediction Values for the “ Prediction Dataset” for
Light Duty Gasoline Vehicles

Trip | 95% CI for HC (g) | 95% CI for CO (g) | 95% CI for NO (g) | 95% CI for CO, (kg)
1 <94 <201 <23 11 — 15
2 <46 <97 <11 46 —6.3
3 <6.7 <139 <14 6.9 —9.6
4 <45 11 —106 2—11 28 — 3.9
5 <36 <80 <10 34 — 47
6 <42 <93 <11 3 — 48
LDV HC by Trip
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Figure 6-2. Comparison of Model Predictions and Observed Vauesfor LDGV for HC (grams)
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Table 6-3 and Figure 6-3 show a comparison of observed and predicted values for CO emissions.
As seen in Figure 6-3, the 95 percent prediction interval for the predicted values encloses the
observed values for all six individual trip predictions, which indicates that the predicted values
are not statistically significantly different from the observed values. The predictions averaged
over all six trips agree to within six percent of the observed emissions averaged over all six trips.
Therefore, on average, the model appearsto accurately predict trip emissions even though in
specific cases it may under- or over-predict emissions. As noted earlier, the predictions of CO
emissions for Trips 2 and 3, which were made with the same vehicle, are noticeably lower than
the observed values, differing by afactor of approximately two. However, the observations are
enclosed by the 95 percent prediction interval for both trips, and therefore the model
performance is deemed to be reasonable for these trips.
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Table 6-4 and Figure 6-4 present comparisons of predicted versus observed emissions for NO.
Thereis no statistically significant difference between the observed and the predicted values for
each individual trip, since observed values are enclosed by the 95 percent prediction interval for
all of thetrips. In some cases, such as for the first and fifth trips, the model predictions are very
close to the observed values. In the other four cases, the model tends to under-estimate the
observed NO emissions. On average, the model tends to under-predict the observed emissions
by 33 percent. However, since the individual observations are well within the prediction
interval, the difference in the "fleet average" emissionsis deemed to be within the precision of
the model.

As noted in the discussion of HC emissions, the ambient conditionsin the validation data set for
Trips 3, 5, and 6 were different than those of the calibration data set, which may contribute to
some of the apparent bias in the model predictions. Furthermore, the second vehiclein the
validation data set, which was used for Trips 2 and 3, in general appears to have higher

emissions than predicted by the model for HC, CO, and NO. The observed emissions for CO
and NO were within the 95 percent prediction intervals. A detailed investigation of the second-
by-second predictions for Trip 2 versus the second-by-second observed values revealed that there
were severa peaksin the observed emissions that were not captured by the model. Thus, there
may be vehicle or driver-specific factors associated with the second validation vehicle that were
not accounted for in the model.

For CO, emissions, the point estimates for the predictions of individual trip emissions are within
15 percent of the observed valuesin four of the six cases, based upon the datain Table 6-5 and
also shown in Figure 6-5. The highest percentage difference between the predicted and the
observed value was 23 percent, for the first trip. For the first trip, the observed value isless than
the lower bound of the prediction interval. However, for al of the five other trip predictions, the
observed value is enclosed by the prediction interval. On average, the predictions agree to
within 13 percent.

The results of the comparison of model predictions and observed values for all four pollutants
suggest that, overall, the conceptual model performs well in making average predictions over
multiple trips, especially for CO and CO,. For HC, there was one trip out of six for which the
model prediction was low by afactor of almost three; however, the average predictions for the
remaining five trips agreed to within two percent of the observed value. For NO, thereis
substantial variability between the model predictions and the observed values, however, the
prediction intervals are also relatively wide. Therefore, although there was apparently an
average tendency to under-predict emissions by 33 percent, there does not appear to be a
statistically significant difference between the model predictions and the observed values. Many
of the largest discrepancies in the comparison of the model predictions with the observed data
appear to be attributable to the second vehicle and, in particular, Trip 3. Thismay be because of
extrapolation of the model to driving conditions, ambient conditions, or vehicle characteristics
that were not included in the calibration data

Based upon the results for all four pollutants, the conceptual models perform reasonably well. It
is possible to refine the conceptual models by investigating the second-by-second predictions in
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comparison to the second-by-second observations to search for situations that the model may
have failed to adequately capture that significantly influence emissions. Such an investigation is
recommended for future work. The models should be recalibrated based upon additional data
that includes greater variability in explanatory factors than was present in the calibration data set.

6.2 Heavy Duty Diesel Vehicles

For the HDDV data set, predictions were made using a similar approach as followed for LDGV,
with the exception that there was not a cold start process for HDDV. Figure 6-6 presents the
steps used for the prediction process for HDDVs. A key difference in the method for making
predictions when comparing HDDV and LDGV isthat only average modal HC emissions were
used for HDDV. OLSregressions were not used to supplement the modal average predictionsin
the case of HC. Asexplained in Chapter 4, OL S regression did not provide any significant
increase in explanatory power for the HC emissions model. Modal OL S regressions were used
for the other pollutants.

The model developed in this study predicts an average grams/second emission rate for each trip.
Therefore, in order to get the total emissions for atrip, the grams/second emission rates were
multiplied by the total time spent in each trip. For each prediction, a prediction interval is given,
asexplained in the case for LDGV dataset in the previous section. The prediction interval is
based upon the inter-trip variability in emissions that is not explained by the model, asillustrated
in the parity plots of Chapter 4.

The average emission rates associated with the predicted emissions for each trip were compared
to the range of average emissions rates among all of the tripsin the calibration data set. In
genera, the average emission rates for the predictions are within the range of the observed
variability in average emissions rates for the calibration data set.

The predictions made with the conceptual model are compared to the observed values reported
by EPA in Tables 6-7 through 6-10 for HC, CO, NO, and CO,, respectively. The prediction
intervalsfor al four pollutants are summarized in Table 6-11. The comparison of predictions
and observations for individual trips and for the average of all tripsis shown graphically in
Figures 6-7 through 6-10 for HC, CO, NO, and CO,, respectively. Predictionswere made for
two trips for each of three diesel transit buses of the same technology as the transit buses that
were included in the calibration data set.

The model predictions agreed very well with the observed values in the case of HC emissions, as
shown in Table 6-7 and Figure 6-7. The predictions for individual trips agreed with the observed
valuesto within 12 percent for five of the six trips. The average of the trip predictions was
identical to the average of the observed emissions to within two significant figures. The model
predictions ranged from approximately two grams to three grams of emissions per trip, whichis
similar to the range of variability in the observations. All of the observed emissions for
individual trips were enclosed by the prediction interval corresponding to each trip. Therefore,
by several measures, the predictions for HC emissions are very good.
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Figure 6-6. Simplified Schematic of Emissions Estimation Steps for HDDV Data

The CO predictions were generaly higher than the observed emissions by 38 to 58 percent
among each of the individual trip predictions, based upon the data given in Table 6-8 and Figure
6-8. On average, the model over-predicted trip CO emissions by 52 percent. All of the observed
emissions for each individual trip were enclosed by the prediction interval corresponding to each
trip. Thus, the discrepancy between the model predictions and the observed values appears to be
within the precision of the model. However, the fact that all six of the trips are over-predicted
suggests a possible bias in the model predictions. For example, a preliminary anaysis revealed
that the second-by-second emission rates of the validation data set were generally much lower
during the accel eration mode than for the calibration data set. Specifically, CO emission rates
during acceleration for the validation data set rarely exceeded 0.5 g/sec whereas emission rates
of 1.0 g/sec during acceleration occurred frequently in the calibration data set. However, the
specific reasons for this difference could not be determined at thistime. It is possible that there
is some type of extrapolation of the model that may account for the discrepancy in the
comparison of the predictions and observed values. It isrecommended that the reason for the
bias be identified based upon a more thorough review of both the observed second-by-second
data and the model predictions on a second-by-second basis.

The model predicted NO emissions with good precision as shown in the data reported in Table 6-
9 and Figure 6-9. All of the observed emissions for each individual trip were enclosed by the
prediction interval corresponding to each trip. The predictions for individual trips agreeto
within 15 percent in al six cases. The average of the predictions for the six trips agrees with the
average of the observed emissionsto within six percent. The model predicted trip emissions
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Table 6-7.

Summary of Predicted Vauesfor the “Prediction Dataset” for High Duty Diesel

Vehiclesfor HC (grams)

Predicted | Observed Predicted | Observed | Predicted | Observed
Trip Value Value Bus Value Value Fleet Avg | Fleet Avg
1 2.9 3.2
5 53 55 3 2.6 2.9
3 2.5 2.5
2 56 57 12 2.6 2.6 25 2.5
5 2.8 2.1
6 19 50 13 2.3 2.1
Table 6-8. Summary of Predicted Values for the “Prediction Dataset” for High Duty Diesel
Vehiclesfor CO (grams)
Predicted | Observed Predicted | Observed | Predicted | Observed
Trip Value Value Bus Value Value Fleet Avg | Fleet Avg
1 87 52
> 62 a1 3 74 46
3 80 59
7 a4 =3 12 82 55 76 50
5 83 54
6 ) e 13 71 48
Table 6-9. Summary of Predicted Values for the “Prediction Dataset” for High Duty Diesel
Vehiclesfor NO (grams)
Predicted | Observed Predicted | Observed | Predicted | Observed
Trip Value Value Bus Value Value Fleet Avg | Fleet Avg
1 257 252
> 164 143 3 211 198
3 282 253
7 28 590 12 305 272 253 238
5 275 286
6 510 03 13 243 245
Table 6-10. Summary of Predicted Values for the “Prediction Dataset” for High Duty Diesel
Vehiclesfor CO, (kg)
Predicted | Observed Predicted | Observed | Predicted | Observed
Trip Value Value Bus Value Value Fleet Avg | Fleet Avg
1 17.1 17.1
> 114 101 3 14.2 13.6
3 15.8 16.7
7 16.8 18.9 12 16.3 17.8 14.5 155
5 151 17.6
6 11 126 13 13.1 15.1
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Table 6-11. Summary of Confidence Range for Prediction Values for the “Prediction Dataset”
for Heavy Duty Diesel Vehicles

Trip | 95% CI for HC (g) | 95% CI for CO (g) | 95% CI for NO (g) | 95% CI for CO, (kg)
1 <6.5 47— 128 153 — 360 14—21
2 <53 29 — 95 80 — 247 9—14
3 <56 46 —114 193 — 372 13— 18
4 <59 48— 121 232 — 424 14— 20
5 <6.3 44 — 122 174 — 377 12 — 18
6 <43 32— 86 140 — 280 8.8 —13
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Figure 6-7. Comparison of Model Predictions and Observed Vaues for HDDV HC Emissions
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ranging from approximately 150 grams to approximately 300 grams, which is a factor of two and
issimilar to the variability in the observed emissions. Therefore, the model appears to capture
the variability in the observations reasonably well. Thus, in al respects, the predictions for NO
agree very well with the observations.

The model predictions for CO, are compared with the observed valuesin Table 6-10 and Figure
6-10. The average of the predictions for the six trips agrees with the average of the observed
emissions to within six percent. All of the observed emissions for each individual trip were
enclosed by the prediction interval corresponding to each trip. Theindividual trip predictions
agree with the observed values to within 13 percent, with three of the cases agreeing to within
five percent. On average, the model predicted trip emissions to within six percent of the average
observed value. The variability in model predictions ranges from approximately 11 kg to 17 kg,
which is similar to the observed range of variability from 10 kg to 19 kg. Thus, by avariety of
measures, the performance of the conceptual model with respect to CO, emission estimatesis
very good.

Overall, the conceptual model for HDDV emissions performed very well for HC, NO, and CO,
emissions, based upon comparison of prediction intervals with the observed data, the percent
differencein individual trip and average predictions compared to observations, and the range of
variability in model predictions versus the variability in the observations. The predictions for
CO were the only exception to the generally excellent performance of the model. Although the
observed values were enclosed by the prediction interval, we hypothesize the possibility of a
model extrapolation. There was not sufficient time in this study to investigate the hypothesized
extrapolation more thoroughly. Therefore, such an investigation is recommended for future
work.

6.3 Nonroad Vehicles

For the nonroad vehicles, predictions were made using five methods, and the predictions were
compared with observed values. These five methods are summarized briefly here. More detail
on these is given in Chapter 5.

Average of Three-Hour Calibration Data Set: The simplest model is emissions equal
to aconstant. Therefore, we consider amodel of emissions equal to the average value
of the data provided in the three hour calibration data set.

Modes Only: Prediction with amodel based upon modal averages obtained from the
calibration data set and the distribution of time spent in each mode for the validation
data set. The modes are categories or bins with respect to the relative exhaust flow
rate.

Modes& OLS: Similar to Modes Only, but for each mode there is an ordinary least
squares linear regression of emissions with respect to Engine RPM, which was
typically found to be a statistically significant explanatory variable for each modal
data set.
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Multiple OL S Regression: The multiple OLS regression approach is based upon a
direct application of multiple least squares regression to the second-by-second data
set. Although this approach is technically not appropriate given the autocorrelation in
the data, we were curious how predictions from this technique compare to the other
methods, which more appropriately take into account or deal with autocorrelation.

Time Series: These predictions are based upon atime series model fit to the calibration
data set.

The predictions with the five models were made before EPA revealed the “true” observed
emissions values for the prediction data sets. Therefore, this was a blind comparison of model
predictions to observed values. For validation purposes, EPA provided one hour of operating
data for each of the three nonroad equipment for which individual emission models were
developed. Asnoted in Chapter 5, the calibration data were based upon approximately three
hours of operation. Typicaly, the hour of operation in the validation data set represents a fourth
hour of consecutive operation compared to the calibration data. External factors such as ambient
temperature typically changed continuously over the total four hour data collection period.
Therefore, the ambient conditions of temperature, humidity, and barometric pressure during the
fourth hour of operation may be different than the values observed during the first three hours of
operation. Such differences are explored in more detail in Section 6.3.2 for each of the different
types of equipment.

6.3.1 Comparison of Model Predictionswith Observed Values

For NOy, the predictions of each of the five aternative types of models are compared to the
observed values for the bulldozer, compactor, and scraper in Table 6-12. A similar comparison
isgiven for CO, emission in Table 6-12. A graphical comparison is given for the prediction of
the "Modes Only" approach for NO, with respect to the observed valuesin Figure 6-11. A
similar comparison is given for CO, in Figure 6-12. The "Modes Only" predictions were used
for the graphical comparison in Figures 6-11 and 6-12. The "Modes Only" approach was found
in Chapter 5 to provide nearly as much explanatory capability asthe"Modes & OLS" and
"Multiple OLS Regression” approaches. The "Modes Only" approach has an advantage of being
conceptually ssimpler than the two regression approaches. The Time Series approach is not
recommended for model development but was included for comparison purposes only.

The "Modes Only" approach performed very well in predicting both NO, and CO, emissions
when compared to the observed values. The predictions for NOy agreed to within eight percent
for each of the three vehicles, and the average of the predictions for the three vehicles agreed
with the average of the three observations to within two percent. The predictions for CO, agreed
to within seven percent for each of the three vehicles, and the average of the predictions for the
three vehicles agreed with the average of the three observations to within six percent. Although
there is an apparent tendency of the "Modes Only" model to under-estimate the observed CO,
emissions, the magnitude of the apparent bias issmall. Furthermore, with only three
comparisons and with arelatively small bias, it is difficult to make areliable estimate of biasin
the model predictions.
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Table 6-12. Summary of Predicted Vauesfor the “Prediction Dataset” for Nonroad Vehicles for

NO (grams)
Predictions Based Upon Alternative Models
Average of Multiple
3-hour data Modes Modes & OLS Time Observed
Vehicle Set Only OLS Regression Series Value

Bulldozer 1,890 1,640 1,640 1,730 1,810 1666
Compactor 340 362 366 423 512 334
Scraper 670 610 624 627 710 655

Table 6-13. Summary of Predicted Values for the “Prediction Dataset” for Nonroad Vehicles for

CO; (kg)
Predictions Based Upon Alternative Models
Average of Multiple
3-hour data Modes Modes & OLS Time Observed
Vehicle set Only OLS Regression Series Value

Bulldozer 98 84 86 94 116 90
Compactor 82 85 85 75 75 89
Scraper 66 68 66 64 63 73
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The "Modes Only" approach generally performs better than the "Modes & OLS", "Multiple OLS
Regression," and "Time Series" methods with respect to the validation cases. The best prediction
is defined as the prediction with the minimum deviation from the observed value. For example,
among these four modeling approaches, the "Modes Only" approach makes the best prediction
for NO for the bulldozer and the scraper, and the best prediction for CO, for the compactor and
the scraper. In the two cases where the "Modes Only" approach does not make the best
prediction, for NO, from the scraper and for CO, from the bulldozer, the prediction of the
"Modes & OLS" approach is either the best or very close to the best. In most cases, the "Modes
Only" and "Modes & OLS" approaches produce nearly the same prediction. These results
implies that a modal approach performs well and that there islittle incremental benefit in this
casetoa"Modes & OLS" approach.

6.3.2 Comparison of Calibration and Validation Data Sets

It is not expected that the model prediction for the bulldozer should agree with the observed
“true” emissions for the prediction cases. Thisis because there are differencesin the conditions
of the prediction dataset versus those of the calibration data set. These differences areillustrated
in Table 6-14, which compares the mean and average values of the five available possible
explanatory variables for the calibration data set and the validation data set. The comparison
shows that the validation data set has substantially lower relative humidity and higher ambient
temperature than the calibration data set. Thereisless variability in relative humidity and
ambient temperature in the validation data set than in the calibration data set. The mean engine
RPM and exhaust flow are lower for the validation data set than for the calibration data set,
although there are similar levels of variability in both cases
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Table 6-14. Comparison of Calibration and Validation Datasets for Bulldozer

Exhaust
Relative | Ambient Barometric Fow
Humidity | Temperature | Pressure Engine RPM | (SCFM)
Calibration Data Set
Average 66.7 29.2 60.6 1466 599
Std. Deviation 14.3 3.7 0.1 432 246
Validation Data Set
Average 34.3 38.5 60.5 1323 531
Std. Deviation 1.8 11 0.2 439 264

Table 6-15. Comparison

of Calibration and Validation Datasets for Bulldozer

Exhaust
Relative | Ambient Barometric Flow
Humidity | Temperature | Pressure Engine RPM | (SCFM)
Calibration Data Set
Average 66.4 5.0 98.6 2357 319
Std. Deviation 9.1 3.0 3.7 800 108
Validation Data Set
Average 49.1 9.7 99.5 2534 330
Std. Deviation 4.3 12 0.1 750 108

The effect of the difference in conditions between the validation data set and the calibration data
set can only be estimated based upon judgment. From an inspection of the scatter plots for the
calibration data set, it is apparent that average emissions of both NO, and CO, tend to increase
with an increase in exhaust flow, an increase in temperature (very weak effect) and an increasein
barometric pressure. The relative humidity and ambient temperature are so highly correlated in
the calibration data set that is it not possible to use both for prediction purposes. The higher
ambient temperature in the validation data set suggests higher emissions, while the lower average
exhaust flow rate suggests |lower emissions, compared to the conditions of the calibration data
set. Thus, overal, there may not be a strong effect of these differences with respect to biasin
model predictions versus observed values.

For the Compactor, the validation and calibration data sets are compared in Table 6-15. The
comparison illustrates that the validation data set has lower relative humidity, higher
temperature, and higher barometric pressure than the calibration data set, on average. The
average engine RPM of the validation dataset is slightly higher than for the calibration data set,
although the variability is slightly less. The exhaust flow is similar in the two cases.

The conditions of the validation data set for the scraper are different than those of the calibration
data set, as shown in Table 6-16. The average relative humidity is lower and relative humidity
has less variability. The average ambient temperature is higher and also has less variability. The
average engine RPM is higher by 280, but has less variability, indicating generally higher RPM
than in the calibration case. The exhaust flow is similar on average but has less variability, and
the peak values of exhaust flow in the validation case are |ess than the peak valuesin the
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Table 6-16. Comparison of Calibration and Validation Datasets for Scraper

Exhaust
Relative | Ambient Barometric Fow
Humidity | Temperature | Pressure Engine RPM | (SCFM)
Calibration Data Set
Average 48.2 15.5 99.6 1558 427
Std. Deviation 5.3 2.4 0.0 659 193
Validation Data Set
Average 40.7 20.2 99.6 1838 429
Std. Deviation 0.6 0.5 0.0 515 136

calibration case. The scatter plots from the calibration data set illustrate potentially strong
sensitivity of emissions to engine RPM and exhaust flow, and only weak sensitivity to ambient
conditions. Therefore, it is possible that the difference in engine RPM may be most responsible
for any differences between model predictions and the observed values. The lower exhaust flow
rates in the validation case will tend to result in lower emissionsif all else were equal.

6.4  Summary of Validation Case Studies

This chapter documented blind comparisons of predictions made using conceptual models
developed in Chapters 3, 4, and 5 with respect to observations revealed to NCSU by EPA only
after NCSU completed the predictions.

For LDGVs, the model predictions are typically within 15 percent or better, on average, for CO
and CO,. For HC, the model prediction iswithin two percent, on average, for five of the six
trips. The model substantially under-predicted emissions for one of the six trips. The
observations for NO were enclosed by the 95 percent prediction interval for al six trips. There
may be abias in the NO predictions but the predictions are judged to be within the precision of
the model. Of the 24 comparisons (6 trips for each of 4 pollutants), the observed values were
enclosed by the 95 percent prediction interval 20 times, or with afrequency of 83 percent.
Although the frequency of 83 percent is less than the desired value of 95 percent, with asample
of only 24 comparisons some random variation is expected regarding the actual observed
frequency.

It appears that the second vehicle in the calibration data set was associated with the most
significant discrepancies in the comparison of predicted and observed emissions. Ambient
conditions, especially for relative humidity, were found to be substantially different for some of
the validation trips compared to the calibration data set. Therefore, it islikely that a significant
portion of differencesin model predictions versus observed values is associated with either
explicit or hidden extrapolation of the model. Asamodel such asthisis calibrated with more
data representing more combinations of the explanatory variables and of unobserved variables,
the accuracy of the model would be expected to improve.

For HDDV s, the model predictions for the average of six trips were within six percent or better
of the observed average values for HC, NO, and CO,. Thereis an apparent biasin the CO
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predictions, which merits investigation in future work. It appears from the second-by-second CO
emissions data that there is a substantial difference in the acceleration mode emission ratesin the
validation data set compared to those in the calibration data set. Thisfinding implies apossible
extrapolation of the model when making predictions for the validation data set, at least with
respect to CO. However, for all 24 comparisons (6 trips for each of 4 pollutants), the observed
values were enclosed by the 95 percent prediction intervals 24 times, or with afrequency of 100
percent. These results suggest that the HDDV conceptual emission models performed very well.

For the nonroad predictions, the "Modes Only" approach yielded predictions that were within
eight percent of the observed values for individual trip predictions. Although in specific cases
the"Modes & OLS" approach may yield a slightly more precise estimate, the "Modes Only"
approach provided the most precise prediction in several cases. These results suggest that the
"Modes Only" approach offers predictive capability comparable to other approaches but has the
advantage of being a simpler approach.

Overal, the conceptual models performed well in making predictions for individual trips and for
the average of only six trips. Asnoted in earlier chapters, the most demanding test of avehicle
emission model is how well it does in making predictions for individual trips. More commonly,
vehicle emission modes are used to make predictions for fleet averages. Althoughit is generaly
the case that the conceptual models performed better at making predictions for the average of six
trips than for individual trips, there were several examples of specific pollutants for which the
model predictions were reasonably precise even for individual trips. Overall, the conceptual
models and the validation exercise demonstrate that a modal -based approach for emissions
estimation is a viable and practical method capable of performing well.
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70 STRATEGIESFOR USING ALTERNATIVE EMISSIONS DATA

There is no one source of datathat can serve as the sole basis for development of the NGM.
Where available, on-board emissions data will often the best choice, because it reflects real
world on-road conditions. However, there are limitations in the tail pi pe emission measurements
of the current generation of on-board instruments, particularly with regard to HC emissions, that
motivate supplemental data collection in laboratories. On-board emissions measurement
instruments do not currently address many pollutants that may be of concern in tailpipe
emissions, such as air toxics. Some of the functional relationships between tail pipe emissions
and activity data needed for the NGM can be developed with the aid of |aboratory data.
Furthermore, on-board techniques are not currently capable of measuring emissions from other
than thetallpipe. Therefore, thereis a continuing need for alternative sources of data regarding
evaporative emissions. Creative opportunities should be sought to collect new datain
conjunction with on-board studies. For examples, it may be possible to design a concurrent
study of real world tire wear that could be implemented in conjunction with on on-board study.

EPA and others have collected a large amount of data based upon driving cycles and the use of
dynamometer-based measurement methods. Therefore, akey question is whether such data can
be included with on-board data in the development of the NGM. This question is addressed in
this chapter.

The National Research Council (2000) provided areview of key considerations pertaining to the
MOBILE emission factor models. These are listed in Table 7-1 to help guide the discussionin
this chapter. Table 7-2 is based upon atable in NRC (2001) that lists specific areas of concern
identified in an earlier report by the General Accounting Office (GAO), and whether they are to
be addressed in Mobile6. Added to thistable isabrief indication of how each area of concern
can be addressed in the NGM.

The focus of the discussion in this chapter is on data required to develop an emissions model.
There are aso considerations regarding the availability of activity data to support use of the
model by the user community. These concerns are important, but they are not addressed in detail
here. A first step isto determine what input data are needed to make the best predictions of
emissions. If the data requirements exceed the activity data available as part of current practice,
then the choices are either for the user community to find ways to develop data needed for the
new model, with the guidance and perhaps assistance of EPA, or to find ways to smplify the
model to reduce the input data requirements. Thiswill involve atrade-off between the
explanatory power of the model and the data input requirements for the model. Such atrade-off
can be difficult to evaluate a priori, but should be kept in mind during the process of model
devel opment.

The focus of this chapter is on the on-road emission source categories. However, a supplemental
discussion of nonroad sourcesis provided near the end of the chapter.
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Table 7-1. Key Considerations In Developing an Emission Factor Model

High Emitters
Exhaust High Emitters
Evaporative High Emitters

Cold Start Emissions
Accurate activity data
Accurate emissions model
Specification of locations of cold
starts

Driving Cycle Issues
Standard mix of cold start, hot
stabilized, and hot start.
Standard assumptions regarding
speed traces, which imply standard
distributions of driving modes

Sufficient range of speeds and
accelerations

Aggressive Driving

Road Grade (new data requirements for
model users)

Accessory Loads—e.g., air conditioner
(compressor on fraction, demand for
A/C usage)

Real-world behavior/effectiveness of
electronic controls and emission
control systems

Simulating real-world driving
Technology Groups

In-Use Deterioration, especialy above
50,000 miles

Need for more representative driving
cyclesfor development of correction
factors (e.g., deterioration, A/C
usage, cold start effects)

I/M Program Effects on Emissions

Evaporative Emissions
Diurnal emissions (SHED)
Resting Losses (multi-day diurnal
tests)
Hot soak (SHED)
Running Losses (real-time)

Fuel Effects— Reid Vapor Pressure
(RVP), oxygenated fuel,
Reformulated Gasoline (RFG), fuel
sulfur content (effect on catalyst)

Ambient Temperature
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Table 7-2. Areas of Concern Regarding Tailpipe Emissions Estimates from Mobile Cited in
GAO Report (Based Upon Summary in NRC (2000)) and How They Can Be Addressed in NGM

Areas of Concern Addressed
Regarding Mobile Cited in in
GAO Report MOBILEG? How to Addressin NGM
1. | High Speed Driving Driving Real-world data from on-board data collection
Cycles
2. | Rapid Acceleration and Driving Real-world data from on-board data collection
Deceleration, including Cycles
aggressive driving
behaviors
3. | Cold Start Emissions Driving Real-world data from on-board data collection
Cycles
4. | Air conditioner use Driving Phased combination of correction factors
Cycles from driving cycles, supplanted with real
world on-road data
5. | Road grades (hills) No Real-world data from on-board data collection
6. | Representation of High- Yes Real-world data from on-board data collection
Emitting Vehicles
7. | Variousfue formulations | Yes Phased combination of correction factors

from driving cycles, supplanted with real
world on-road data

8. | Emissions system Yes Phased combination of correction factors

deterioration from driving cycles, supplanted with real
world on-road data

9. | EmissionsEstimatesand | Yes Phased approach — use current methods until
Assumptions for Vehicle sufficient data are available from on-board
I/M Programs measurements

10. | Non-tailpipe evaporative | Yes Same as Mobile6.
emissions when vehicleis
not operating

11. | Emissions estimates and No Can address with long term (e.g., 5 year) on-
assumptions for I/M of board data collection in representative study
HDV's (8,501 Ib or more) areas

12. | Data characterizing Yes Same as Mobile6, supplemented with new
vehicle fleet data

13. | Greater distinction in Yes Addressed through proper data collection and
roadway classifications analysisin on-board studies

14. | Quantifying Uncertainty of | No Appropriate sampling design and statistical
the Model’ s Estimates techniques. Must be an integral part of model

devel opment, not a post-hoc add-on.
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7.1  Strengthsof On-Board Tailpipe Emissions Data

With respect to the key considerations listed in Table 7-1, it is clear that on-board tailpipe
emissions measurements offer many benefits. Each of the main pointslisted in Table 7-1is
addressed here, with adiscussion of the role for on-board measurement to address the
consideration. From this discussion, gaps in the ability of on-board measurements to address
specific concerns are identified. These are discussed in Section 7.2.

Through appropriate vehicle recruitment, it is possible to collect data on exhaust high emitters.
In some cases, it may be worth including the price of purchasing older used cars in the budgets
for the emission measurement centers, so that they can have an opportunity to work with such
vehicles over along time period during the five year data collection effort.

Cold start emissions can be measured and analyzed, as demonstrated by the LDGV examplein
Chapter 3. Second-by-second data will provide more quantitative knowledge regarding cold
start duration and the relationship between emissions and vehicle activity during the cold start.
The model developed in Chapter 3 includes consideration of the duration of the cold start. Data
regarding factors influencing the duration of the cold start are needed and can be collected in on-
board studies, including soak time and ambient temperature. Improved methods for modeling of
cold start emissions are an expected output of an on-board emissions data approach to
developing the NGM. Thisislikely to lead to additional input data requirements. However,
from the on-board data, typical activity patterns for cold starts can be inferred and provided as
defaults for those users who do not have site-specific data available.

On-board emissions data offers a key benefit of representing real world emissions because data
are collected on-road during actual driving. However, the ability to represent real world
conditions will be predicated on proper sampling of different vehicles, vehicle operation
condition, routes, drivers, traffic conditions, ambient conditions, and fuels. A properly designed
field study should be able to account for the key factors that influence real world emissions.
Therefore, it is expected that the on-board data set upon which the NGM should be based will
improve the representativeness of the model with respect to real world conditions. Standard
assumptions are not needed a priori regarding driving cycles in this approach. Therefore, the
limitations of arelatively small number of driving cycles that potentially constrain the
representativeness of the MOBILE modelswill be addressed in the on-board data-based
approach.

On-board data collection will encounter a wide range of speeds and accel erations, overcoming
shortcomings of many driving cycles. Issues regarding the distribution of driving behavior and
how it affects emissions need to be addressed. An on-board study itself can be used to determine
the relationship between emissions and different styles of driving. Supplemental data will be
needed regarding the distribution of driving stylesin the real world.

Accessory loads have long been hypothesized to be an important factor influencing emissions.
The effect of accessory |oads can be assessed using on-board data by varying accessory |oading
during field studies and performing statistical analysis on the data to infer whether accessory
loading is a useful explanatory factor. A key exampleisregarding air conditioning usage. It will
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be more useful to have second-by-second data regarding whether the compressor is operating
than it will be to ssmply know whether the air conditioning button is in the off or on position.

There has been some concern about the ability of the MOBILE models to properly account for
the real world behavior or effectiveness of el ectronic control and emission control systems. This
concern isin part because such systems have been designed in the past to comply with tailpipe
emissions limits when vehicles are operated on the standard certification cycle, but they may not
operate in the same manner for "off-cycle" eventsin the real world. On-board data collection
will alow identification of real world impacts associated with this particular set of issues.

There has been concern about simulation of real world driving in dynamometer tests used to
produce data for the MOBILE models. With on-board measurements, the data will be collected
in the field under actual driving conditions, including actual road grades. There are, however,
some issues of data collection protocol that must be considered. For example, many state
departments of transportation operate "floating cars" that are used to collect speed traces to
understand traffic flow and congestion. Such agencies often have policies that govern driver
behavior during data collection. For example, the driver isrequired to stay within a specified
number of miles per hour of the speed limit, and may not exceed a particular speed based upon
the speed limit plus the allowabl e tolerance above the speed limit. However, if the objectiveisto
obtain representative real-world emissions values, then data should be collected at typical traffic
flow speeds. In some cases, the typical traffic flow in the real world can be much faster than the
posted speed limit. It will be important for EPA to develop a policy regarding how to handle
situations such asthis.

On-board emissions measurement systems can be deployed on awide range of different vehicles.
Although the simplest deployment is for vehicles with an OBD link, with the use of sensor arrays
it will be possible to deploy this type of equipment on vehicles without electronic controls. This
is especially important with respect to including older vehiclesin the study design.

In-use deterioration is hypothesized to be a significant concern, especially for vehicles with more
than 50,000 miles accumulated. The on-board technology can be deployed on a vehicle
regardless of its mileage accumulation. However, a key question is whether a sufficient sample
Size can be obtained to infer a deterioration rate with statistical confidence.

On-board measurements can be made for vehiclesin avariety of areas, with different I/M
programs. However, a concern may be limited sample sizes of vehicles from which to make
inferences regarding the average effect of different I/M programs. Also of key importanceis
knowledge of the I/M history of each specific vehicle (e.g., whether it is been repaired to correct
an emissions problem), as opposed to knowledge only of the I/M program to which it is subject.

On-board measurement systems do not address evaporative emissions at thistime.

The effects of different fuel formulations and of different fuels can be evaluated by collecting
datafor vehicles that use different fuel formulations or fuels.
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Ambient temperature is not a controllable variable in an on-board study. Therefore, there will be
variability in ambient temperature during data collection. Statistical techniques can be used to
make inferences regarding the relationship between emissions and ambient temperature.
Analysesin this project and in previous work have revealed statistically significant relationships
between emissions and ambient over the range of variation observed in the data.

From the review of Table 7-1 and based upon additional considerations, some limitations of on-
board measurements can be identified. These are discussed in the next section.

7.2 Limitations of On-Board Emissions Data Collection

Current on-board emissions measurement methods are aimed only at tailpipe emissions. In
addition, the current generation of portable on-board emissions measurement systems are
typically limited, at this time, to measurement of only selected gases (e.g., CO, NO, HC, CO,,
and O,). Techniques for measuring PM emissions are commercially available aswell. However,
currently, portable on-board emissions measurement systems are not readily available for
measuring other pollutants, such as air toxics. On-board systems do not measure evaporative
emissions.

On-board emissions are collected under observational conditions. It is not possible to control on-
board emissions measurement data other than indirectly through choices of drivers, vehicles,
operating conditions, routes, and scheduling. At the sametime, thisis a strength in that one can
identify real world effects that are missed in standardized driving cycles. Because it is not
possible to control al key explanatory variables when collecting on-board data, thereis still an
important role for laboratory data. For example, ambient temperature may vary from one on-
board emissions measurement run to another, and in reality will vary during the data collection
run. If enough repeated runs are collected with the same vehicle/driver/route/traffic flow
combination under arange of ambient temperatures, it may be possible to obtain a statistically
significant relationship between emissions and ambient temperature. The same istrue for
relative humidity and barometric pressure. However, a parametric study under controlled
conditions may help gain insight into the relationship between emissions and asingle
explanatory variable.

There are some questions about how effectively some relationships will be observed in on-board
data sets until such time as a very large number of vehicles (thousands) have been tested. For
example, inferences about deterioration rates have in the past been made on the basis of
thousands of IM240 measurements for vehicles with variation in mileage accumulation. Even
under the relatively controlled driving cycle of the IM240 (when compared to on-road
conditions), there is tremendous variability in the data and the deterioration rates inferred from
such data sets explain only avery small portion of overall variability in the data. Because on-
road measurements are observational and not controlled, there will be greater variability in the
data. Thus, there may continue to be arole for alternative sources of deterioration rate data.

Similar to the concern about deterioration rate, it is possible that it will be difficult to make
reliable inferences regarding the effect of 1/M programs and individual vehicle I/M repair history
from on-road studies until avery large database is assembled. Therefore, there will be an interim
role for the use of the other data, such as remote sensing measurements, to help assess the real

156



world impacts of I/M programs on average emissions, at least for some pollutants, until sufficient
on-board data are available for this purpose.

7.3  Biasin On-Board Hydrocarbon Emission M easurements

On-board emission measurement systems typically use NDIR to measure HC emissions. NDIR
is also the technique used in many remote sensing instruments. An earlier study by Stephens et
al. (16) compared hydrocarbon measurements made using gas chromatograph, flame ionization
detector (FID), Fourier transform infrared spectrometer (FTIR), non-dispersive infrared analyzer
(NDIR) and two remote sensors. Measurements were made on 10 individual hydrocarbon
species, 12 vehicle exhaust samples, and three different volatilized fuel samples. The FID was
taken as the benchmark instrument. The ratio of HC/CO, emissions obtained by each instrument
divided by the corresponding HC/CO, measurement using FID was defined as the “response
factor.” NDIR systems are typically caibrated to measure propane. Stephenset al. (16) report
that the NDIR response factor for straight chain alkanes varied from 0.94 to 1.11. The response
factor decreased for measurements of chain-branched alkanes. The response factor for olefinic
and aromatic compounds was low, varying from 0.05 to 0.5 depending on the compound. The
overall response factors for measurements of total HC emissions from 12 tests of two vehicles
ranged from 0.23 to 0.69. In contrast, RSDs typically perform well in measuring the CO/CO,
ratio, with aresponse factor close to one. Thus, CO measurements are considered to be accurate,
and are precise to within plus or minus 10 percent. The measurement of total hydrocarbon
measurements is inaccurate. However, the magnitude of the systematic error may be difficult to
guantify, since the speciation profile of vehicle emissions may change from one measurement to
another, which in turn affects the overall HC response factor.

On-board equipment vendors have compared the total trip emissions measured with the on-board
instrument to that measured in the laboratory. Typically, there is good concordance between the
two measurements. When the measurements from the on-board instruments are plotted on a
parity plot, with respect to the laboratory measurements, the R? values are very high. Thus, it
may be feasible to develop a bias correction factor based upon the slope of the laboratory data
plotted with respect to the on-board emissions data. We do not attempt to do this definitively at
this time, because the avail able sample of comparison measurements from which to make an
inference regarding the bias correction, and the unexplained variability in the bias correction, is
very small. However, the development of a bias correction is a need for future work and should
be addressed as part of the qualification procedure for accepting specific instruments for use in
the field data collection studies.

7.4  Air Toxicsand Other Pollutants Not M easured by On-Board I nstruments

There is aneed for alternative emissions data for pollutants that are not easily measured at this
time with current on-board emissions measurement systems. Such data could be used to
correlate emissions of other pollutants with those that can be measured with the on-board
emissions measurement systems, or to develop predictive models for such pollutants using
explanatory variables similar to those obtained from on-board emissions measurements.

Bammi (2001) evaluated air toxics data developed for the California Air Resources Board
(CARB) to determine which method of estimating air toxic emissions had the least variability.
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The alternatives considered, based upon the availability of data, were gram per mile emissions
estimated directly for each air toxic (benzene, 1,2-butadiene, MTBE, formaldehyde, and
acetaldehyde), and estimation of the air toxic emission rate as a fraction of total organic gases
emitted. Analyses were conducted for both the FTP and the Unified cycles. When estimated
directly from the data in g/mi units, the variability in the emissions data was found to be a factor
of typically 100 to 300 for both cycles and for al five pollutants, when considering a 95 percent
probability range. In contrast, the variability in emissions as a percentage of TOG was typically
afactor of 2t0 30. Thus, thereisat least an order of magnitude less variability when the toxics
emissions data are normalized with respect to TOG emissions. The range of uncertainty in the
average emissions when expressed as percent of TOG was found to be as low as approximately
plus or minus 10 percent and as high as approximately minus 60 percent to plus 70 percent, with
atypical result of approximately plus or minus 30 percent.

The results of the analysis reported by Bammi (2001) suggest that estimation of air toxic
emissions as afraction of TOG (or surrogates for TOG, such astotal hydrocarbon emissions)
may be aviable approach. A substantial amount of the variability in air toxic emissions, at least
for organic molecules, can be explained by variation in emissions of TOG. Therefore, when air
toxic emissions are normalized to TOG, there is arelatively modest amount of unexplained
variability compared to the total observed variability in the data. The uncertainty in the average
emission ratio is comparable to ranges as previously estimated by Kini and Frey (1997) and
Pollack et al. (1999) for NOy and HC emissions from LDGV. Therefore, inthe NGM, a
potentially viable approach is to estimate organic air toxic emissions as a function of
hydrocarbon emission rates. Correction factors can be developed as appropriate if sufficient data
became available to evaluate and include other explanatory variables, such as ambient conditions
and others.

7.5  Representative Driving Cyclefor Laboratory Testing

One or more new driving cycles should be developed based upon on-board data collection for
use in laboratory dynamometer measurements to supplement the on-board data. For example, at
thistime, evaporative running loss and air toxics data are more amenable to measurement in the
laboratory, and there is not a viable portable on-board method at this time to address these
emission processes or pollutants. For some explanatory variables, such as temperature, fuel
effects, a/c load, and perhaps others, laboratory data may be useful to help provide insight into
the functional relationships between emissions and the explanatory variable. Those insights will
be helpful when selecting the functional form of regression modelsto use in analyzing on-board
emissions data. When collecting data using dynamometers, it is important to use adriving cycle
representative of real world conditions.

An important benefit of on-board data collection is that alarge amount of real-world vehicle
activity datawill be collected. This dataincludes speed traces on a second-by-second basis. The
large database of speed traces that will be developed in afive year study, and even in just the
first two years of the study, can be used to develop new dynamometer driving cycles that are
truly representative of real-world driving. The driving cycles can include a combination of
roadway facility types and traffic congestion. Thus, an important area for work isto develop a
new standard driving cycle that will underlie the measurement of evaporative running losses and
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of other correction factors (e.g., fuel effects, accessory load) that could supplement the
development of an on-board emissions data-based model.

7.6  Supplemental Laboratory Datafor Tailpipe Emissions

Although it is possible to include alarge number of explanatory variablesin on-board data
collection studies, such as ambient temperature, accessory load, and fuel effects, it isalso
important to be able to tease out the underlying functional relationship between emissions and
individual effects such asthese. Because on-board studies are observational in nature, it is not
possible to control all factors except the one that is of interest in a particular study. Therefore,
there will typically be a significant portion of variability that cannot be explained unless a
sufficient set of explanatory variables are included in every analysis. For agiven data set, there
isthe possibility of confounding variables. Therefore, it isvaluable to have laboratory datato
develop insight into specific relationships that are expected and to use thisinsight asan aid in
analyzing the on-board data.

There are at |east two approaches to the use of dynamometer datain combination with on-board
data. Oneisto use the dynamometer datato develop correction factors that can be applied to
base emission estimates developed from on-board data. This approach requires that the variable
that isthe basis for the correction factor, such as A/C usage, be “removed” from the on-board
data, so that all of the on-board data can be converted to a standard basis to which the correction
factor can be applied. Thus, an assumption must be made regarding the relationship between
A/C usage and emissions, and the observed emissions must be adjusted to remove this
relationship and convert data to the standard basis. For example, if the standard basisisno A/C
usage, then all datafor which A/C usage is reported would have to be adjusted to anon-A/C
usage basis in this approach, using a standard correction factor. The base modal emission rates
would then be estimated on a consistent “no A/C use” basis. The same correction factor would
be used in the model to convert datafrom a“no A/C use” basisto an “A/C use” basis.

A second approach is to use the dynamometer data only for the purpose of developing insights
into an appropriate functional form for the relationship between emissions and A/C usage, and
then to use the insight regarding the appropriate form in devel oping statistical models of
emissions as afunction of many explanatory variables, including A/C usage. In this approach,
the final parameter estimates for the relationship between emissions and A/C usage would be
driven by information contained in the on-board database, and not by the dynamometer data. For
example, based upon the dynamometer data, a functional form for the relationship between
emissions and A/C usage would be specified, and the parameters of the model would be selected
by fitting the model to the on-board data. However, the dynamometer data would play a critical
rolein helping to determine what the form of the relationship should be. As previously noted,
the dynamometer tests should be based upon a representative driving cycle inferred from on-
board data.

Aside from A/C usage, other effects that might be explored using laboratory approaches include
the effect of ambient temperature and the effect of fuel characteristics.

159



7.7 Other Data Needs

As noted earlier, the on-board data will reveal more information about the real world nature of
cold start emissions, and may in turn motivate additional input data requirements regarding
where cold starts take place along with indicators for their duration and severity. For example, it
isclear from the LDGV data set that cold starts are influenced by soak time prior to starting the
vehicle, although at this time there are not enough data to evaluate soak time for every trip in the
calibration data base. It islikely that soak time and ambient temperature should play arolein
making average predictions of the duration of a cold start, perhaps as a function of vehicle
characteristics such as engine size. This hypothesis should be explored in future work. The
NGM may, therefore, require a distribution of soak times that can be used to make predictions of
cold start emissions, and the distribution of soak timesis likely to be afunction of time of day.
For example, the distribution of soak times will tend to have large values for early on a weekday,
after avehicle has sat overnight and just before startup for amorning commute. In contrast, the
distribution of soak times will typically have lower average values for mid-day driving. An
assessment of the maximum range of soak time that should be considered in developing
relationships between soak time and cold start emissions should be determined based upon data
anaysis.

As noted elsewhere, and as discussed in Chapter 8 in more detail, driver behavior is
hypothesized to be an important consideration for the on-road data collection. Thus, amethod is
needed for classifying drivers with respect to driving style. Specific suggestions are givenin
Chapter 8. It is possible that the NGM may require input data regarding the distribution of
driving styles. In turn, this suggests the need for a study to recruit human subjects representative
of the general population and to collect an example speed trace from them from which to make
inferences regarding driving style. 1t may be possible to do this through use of asmall GPS unit
that can be installed in the subject’ s vehicle so that the location of the vehicle can be recorded on
a second-by-second basis and used to make estimates of vehicle speed. Alternatively, other
instrumentation might be used or devel oped to collect speed data from the OBD link or to
measure it with a sensor array.

As noted earlier, inferences regarding deterioration rates are likely to be difficult to make with
on-board data until avery large data set with thousands of vehicles becomes available.

Therefore, thereislikely to be a continuing need to make inferences regarding deterioration rates
from other data sources, such as IM240-based studies. Deterioration rate correction factors can
be applied to adjust on-board data to a nominal mileage accumulation, and the same factors can
be used in the NGM to adjust base emission estimates to other mileage accumulations.

However, the explanatory power of mileage accumulation should be explored in the on-board
data sets. It may turn out that mileage accumulation is a statistically significant explanatory
variable, in which case the use of alternative data may not be needed.

The effectiveness of I/M programs may be a consideration that will be difficult to assess with on-
board measurements until a sufficiently large database is developed in the long run. Therefore,
thereisarole for alternative data sources from which to develop correction or adjustment factors
for the effect of I/M programs. Data from remote sensing may be useful for this purpose.
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It should be possible to collect on-board data for as many technology groups as desired,
However, if for resource reasonsit is not possible to do this, it may be appropriate or necessary
to consider using comparisons of vehicle emissions measured on the same set of standard driving
cycles as abasis for comparing emissions between technology groups.

7.8  Evaporative Emissions Data

There will be along term need for the use of alternative data for evaporative emissions. As
noted by NRC (2000), evaporative emissions are considered essential to the accurate estimation
of total emissions of hydrocarbons for on-road vehicles. Evaporative high emitters are of concern
and should be properly represented in the database. Previous studies have shown that data are
skewed for hot-soak, running loss, and diurnal emissions. Even for fuel-injected models, high
emitters are found. Running losses from liquid leaks may be especially important even for fuel
injected vehicles.

The key evaporative emissions mechanisms are:

Diurnal emissions—fuel vapors, varies with ambient temperature during the day, fuel
vapor pressure, and period of nonoperation.

Resting losses — permeation of fuel through tanks, lines, and fittings, and liquid leaks that
are not the result of temperature variation.

Hot soak —first hour after shutdown, with most occurring during the first 10 minutes.
Primarily from the fuel tank and, in carbureted vehicles, from the carburetor bowl.
Hot soak emissions are lower for fuel injected vehicles, and are not as skewed as the
other evaporative emissions.

Running losses — during vehicle operation. Measured on a chassis dynamometer.
Depends on driving cycle, fuel vapor pressure, and ambient temperature. Liquid
leaks can cause skewness in the data.

The Sealed-Housing for Evaporative Determination (SHED) testing procedure is an existing
method for measuring hot soak and diurnal emissions. A test procedure introduced in 1996 for
diurnal and running loss emissions is lengthy and, therefore, thereis apractical limit on the
number of vehicles that can be tested given time and other resource constraints.

7.9  Seeking Other Opportunitiesfor New Data

Creative ways to piggyback collection of new types of data with on-board studies should be
considered. For example, perhaps it would be useful to measure real world tire wear by
periodically measuring tire tread depth on vehicles that will be part of long-term testing. 1t may
be necessary to make notes regarding the type of pavement on the routes driven by the vehicles
in order to devel op explanatory models of real world tire wear as afunction of driver behavior
(or speed profile characteristics), pavement type, ambient conditions, and perhaps other factors.
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7.10 Short-Term and Long Term Needs

The results from analysis of on-board emissions data will suggest in part what alternative data
should be incorporated into the NGM. For example, if ANOVA analysisidentify an important
role for factors that cannot easily be controlled, then such factors should be candidates for
development of laboratory-based correction factors or for the use of |aboratory datato help
develop insights regarding appropriate functional formsto use in fitting models to on-board data.
Moreover, some effects may be difficult to measure or observe, such as compliance with I/M
requirements. Alternative data for pollutants not easily measured with on-board emissions
measurement systems, and for evaporative emissions, will need to be included and addressed as a
long term need.

In addition to identifying useful alternative data, an areathat will be valuable for future work is
to figure out what alternative datais not useful. For example, there has been a proliferation of
driving cycles. In previous work, some of these driving cycles have been found to be redundant
(e.g., Kini and Frey, 1997). Specifically, in some cases, there is not a statistically significant
difference in the mean emissions measured on one cycle versus those measured on another. To
the extent that redundant or unnecessary driving cycles can be identified, then data from such
cycles can be combined into larger databases and future work can focus on measurements with a
smaller number of more useful cycles.

7.11 Strategiesto Utilize Bag Data for Modal Analysis

EPA has been using driving cycle test data for devel oping emission factor models, and has
accumulated a large database of such measurements. For example, thousands of such
measurements are reported in the Mobile Source Observational Database (MSOD). Driving
cycletests are also referred to as "bag" data. Thisis because emissions for segments of adriving
cycle, or for an entire driving cycle in some cases, were or are collected in tedlar bags, and the
contents of the bags are analyzed to determine the total mass of pollutants emitted over the
duration of the time required to collect the contents of the bag. Because the standardized speed
trace during the period of collection of gasesin the bag is known, it is therefore possible to
estimate the emission rate with respect to the distance that a vehicle would have driven during
the test if it had operated on the road, instead of on adynamometer. Therefore, bag data are
commonly used to make estimates of the average mass per distance driven emission rate.

Because of the availability of alarge data base of driving cycle, or bag, data, it is desirable to
develop methods to allow such data to be used in conjunction with on-board data when
developing the NGM. The model development approach recommended in Chapters 3, 4, and 5 is
based upon binning data into driving modes, and then stratifying the driving modes further
and/or developing regression equations within each mode or strata. If second-by-second data are
available for dynamometer tests, as is sometimes the case, then the same approach can be used to
analysis driving cycle data. However, in many cases, only average emission rates associated
with bags are available. Therefore, akey question is how can these data be analyzed in order to
make estimates of modal emission rates?

The information available for bag data includes the following: (1) the average emission rate for
the bag and the estimated distance traveled (or, equivalently, the total mass of emissions
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collected in the bag); and (2) the second-by-second distribution of speed during the standardized
test. The moda modeling approach for on-road vehiclesillustrated in Chapters 3 and 4 defines
driving modes based upon criteriafor speed and effective acceleration. From the second-by-
second speed trace used for the bag measurements, and any other information regarding
simulation of loads with the dynamometer (e.g., attempts to simulate road grade), it is possible to
estimate second-by-second speed, observed acceleration, and effective acceleration. Therefore,
it is possible to assign each second of the driving cycle test to one of the driving modes.

For example, in the case of the cold start portion of the FTP, either the entire cold start bag (505
seconds) or a portion of the cold start bag can be identified as an actual cold start. From data
analyzed in this study, it is not typically the case that a cold start lasts as long as 505 seconds.
Therefore, some portion of the cold start bag of the FTP likely includes hot stabilized emissions.
A methodology similar to that illustrated in Chapter 6 for estimating the duration of the cold start
can be used to estimate the likely actual duration of the cold start during Bag 1 of the FTP. Thus,
it will be possible, in general, to categorize each second of the speed trace as being cold start or
hot stabilized. For the hot stabilized portion of the test, the speed trace can be used to derive the
acceleration. The effective acceleration can be estimated based upon information regarding the
simulation of road grade, if any. Therefore, for the hot stabilized portion of a driving cycle test,
each second of the speed trace can be categorized as a driving mode (e.g., idle, acceleration,
cruise, deceleration). The result of the categorization of the speed trace into driving modesis
knowledge regarding the fraction of total trip time spent in each mode. The total trip emissions
on amass basis can be divided by the total number of seconds of the test to estimate an average
g/sec emission rate.

A system of equations can be developed to estimate the modal emission rates based upon the
following relationship applicable to each test result:

ERcs X ftcs + ERidIe X ftidIe + ERaccel X ftaccel + ERdeceI X ﬁ:decel + ERcruise X ftcruise = ERave (7'1)

where,
ER; =emissionratefor modei (g/sec)
ft; = fraction of time spent in mode |
Subscripts
cs = cold start mode
idle =idlemode
accel = acceleration mode
decel = deceleration mode
cruise = cruise mode
ave =average of al modes

From the bag data, the average emission rate can be estimated. From the speed trace, the fraction
of time in each mode can be estimated. Therefore, the unknowns are the modal emission rates.

In the example shown in Equation (7-1), five modes are shown. Therefore, at least five
simultaneous equations must be solved in order to estimate these five emission rates.
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In this section, examples are given where modal rates were determined using the percent time
spent in each mode and total emissions. For this purpose, data provided by the EPA for HDDV
NO were utilized. As explained in Chapter 4, four driving modes were identified for HDDV for
NO emissions. These driving modes are: idle, acceleration; deceleration; and cruise. In
estimating emission rates for each of these modes, at |east four equations are required since there
are four unknowns. Systems where the number of equationsis used is the same as the number of
unknowns are identified as “ square” systems, and have unique solutions (Kress, 1998). For
“sguare”’ systems, an exact system is sought by using methods such as Gaussian Elimination.
Systems which have a number of equations less than the number of unknowns are identified as
“underdetermined” systems, and solution of these equations are not unique. Such systems can be
converted to "square" systems by adding additional equations, such as an assumption regarding
the ratio of the g/sec emission rate for one mode with respect to another. Conditions where there
are more eguations than unknowns are identified as “overdetermined” cases. In these |atter
cases, which are likely to be common with respect to the use of existing vehicle emissions bag
data, |east-squares methods can be used to find solutions (Kress, 1998).

A key consideration is that the modal emission rates are not constant from one test to another.
Thisis because the modal emission rate is influenced by factors other than speed and
acceleration, such as vehicle characteristics. Although driving cycle tests are based upon a
prescribed speed profile, the test driver is alowed to deviate from the standard profile within an
allowable tolerance. Therefore, the actual speed trace for a given test will not be identical to the
standard speed trace. These considerations illustrate that there will be some variability in modal
emission rates even if the same vehicle undergoes multiple tests on the same cycle under the
same nominal conditions. Thus, an objective of analysis of bag data should be to develop
reasonabl e estimates of average modal emission rates, recognizing that there is variability in the
modal emission rate from one test to another. Asacorollary, it should be recognized the
solutions for any case based upon a small number of bag tests may deviate from the average of
the modal rates that would be obtained with a larger data set.

Examples of solutions for modal rates using both “square” and “ over-determined” systems are
given. First, two examples are given for square systems, as summarized in Table 7-3 based upon
NOy emissions for four trips of aHDDV. Each of the four tripsis based upon second-by-second
on-board data. However, the data are summarized in a manner comparable to what would be
known if the trips were measured as asingle bag. The advantage of using on-board data to
illustrate the method is that the actual modal emission rates are known and can be compared to
the values estimated from the solution of a square system. In the example, only four driving
modes are estimated. Therefore, four equations are required to solve the sguare system. For
example, for Case 1, the system of four equationsis:

ER,.x0.19+ER_, x0.29+ ER,_, X0.25+ ER,, x0.28 = 0.1661
ER,.x0.13+ ER_, x0.34+ ER,_, x0.27+ ER,,_ x0.26 = 0.1867
ER,.x0.25+ER_, x0.20+ ER,_, x0.17+ ER .. x 0.38 = 0.1366

ER,.x0.12+ER_, x0.25+ ER,_, x0.22+ ER_ . x0.42 = 0.1673
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Table 7-3. HDDV NOy Emissions Data Used for Case Studies for Square Systems of
Simultaneous Equations Data to Solve for Modal Emission Rates.

Percent Time Spent
NO Emissions
Idle Acceleration | Deceleration Cruise g/sec
0.19 0.29 0.25 0.28 0.1661
Casel Mo13 0.34 0.27 0.26 0.1867
0.25 0.20 0.17 0.38 0.1366
0.12 0.25 0.22 0.42 0.1673
0.27 0.20 0.32 0.20 0.0761
Case2 0.25 0.15 0.14 0.47 0.1187
0.12 0.26 0.24 0.39 0.1789
0.26 0.32 0.24 0.18 0.1082

Table 7-4. Comparison of Predicted Modal Emission Rates Based Upon Solution of a Square
System of Equations Versus Observed Modal Emission Rates for Selected HDDV NOy
Emissions Data.

NO Emission Rates for Driving Modes
Idle Acceleration | Deceleration | Cruise
(g/sec) (g/sec) (g/sec) (g/sec)
Predicted -0.02 0.34 0.14 0.13
Casel
Observed 0.04 0.31 0.06 0.17
Predicted -0.26 0.34 0.08 0.26
Case 2
Observed 0.04 0.24 0.04 0.13

Where each equation has aform similar to Equation (7-1). Theright hand side isthe average
gram/second emission rate for the trip given in Table 7-3, and the coefficients shown for each
modal emission rate are the fraction of time spent in the mode as given in thetable. A similar
system of equations was developed for Case 2 shown in Table 7-3. For the two cases, the modal
emissions rates were determined by solving the four equations simultaneously. The solution
method employed was Gaussian Elimination and the solution was obtained using the SAS
software. The solutions for both cases are shown in Table 7-4, along with the average of the
observed modal emission rates for each of the four tripsin each cases.

The results of the case studies are interpreted both qualitatively and quantitatively here. For both
cases, the estimated value of the acceleration modal emission rate was larger than the estimated
values for the other modes, which is consistent with the observed values. In Case 1, the
estimated values of the deceleration and cruise emission rates were similar, while in Case 2 the
estimated cruise emission rate was larger than the deceleration rate. The latter result is consistent
with the observation that the cruise emission rate is larger than the decel eration emission rate.
Theidle emission rate had the lowest estimated values compared to the other modes. Thisis
gualitatively consistent with the ordering of the observed modal emission rates. However, the
idle emission rate was estimated to be negative in both cases, with Case 2 reported a negative
value that was large in magnitude when compared to other modal emission rates.

Quantitatively, the modal solutions agreed with the observed values reasonably well in only one

or two specifics. For example, the estimated accel eration modal emission rate of 0.34 g/sec
compared well with the observed acceleration modal emission rate of 0.31 g/sec for Case 1.
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However, in most cases, there were large relative differences in the estimated and observed
emission rates.

Clearly, negative emission rates are not an acceptable result, and these results imply that solution
of sguare systemsis not likely to be arealistic or sole basis for estimating modal emission rates
from bag data. The reasons why the solutions in these cases were relatively poor is explored in
terms of the mathematical properties of the square systems associated with Case 1 and Case 2.

According to Kress (1998), in order to be able to solve linear systems directly, the system should
be “well-conditioned”, rather than “ill-conditioned”. “Ill-conditioned” systems occur when small
errorsin the data of alinear system cause large errors in the solution (Kress, 1998; Hildebrand,
1987). There are two indicators to check whether alinear system is well-conditioned or ill-
conditioned. One of these indicatorsis that the determinant of the coefficient matrix. If the
determinant is close to zero, then the system isill-conditioned. Another indicator isthe
condition number, which is defined by Burden and Faires (1985) to be:

K(A) = Al|A7| (7-2)
where,
K(A) = condition number

|A]: = norm of coefficient matrix (A)

| A} = norm of inverse of coefficient matrix (A)

In the examples given in Table 7-3 and 7-4, the determinants of coefficient matrix and condition
numbers were estimated using Matlab. The determinant of Case 1 is-0.00025 and of Case 2 is -
0.0042. The condition number for Case 1 is 84, and for Case 2 it is 10. In both of the cases
determinants are very close to zero, which implies an ill-conditioned system. The condition
numbers are substantially different from one, which also implies an ill-conditioned system.
Therefore, based upon both of these tests, the square linear systems of Cases 1 and 2 are both
“ill-conditioned”. Therefore, it isnot surprising that the solutions included negative values for
the idle emission rate and that there was relatively poor quantitative agreement between the
predicted and the observed modal emission rates.

As described by Kress (1998), solution of “ill-conditioned” systemsis not straightforward.
However, there are advanced mathematical techniques that can help in solving these types of
problems. Some methods that can be used in the case of solving “ill-conditioned” linear systems
are Singular Vaue Decomposition and Tikhonov Regularization, as suggested by Kress(1998).
These methods should be explored in future work for their applicability to square systems of
equations based upon bag data.

Another method to solve for modal rates is the use of “over-determined” systems, where the
number of equations is more than number of unknowns. Such a system can be developed, for
example, when many vehicles of the same technology group are tested on the same cycle. In
solving over-determined systems, |east-squares techniques can be used (Kress, 1998). Two
examples are given here in which over-determined systems were developed for solving modal
rates. The first of the over-determined examples, referred to as Case 3, is based upon trip data for
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Table 7-5. Predicted and Observed Values of Driving Mode Emission Rates for Example Cases
for HDDV NOy Data using L east-Squares Solution Method for “Overdetermined” Systems.

NO Emission Rates for Driving Modes
Idle Acceleration | Deceleration | Cruise
(g/sec) (g/sec) (g/sec) (g/sec)
Predicted 0.02 0.39 -0.21 0.21
Case 3
Observed 0.04 0.24 0.04 0.13
Predicted 0.05 0.29 -0.05 0.11
Case 4
Observed 0.03 0.23 0.04 0.12

54 trips for NOy emissions from the HDDV data set used in Chapter 4. The second example,
referred to as Case 4, is based upon 11 trips for NO, emissions from the HDDV data set. The 11
trips were selected because they had similar modal emission rates. For both Case 3 and 4, a
regression equation was fit to the data. The y-variable used in the regression was the trip average
emission rate. The predictive variables were the fraction of time spent in each driving mode.

The unknown coefficients were the modal emission rates. The unknown coefficients were
obtained from aleast squares fit with the data. The results are summarized in Table 7-5.

The results from the solution of the over-determined system are qualitatively slightly better than
in the case of the square systems, but there are still problems with the solutions. For example,
negative emission rates are estimated for deceleration in both case studies. However, the
observed emission rates for idle and deceleration are nearly the same, and the problem of
negative predictionsis similar here compared to the cases of the square systems of equations.
The acceleration mode is correctly found to have the highest emission rate, and in Case 2 the
solution for the acceleration emission rate is comparabl e to that of the observed value. The
cruise emission rate is correctly found to have the second highest emission rate, and in Case 2 the
numerical value of the solution is close to the observed value. It seemslikely that one difficulty
that these methods have in finding a solution may be attributable to the similarity in the emission
rate for both idle and deceleration.

Theresults of theillustrative case studies for both square and over-determined systems imply
challenges to the use of bag datafor estimating modal emission rates. However, it is possible
that these challenges can be addressed given more time for study. Several areas for further
investigation are recommended. One approach involves making some a priori assumptions
regarding relationships between modal emission rates in cases where the modal rates are
expected to be similar. For example, for HDDV NOx emissions, the idle and the decel eration
modal emission rates are almost identical. Very likely, the ssimilarity of these two modal
emission rates contributes to numerical instability of the solution to a system of simultaneous
equations. Therefore, the number of unknowns can be reduced by adding a constraint that these
two emission rates be equal. Because the emission rates for idle and deceleration are low, these
two modes do not contribute substantially to total trip emissions. If combining these two similar
modes into one variable improves the accuracy of the solution for acceleration and cruise, which
have higher emission rates and contribute to a greater share of trip emissions, then the benefits of
improved accuracy in the estimation of those two modes would be outweighed by possible errors
in the constraint.
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Table 7-6. Predicted and Observed Values of Driving Mode Emission Rates for Example Cases
for HDDV NOy Data using a Constrained L east-Squares Solution Method for “ Overdetermined”

Systems.
NO Emission Rates for Driving Modes
Idle Acceleration | Deceleration | Cruise
(g/sec) (g/sec) (g/sec) (g/sec)
Predicted 0.01 0.29 0.01 0.15
Case 5
Observed 0.04 0.24 0.04 0.13
Predicted 0.04 0.26 0.04 0.13
Case 6
Observed 0.04 0.24 0.04 0.13

Another areafor further investigation is to explore other methods that may be more appropriate
for solving ill-conditioned systems, and/or methods that enable the analyst to impose non-
negativity constraints on the solutions. Examples of the former include the Singular Value
Decomposition and Tikhonov Regularization methods for square systems. Optimization
methods should be explored for use with over-determined systems.

Based upon the findings for Cases 3 and 4, two additional cases were developed based upon the
use of Constrained Linear Least Squares regression, performed using the Matlab software.
Based upon analysis of HDDV data, it is expected that the modal emission rate for acceleration
will be larger than for any other mode, and that the modal emission rate for cruise will be less
than that for acceleration and greater than that for either deceleration or idle. Furthermore, the
deceleration and idle emission rates were found in Chapter 4 to be approximately similar in the
case of NO. Therefore, the following constraints were defined and were included in the solution
method in defining Case 5:
ERacca > ERcruise > ERdecet >= ERigle (7-3)

The solution obtained for Case 5, which was done for the same over-determined system based
upon 54 trips as for Case 3, isgiven in Table 7-6. The predictions for the acceleration and cruise
modal emission rates agree well with the observed values. The predictions for theidle and
deceleration emission rates were the same, and both were lower than the observed value.
Therefore, an additional case study, Case 6, was set up in which alower bound on the modal
emission rate was imposed:

ERaccet > ERcrise > ERdec >= ERjgie >= 0.04 g/sec (7-4)
With the addition of alower bound for the modal emission rates, the solutions for al four of the
modes were found to agree very well with the observed values, as shown in Table 7-6. The
results of Cases 5 and 6 illustrate that if some additional knowledge is entered into the solution
process by imposing either the relative weak constraints of Equation (7-3), or the somewhat
stronger constraints of Equation (7-4), the problem of obtaining negative emission rates can be
eliminated and the accuracy of the solution can be substantially improved.

Since it will typically be the case that the rank ordering of the modal emission rates among the
modes will be known based upon some sample of on-board emissions data or other second-by-
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second data (e.g., from dynamometer tests), it is not unreasonable that constraints similar to
those shown in Equations (7-3) or (7-4) can be included in the solution method for inferring
modal emission rates from bag data. The examples presented here illustrate the critical
importance of seeking an appropriate solution method and for imposing some constraints on the
solution. The constrained linear least squares solution method explored in Cases 5 and 6 appears
towork well. The performance of this method should be more thoroughly investigated with
other data sets. In addition, methods such as the Lagrange multiplier technique or iterative
methods of optimization such as the conjugate gradient method or descent methods may also be
useful. Luenberger (1969) describes these methods.

We recommend that constrained linear least squares regression be further explored and evaluated
on alarger number of data sets and expect that it islikely to be a preferred technique for
estimating modal emission rates from bag data.

7.12 Considerationsfor Heavy Duty Diesel Vehicles

The preceding discussion has focused on on-road LDGV. Engine dynamometer tests, as
opposed to chassis dynamometer tests, are often used as the basis for HDDV emissionsdata. A
key consideration and potential weakness in using engine dynamometer data is the use of a brake
specific fuel consumption (BSFC) factor to convert emissions from a g/bhp-hr basisto a g/mi
basis. On-board datawill provide a significant advantage by providing chassis emissions data
and by directly providing both gram per second and gram per mile emissions data.

The enginein aheavy duty diesel vehicle may be operated for a million miles or more, with one
or two rebuilds taking place at approximately 500,000 miles and then 300,000 miles after that.
Enginesin medium heavy duty diesel vehicles have alife more typically on the order of 250,000
miles and may undergo one rebuild. Because of the long life of these engines, the deterioration
rateis of concern. Dataregarding deterioration rate has at times shown no statistically
significant deterioration in emissions with mileage accumulation, and in some cases
manufacturers have observed negative deterioration rates. EPA does not allow negative
deterioration rates to be used in the MOBILE models. Engines tested for certification are
properly maintained and meet manufacturer specifications. Therefore, they may not be
representative of the fleet of real world engines.

A key need for HDDV emission data is regarding deterioration rate. The modeling of the change
in emissions with regard to mileage accumulation on the engine should be based upon data and
should not be limited by policy assumptions forced into the model. If thereis aplausible reason
asto why emissions might decrease with use, then the decrease should be included in the model.
The ability of on-board datato serve as a basis for inferences regarding deterioration rate will be
afunction of sample size. For HDDV, it isimportant to record the engine characteristics and
history when collecting on-board data.

Careful consideration should be given to the devel opment of vehicle classifications for HDDV.
For example, Duleep (1995) points out that there are significant differencesin activity patterns
for medium heavy duty and heavy duty trucks. Similarly, there are significant differences
between school buses and transit buses. These differences include annual use, operating radius,
useful life, and fuel economy. Duleep (1995) points out that most diesel vehicles are power
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limited, so that accelerations often take place at wide open throttle. Therefore, there may be less
variability in acceleration emissions for diesel vehicles than for gasoline vehicles, which are
usually not power limited.

There does not appear to be much concern regarding evaporative emissions from diesel vehicles,
and therefore there is not a clear need for aternative data regarding evaporative emissions. This
is presumably because of the low volatility of diesel fuel.

Diesel fuel formulation has a potentially significant impact on emissions (e.g., Clark et al .,
2002). Comparison of fuel formulations for the same set of vehicles would be a good candidate
for either engine dynamometer tests, chassis dynamometer tests, or a focused on-road study
aimed at evaluating differences in emissions associated only with different fuels.

HDDV have in recent years had a problem with the use of “defeat devices’ to override the
appropriate electronic control settings to improve performance at the expense of higher NOy
emissions. The use of on-board emissions measurements may be beneficial in improving
understanding of the real-world behavior of vehicles that still operate in this manner, assuming
that such vehicles can be identified and recruited.

Emissions from diesel engines are likely to be sensitive to barometric pressure (altitude), ambient
temperature, and relative humidity. These factors can be evaluated in an on-board study.

The data provided by EPA do not include particulate matter. However, on-board measurement
techniques for PM are becoming commercially available and should be evaluated for usein the
on-board study of HDDVs.

7.13 Considerationsfor Nonroad Vehicles

Frey and Bammi (2002a& b) have reviewed publicly available data for the Lawn and Garden and
the CFI nonroad categories. Much of the available data are from steady-state modal tests, and
relatively little information appears to be available regarding real world activity patterns of such
vehicles. There are afew exceptions. For example, the Engine Manufacturers Association and
EPA havejointly developed several transient emission cycles for an agricultural tractor, crawler
dozer, and a backhoe loader (Beardsley and Lindhjim, 1998). A transient cycle, GGRASS, was
recommended by Southwest Research Institute (SwRI) and is the basis for development of the
Lawn Mower Cycle (Sun et al., 1995). The latter is a steady state modal cycle.

The availability of emissions datafor the L& G and CFI categoriesisrelatively limited. For
example, for L& G engines, tests were found for atotal of 27 4-stroke engines and 18 2-stroke
engines, whereas for CFl test data were found for 55 engines. From the limited database, there
are few statistically significant variables that were found that hel ped to categorize the data, such
as with respect to engine size. For example, for CFI engines, significant differences were found
for gasoline versus diesel engines, and for 2-stroke diesel versus 4-stroke diesel, when both NOy
and total hydrocarbon emissions were considered. Even though engine size varied from less than
100 hp to approximately 600 hp in the database, there was not a strong empirical relationship
between emissions and engine size. The R? value for the linear trend of emissions versus
horsepower was 0.07 for THC and 0.03 for NOy, both for 4-stroke engines. Thus, thereisnot a

170



compelling empirical basis for classifying engine emissions with respect to engine size based
upon data obtained from steady-state modal testing.

Insufficient data were available to make estimates of deterioration rates, or the effects of
temperature, fuel, relative humidity, barometric pressure, and other factors. Many if not all of
these data gaps can be addressed by an on-board data collection study. However, some of these
may be amenable to laboratory studies with engine dynamometers. The relationship between
emissions measured in the field and on an engine dynamometer for nonroad source categoriesis
an area of potentially useful investigation.

Evaporative emissions are likely to be a concern for gasoline-fueled nonroad equipment. An
assessment should be made regarding the importance of evaporative emissions from Lawn and
Garden use, including fuel spillage during filling of portable fuel tanks, fuel spillage during
transfer of fuel from portable fuel tanks to Lawn and Garden equipment, breathing losses from
portable fuel tanks, and other evaporative losses from the equipment itself, such as running
losses, hot soak, resting losses, and diurnal effects.
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8.0 TESTING STRATEGIESFOR ON-BOARD DATA

The objective of this chapter isto recommend atesting strategy for on-board data gathering over
the next five years. The testing strategy addresses on-road and nonroad sources. A specific
sampling plan is presented that focuses on populating the emissions component of the NGM.
The main focus of this chapter is with regard to on-board emissions data, since alternative data
sources are addressed in detail in Chapter 7.

8.1  Defining Study Objectives

The development of afive-year national testing strategy for on-board emissions data collection
must begin with consideration of the key factors in study design unique to on-board
measurements. The specific combination of factors for a study design is strongly dependent on a
well-defined study objective. Examples of possible study objectives are given in Table 8-1, with
amain focus on on-road vehicles. The implications for nonroad vehicles are discussed below.
The study objective will influence the criteriafor selection of vehicles, drivers, routes,
instruments, scheduling of data collection, and selection of appropriate data screening, reduction,
and analysis methods.

As examples, possible objectives for on-board emissions measurement studies include but are
not limited to: (1) evaluation of emissions benefits of a transportation improvement, which
requires before and after studies on a specific route or facility; (2) estimation of on-road
emissions on specific facility types, which requires a vehicle fleet deployed on representative
facility links (e.g., freeway, arterial, secondary roads); (3) estimation of emissions benefits of
alternative routing, which requires measurement of aternative routes between afixed origin and
destination; (4) estimation of area-wide fleet average emissions, which requires a representative
vehicle sample on a representative sample of tripsin a given geographic area; and (5) evaluation
of driver behavior, which requires measurements with multiple drivers using the same vehicles
and routes. The study objective should be clearly defined. The study should be designed to
appropriately isolate any key factors of interest, to control for as many other factors as possible,
and to make observations if possible for any factors that are uncontrollable. The latter is
necessary to attempt to account for variation in uncontrollable factors (e.g., ambient temperature)
that might play in arole in comparison studies or that would have explanatory power in the
development of amodel.

The main focus here is on a study objective of supporting development of the NGM. However,
it isuseful to consider other study objectivesto illustrate that study design is afunction of the
study objective, and that the data obtained to support one type of study objective may not fully
support another study objective. For example, a study objective aimed at evaluating the relative
change in emissions associated with a specific transportation control measure (TCM) or
transportation improvement project (T1P) can be based on measurements with arelatively small
set of vehicles. However, a study objective aimed at populating the NGM would require alarger
representative sample of vehicles. Furthermore, for some study objectives, the data collection
strategy can be substantially different than for others. For example, in evaluating the effect of a
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Table 8-1. Examples of Alternative Study Objectives for On-Board Data Collection Studies

Support Development of the NGM — This study objective would be supported by a study
design involving deployment of a representative sample of vehicles on arepresentative
sample of roadway facility types over a representative schedule with respect to time of year
and time of day at multiple regions of the country.

Evaluation of Specific Transportation Control Measures— This study objective would be
supported by a“before” and “after” comparison of emissions for asmall fleet of vehicles
deployed in consistent vehicle/driver/instrument combinations on a specific route or
corridor under similar ambient and traffic flow conditions for the purpose of evaluating
changes attributabl e to the implementation of the TCM. Frey et a. (2001) present
examples of a study such asthis. Thistype of study requires repeated measurements to
obtain statistically stable estimates of average emissions in both the before and after case.

Evaluation of Alternative Routing — Studies can be performed to compare emissions for
travel to/from the same origin/destination pair using alternative routes for the same
vehicle/driver/instrument combination under similar ambient conditions and for the same
time of day. Thistype of study requires repeated measurements to obtain statistically
stable estimates of average emissions for each route.

I dentification of Emissions Hotspots— Locations of high average emissions can be
identified based upon spatial analysis of emissions data collected for specific routes,
corridors, segments, or facilities. Thistype of study requires repeated measurements to
obtain statistically stable estimates of average emissions at each critical location along the
travel route.

Emissions Implications of Driver Behavior — Thistype of study focuses on the real world
differences in emissions attributable to different driving styles, and would require
deployment of different drivers with the same vehicle/instrument/route/time of day
combination with sufficient repetition to obtain statistically stable estimates of average
emissions.

Evaluation of Transportation | mprovement Projects—thisissimilar to “ Evaluation of
Specific Transportation Control Measures’ but would involve “before” and “ after”
evaluation of amodification (e.g., lane additions)

Evaluation of Specific Types of Transportation Facilities (e.g., toll plazas, rest areas,
roundabouts, etc.) —thiswould involve baseline characterization of emissions at such
facilitiesin comparison to other facilities.

Validation of Emission Factor Models — the study design would be similar in nature to that
for “ Support Development of NGM” and would depend on the specific model to be
validated (e.g., Mobile6)

Development of Public Education/Outreach Tools— This study objective could involve
development of asimple driving simulator or other educational tool that would
demonstrate to the public how driver behavior influences emissions.

174




TCM or TIP, it is necessary to obtain estimates of facility-specific mean emissions that are
statistically reliable for both before the change is made and after the change is made. Therefore,
the same set of drivers, vehicles, and instruments must be deployed in both a before and after
study, and in both the before and after cases there must be a sufficient number of repetitions of
data collection runs to obtain sufficiently narrow confidence intervals for the mean emissionsto
enable meaningful comparisons. In contrast, to support development of the NGM, which would
be aimed at making predictions of fleet average emissions for various categories of vehicles, itis
less important to have alarge number of repeated runs with individual vehicles and it is more
important to have runs with alarger number of vehicles.

The study objective for nonroad vehicles may differ for that for on-road vehicles depending upon
the specific nonroad category that is addressed. Examples of nonroad categories include lawn
and garden (L& G), construction, farm, and industrial (CFl), rail, general aviation, commercial
aviation, marine, and others. A study objective related to supporting development of the NGM
would require data collection for a representative sample of vehicles under representative real -
world operating conditions. Similar to the on-road category, there may be issues of “driver
behavior” that need to be addressed in a nonroad study. For example, there may be differences
in style in the operation of a bulldozer or backhoe that could influence emissions. The notion of
different operating environments may be analogous to the notion of different roadway facility
types that pertain to on-road vehicles. For example, are there differences in activity patterns and
emissions associated with CFI equipment operated at a specific location (e.g., clearing of a
construction site) versus similar CFl equipment used for preparation of roadways over large
distances and relatively level terrain? Arethere differencesin lawnmower emissions for the
person who trims the lawn every week versus the person who tries to cut very high grass after
several weeks of no lawn care? Do these need to be separate categoriesin amodel, or are their
emissions sufficiently similar that they can be aggregated? Many of these types of questions
should be posed and answered with exploratory studies before committing to a particular specific
model development strategy.

Thus, at least two phases of data collection should be pursued, especially for nonroad categories
where relatively less information may be available to make good a priori judgments regarding
criteriafor grouping data. The first phase should be exploratory in nature, with a main focus on
identifying the key factors that influence variability in real world emissions. With theinsight
from the first phase, a preliminary model design can be specified, and data collection can focus
on filling data gaps associated with the most important (influential) explanatory variables.

8.2 Key Characteristicsof a Study Design

The design of an on-board emissions data collection study isin many ways more complicated
than that for alaboratory study. An on-board study is essentially an observational, as opposed to
acontrolled, study. Unlike the laboratory, where factors such as temperature and humidity can
be controlled to within a specification, and where a vehicle can be operated on a standard speed
or engine load trace, the on-road or in-field operation of a vehicle is subject to uncontrollable
variability in ambient conditions and, in the case of on-road vehicles, in traffic conditions. Thus,
the scheduling of data collection in an on-board study is more critical than it would be in the
laboratory. The opportunities for collecting data under desired conditions of ambient
temperature, relative humidity, traffic flow, and other ambient or external uncontrollable factors
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arelimited. The study designer has some influence over what ambient and external conditions
are encountered during data collection through prudent selection of calendar days for data
collection, as well as day of week and time of day of data collection. However, it will never be
possible to completely eliminate variability in ambient and external conditions. Because of this,
itis critically important to make measurements of uncontrollable factors that may influence
vehicle emissions, so that the effects of variability in such factors can be properly accounted for
in model devel opment.

Table 8-2 summarizes the key considerations in designing and analyzing the results of aon-
board emission measurement study. In discussing the content of Table 8-2, we assume that the
study objective isto support development of the NGM.

Selection of Study Areas. Because the NGM is intended to predict emissions for amost every
state in the United States, it isimportant to select multiple study areas that increase the
opportunity to obtain a nationally representative sample of vehicle fleets, roadway facility types,
terrain, climate, population density and other factors that might be useful in explaining
variability in on-road emissions. A study area would be a geographic region, perhaps of
approximately the scale of atypical urban area (e.g., perhaps several hundred square miles or so)
in which there would be significant deployment of on-board instruments and significant data
collection activity. Of the various considerations that one might have in selecting studies areas,
climate, terrain, and population density are perhaps the most compelling factors to consider.
Climate is a surrogate for ambient conditions. Terrain is asurrogate for road grade and roadway
geometry (e.g., tight curves on mountain roads versus expansive curves in coastal plains).
Population density is a surrogate for general traffic flow and congestion.

Asasimpleillustrative example, consider the question of what is atypical representative study
areafor agiven state, such as North Carolina. North Carolina has a coastal plain with relatively
moderate temperatures, a piedmont region that contains most of its major urban areas (e.g.,
Charlotte, Raleigh, Durham, Greensboro, Winston-Salem), and a mountai nous region to the west
that contains some smaller cities (e.g., Asheboro, Boone) and very hilly terrain and that is
typically subject to cooler temperatures. To develop an emissions model that is ssimply
representative of North Carolinawould require data collection in the piedmont and in the
mountai nous regions, which have differencesin ambient conditions and in terrain. The coastal
areamay be important as well, since the traffic patterns in the summer time during the peak
ozone season will be influenced by tourist activities. The coastal areawould also provide
opportunities to collect datafor relatively flat terrain (e.g., EPA uses US 70 for data collection
with an instrumented HDDV for this reason), which may be representative of many other areas
of the country. Thus, North Carolinais an interesting state to consider as comprised of multiple
study areas because of variability in terrain, population density, and ambient conditions.

Another consideration in selection of astudy areais population density. Although the most
significant air quality problems seem to be influenced more by urban areas, such as tropospheric
ozone formation, if the NGM isintended to be used at the microscale or mesoscale to evaluate
local emissions, then it will be important to have a good database to support emissions estimation
for rural areas, including rural highways, primary arterials, and secondary roads. These roads
may have different activity patterns than similar roads in urban areas (e.g., consider the pickup
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Table 8-2. Key Considerationsin Design of an On-Board Tailpipe Emissions Data Collection
Strategy for On-Road Vehicles

Study Area — Terrain, Climate, Population Density (Urban, Rural), Availability of Roadway
Functional Classes, Special Facilities (e.g., toll booths, rest areas, weigh stations, parking
decks)

Vehicle Selection — Categories of primary vehicles and secondary vehicles, Model Y ear,
Manufacturer, Model, Engine Size, Transmission (Automatic, Manual), Fuel Delivery,
Emission Controls, Vehicle Weight, and others.

Vehicle Operation — use of accessories (e.g.,. A/C), load, trailer towing

Route Selection — Specific origin/destination pairs for data collection runs. Could include or
focus on:

Specific roadway functional classes
Traffic congestion (peak vs. off-peak, level of service)
Road grade
Effect of Lane Closures (Construction/Work Zones)
Effect of Incidents (see text)
Specific facility design features (e.g., intersections, ramps, roundabouts, toll plazas)
Roadway Geometry, Traffic Signalization, Segment Lengths
Define categories of primary routes and secondary routes

Driver Selection and Driver Behavior — Development of driver behavior classes based upon
speed profiles (e.g., gentle, moderate, and aggressive drivers). Specify primary drivers and
secondary drivers

Scheduling — Time of year (e.g., season, different ambient conditions), day of week (e.g.,
weekend, weekday, holiday), time of day (e.g., different traffic conditions, different
ambient conditions). Specify primary schedules and secondary schedules.

Fuel Selection — gasoline formulations, gasoline/ethanol blends, reformulated fuels, etc.

Sample Sizes— number of repeated runs for same driver/vehicle/instrument/route/time of day
combination

Resour ces - Personnel (director, on-road drivers, data analysts, equipment/instrumentation
technicians); vehicles (volunteer, rented, purchased); equipment (on-board measurement
instrumentation, supplemental instrumentation, computers, hardware, calibration gas);
software (data screening, data reduction, data storage and retrieval).
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truck driving just ahalf mile at slow speed between two cross streets, and the effect it has on
traffic stuck behind it, or the effect of afarm tractor going 20 mph in a 55 mph zone). In some
cases, rura highways and other roads may serve as a good location for baseline data on what
emission rates would be on such facilities in urban areas in the absence of traffic congestion.
Thistype of datawould be useful in benchmarking the potential of traffic flow improvement
projects to change emissions.

If we expand the discussion of study areas to not just North Carolina, but to the entire United
States, then challenges and opportunities for the selection of study areas become apparent. For
example, perhaps thereis aneed for data collection at high atitudes, such asin Denver,
Colorado. Thereislikely aneed to collect datain urban core areas, such as mid-town traffic in
New York City or Chicago, aswell asin suburban areas, such as Wake County, NC, Fairfax
County, VA, and in sprawling urban areas such as Houston and southern California cities. Semi-
tropical locations, such as South Florida, may also be appropriate placesto collect data because
the climate there may be conducive to more months of measurement of what would be
considered "summer time" conditions in other parts of the U.S.

Other considerations in selecting study areas include the availability of specific roadway
functional classes or facilities that may be of special interest. For example, in order to
characterize emissions at different types of freeway interchanges, it would be useful to collect
datafor clover leaf, diamond, and newer designs such as single-point interchanges. For example,
there are new single-point interchanges on 1-40 and 1-540 in the Research Triangle Area that
have simultaneous protected dual |eft turn movements for both travel directions. They also have
sharper curves as you enter the freeway ramp via aleft turn, and in most cases thereis amerge
prior to traffic entering the freeway. The emissions characteristics of an interchange such asthis
may be different than for the clover leaf or diamond designs. Other roadway facilities that may
be of interest include toll plazas, rest areas, and (for HDDV) weigh stations. For example, what
isthe difference in emissions for a car traveling on the Pennsylvania Turnpike, in which one has
to stop only twice — once when entering the turnpike to get aticket, and once when exiting pay,
versus Florida s Turnpike, where one has to stop every 10 to 20 milesto pay a 75 cent toll. In
the latter case, al vehiclestraveling on the turnpike accelerate to freeway speed while
simultaneously weaving and merging within a short distance of the toll plaza, and likely are
causing a severe emissions hotspot at that location. In contrast, on aturnpike such asin
Pennsylvania, only those vehicles entering or leaving a particular exit would be accelerating as
they leave the ticket booth and the collection booth.

Looking into the future, some urban areas are considering the adoption of new roadway facility
designs. For example, in Raleigh, NC, there are plans to replace conventional intersections with
roundabouts on Hillsborough Street, which is one of the main east-west arterials in the urban
core. The conventional wisdom appears to be that the roundabouts will improve traffic flow and
reduce emissions, but to our knowledge there are no real-world U.S. datato confirm this.

Incident management capabilities may be another important criteriafor selecting study areas. To

the extent that traffic flow can be restored to pre-incident levels more quickly, there may be an
impact on emissions.
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With respect to nonroad emission sources, many of the same considerations of climate and
terrain may apply, although surrogates for on-road traffic flow may be less important.
Construction, farm, and industrial equipment are common throughout North Carolina, for
example, asislawn and garden equipment, recreational boats, railroads, and other nonroad
sources. EPA needsto clearly define the scope of the nonroad component of the NGM.

An advantage of on-board measurements is that, because the equipment is not as expensive as for
dynamometer measurements, it is feasible to consider setting up a network of local emission
measurement centers, such as at specific universities or research institutes. Each measurement
center would be coordinated by a central group with the responsibility for developing and
specifying the study objective and study design. Each measurement center would be required to
use standard protocols and techniques for data collection, data screening, and data reduction, and
would be required to report data to a depository for use by the performing organization(s)
involved in model development, which may include some of the measurement center
organizations as well as others.

Before committing to data collection in a substantial number of study areas, it is prudent to
conduct pilot studies aimed at determining whether the conditionsin a particular arealead to
differences in emissions that are substantial enough to justify alarger model calibration-scale
data collection effort. Furthermore, some of the considerations in selecting a study area, such as
climate, can also be addressed to some extent by selection of the time of year of data collection,
especialy in areas that have well defined seasons. For example, it is possible to collect datain
cold and hot conditions in many parts of the country.

Vehicle Selection. Vehicle selection is an important consideration for al emission source
categories. Here we comment on LDGV, HDDV, and nonroad categories as illustrative
examples.

For LDGV, ideally one would select a representative fleet of vehicles with respect to model year,
make, and model in proportion to the distribution of actual VMT or vehicle registrations. 1ssues
associated with recruiting vehicles for on-board emissions measurement will be important, such
as how to get on-road fleet vehicles submitted by volunteers. In our NCDOT study we relied on
vehicles obtained from the state motor pool, vehicles volunteered by study participants, and
vehicles volunteered by others. Clearly, a substantial effort isrequired to recruit vehicles, and
some type of compensation will likely be required if vehicles are recruited from the public. The
issues for vehicle recruitment for on-board studies are different than for a laboratory study, since
the volunteer would have to be comfortable with having their vehicle driven by others or with the
responsibility of driving with a measurement instrument on-board. Furthermore, careful
attention must be paid to fueling of the vehicle, whether it be to properly characterize what fuel
isin the vehicle or to refuel the vehicle prior to data collection. Dataregarding vehicle
characteristics, including VIN, year, make, model, body style, engine size, odometer reading,
fuel delivery system, emission control system, and other factors must be recorded.

If data collection takes place in multiple study areas with multiple regional emission
measurement centers, then the vehicle selection should include consideration of benchmarking
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and "inter-laboratory" comparison among the study areas and/or measurement centers.
Specifically, there should be three categories of vehicles that are included in the field study:
round-robin vehicles, primary vehicles, and secondary vehicles.

Round-robin vehicles would be a very small fleet of perhaps two to five vehiclesthat are
available throughout the study time period and maintained by US EPA or a contractor. These
vehicles would be delivered to each of the measurement centers and/or study areas for data
collection on asimilar set of facility types under ambient and traffic conditions as similar as
possible when comparing all study areas. The data obtained from the round-robin vehicles
would help verify consistency in protocols and data collected in different study areas and/or may
help to identify differences in conditions that reasonably account for differencesin
measurements among the study areas. Ideally, the round-robin activity should include the same
driver at each study area. The round-robin activity would also provide an extensive database that
will enable comparison of different driving conditions for the same vehicles taking into account
inter-study area variations.

Similar to the notion of round-robin vehicles, opportunities should be explored by EPA/OTAQ to
coordinate with other parts of EPA, such asin the RTP area, that have instrumented vehicles.

For example, the instrumented vehicle operated by Richard Shores could be deployed in multiple
study areas for benchmark comparisons and for supplemental data collection of some pollutants
not measured by conventional commercially-available on-board systems.

Primary vehicles would be a set of approximately 20 year, make, and model specifications that
each measurement center would be required to deploy in its study area. For example, each study
area could be required to conduct testing with a 1999 Ford Taurus sedan with 4 cylinder engine.
Each study area would obtain its own 1999 Ford Taurus sedan with 4 cylinder engine. Although
there can be variability in emissions among 1999 Ford Taurus sedans with 4-cylinder engines
(see Frey et al., 2001 for a comparison of six such vehicles), thereisless variability in emissions
for asingle year, make, and model of vehicle that is properly maintained than there would be
when comparing emissions for different makes and models. The primary vehicles would be
deployed on a schedule to capture all major aspects of the study, including (for example) facility
types, time of year, day of week, and time of day.

Secondary vehicles would be alarger set of vehicles that each study center would recruit based
upon guidelines established in the study design. The study centers could select the year, make,
and model of such vehicles. There may be as many as 50, 100 or more secondary LDGVsin a
given study area. Each vehicle would be tested over arelatively short time period (e.g., days or
weeks), with the assumption that these vehicles are recruited and cannot be kept for large time
periods.

The discussion above focuses primarily on typical gasoline vehicles available in all areas of the
U.S. However, consideration should be given to alternative fuel vehicles as well.

For HDDV vehicles, it will be most productive to obtain agreement from fleet operators to

deploy the instrument on multiple vehicles within afleet. For example, the NCSU Department
of Transportation has in the past expressed interest in cooperating regarding the deployment of a
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portable instrument to collect data from large diesel transit buses operated for the university.
Agreements should be sought from transit authorities in the selected study areas in order to
collect measurements on transit and school buses. Opportunities should be sought to tie such
data collection efforts to other incentives that such authorities may have to participate, such as
clean citiesinitiatives or perhaps evaluation of transportation improvements.

Other on-road HDDV categories may pose interesting logistical challenges. In some cases, such
asfor local delivery vehicles, it may be possible to instrument a vehicle for an entire day of
operation, and to repeat this for different vehicles on different days. For long-haul over-the-road
tractor-trailers, however, the logistics of deployment may be difficult. For example, who would
have responsibility for operating and maintaining the measurement equipment? There may be
opportunities to instrument HDDV vehicles of thistype that do not operate over large distances.
At the same time, there may be opportunities to instrument long-haul vehicles that travel from
one study areato another, with support from two or more emission measurement centers.

Similar to the LDGV category, there should be consideration of round-robin, primary, and
secondary vehiclesin the HDDV category. Round-robin vehicles might be recruited or obtained
based upon existing instrumented vehicles, such as at EPA in RTP or perhaps other agencies,
universities, or research institutes. These vehicles should be deployed in multiple study areas
based upon specific test plans developed in coordination with the measurement center for a given
study area.

For HDDV vehicles, it is well-known that the engines are typically rebuilt or replaced during the
life of the vehicle and that a chassis may not contain the original engine from when the vehicle
was new. Thus, care must be taken to properly record the history of the vehicle, including the
age and condition of the engine as distinct from the age and condition of the chassis. Thorough
mai ntenance records for the entire history of the vehicle are more likely to be available from
large fleet operators than from individual operators, although there may be exceptions and
opportunities with a variety of vehicle operators.

For nonroad vehicles, it is critically important that EPA first define the scope regarding what
nonroad source categories are to be included in the study. Examples of major categoriesinclude:
Lawn and Garden (L& G)
Construction, Farm, and Industrial (CFl)
Rail
Marine (Recreational, Commercial - Passenger, Freight, Size)
Aviation (ground support, general aviation, commercial aviation)

The testing strategy for nonroad vehicles should be based upon determining the key parameters
for these types of vehicles. Some of the important parameters that are currently used to group
nonroad vehicles are: fuel type; engine age; vehicle technology; engine type; and engine size
(Frey and Bammi, 2001). These parameters as well as engine RPM and load are usually
hypothesized to be the most important variables that affect emissions for nonroad vehicles.
However, it is less clear that these hypotheses have been evaluated in a rigorous statistical
manner.
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An experimental design is needed that involves identification of significant parameters that affect
emissions. Similar to the on-road case, for the nonroad category a two-phase data collection
effort is recommended over the five year time frame suggested in the RFQ. We suggest that
there be a Phase 1 data collection effort in the first two years which has a key objective of
helping to verify hypotheses regarding what potential explanatory factors are really important
with respect to emissions. Given the wide range of nonroad source categories, it will be
important for EPA to clearly define which nonroad categories are highest priorities and what
resources are available for the data collection effort in order to set a specific scope at thistime.
One can begin with a priority list of nonroad emission sources based upon current estimates of
their relative contribution to the national emission inventory of selected pollutants.

It may be easy from alogistical perspective to instrument vehicles on adaily basis at specific
sites, such as a construction, farm, or industrial site. It should be possible to recruit individuals
to volunteer lawn and garden equipment for use in the study (perhaps with an incentive to mow
their lawns as part of the study) as well as recreational boats. Deployment of equipment on
railroad equipment, for example, will require negotiation with the appropriate authority or
company. Deployment of equipment at an airport will be subject to security scrutiny.

The process of recruiting vehicles can be time consuming, and sufficient time and budget should
be allowed for this purpose as part of the on-board data collection effort.

The on-board emissions measurement technologies may vary somewhat in how they can be
deployed and this may be a function of the vehicle. For example, the OEM-2100 manufactured
by Clean Air Technologies International, Inc., does not involve any modification to the vehicle
as long as the vehicle has an OBD interface compatible with the data link capabilities of the
instrument. Theinstallation can be completed in approximately 15 minutes. For vehicles that do
not contain an appropriate OBD link, such as older vehicles or nonroad vehicles without
electronic controls, a sensor array is needed in order to measure or estimate the variables
required to predict mass air flow. For example, CATI has developed a sensor array to obtain
data such as engine RPM, manifold absolute pressure, and intake air temperature. From these
data, the mass flow rate of air and exhaust can be estimated for use in converting the volume
fraction or ppm gaseous pollutant measurements from the gas analyzer to a mass per time basis.

On-board emission measurement has been demonstrated for a wide range of vehicles. For
example, in this study, data were provided by EPA for LDGV, HDDV, and diesel non-road
vehicles. The OEM-2100 developed by Clean Air Technologies International, Inc. has been
deployed on the following types of equipment: on-road LDGV, on-road HDDV, a compactor, a
bulldozer, afront end loader, alawnmower, an ATV, ayard tractor, arecreational boat, a GE 44-
ton switchyard locomotive with a27.4 liter engine, and a single engine airplane (ground-use only
at thistime).

Vehicle Operation. For on-road light duty vehicles, there are several choices regarding how the
vehicle is operated that may influence emissions. These choicesinclude, for example, air
conditioning usage, passenger load, and towing loads. For on-road heavy duty vehicles, freight
load or passenger load (in the case of buses) may be important factors to consider in explaining
emissions. For non-road sources, such as backhoes and other construction equipment, other
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measures of load may be needed, such as the typical volume of material moved or the typical
weight per load. Activity data should be recorded regarding these types of factors.

Route Selection. On-board data collection is very flexible in terms of site selection compared to
other field measurement methods such as remote sensing or tunnel studies. Selection of sites for
on-board data collection depends on objectives of the study.

For on-road sources, the key considerations in route selection include:

Roadway functional classification — there should be a representative distribution of
freeway, primary arterial, minor arterial, secondary, and feeder/collector roadways.

Facility Design and Control Features—for a given roadway functional class, there
should be an adequate representation of design features such as different types of
freeway interchanges, signalized intersections, stop signs, traffic “calming” devices
(e.g., speed bumps), toll plazas, rest areas, weigh stations, roundabouts, |ane drops,
lane additions, protected turning movements, permitted turning movements, long
versus short acceleration lanes, sharp curves, etc.

Road Grade — there should be a representative sample of road grades, with emphasis on
road grades that lead to substantial differencesin emissions.

Traffic Flow — there should be a representative sampling of different levels of traffic
congestion and traffic flow patterns, which is influenced also by the scheduling of the
data collection activity.

Direction of Travel —traffic flow patterns can be very different for travel in one
direction versus the other direction on a specific road at a particular time of day.
Therefore, the direction of travel (such as on commuter routes during peak
commuting periods) is an important consideration in study design.

Miscellaneous Consider ations — a representative sampling of work zones and other
typical obstructionsto free flow traffic movement should be included. Over the
course of on-road measurements, it is likely that there will be situations in which
traffic flow isinfluenced by an “incident”, such as rubbernecking at the site of an
accident. Data should be recorded so that data from this type of situation can be
compared to data in the absence of this type of situation, perhaps for the purpose of
developing an “incident” correction factor or for developing activity estimates for
traffic and emissions in the presence of incidents.

In order to enable measurement on awide range of facility types under various conditions, while
at the same time obtaining data for arepresentative fleet, it is recommended that the study design
include at least two categories of routes or sites: Primary routes/site; and secondary routes/sites.

A primary routeor site would be intended for data collection with all primary vehicles and
with most if not al secondary vehicles. The routes can be selected so that they contain multiple
roadway facility types and variation in conditions over the course of the day. A secondary
route or site would be intended for stratified data collection with a subset of vehicles, including
some primary vehicles and some secondary vehicles.
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For non-road sources, the considerations are likely to be different depending on the specific
source category. For lawn and garden equipment such as alawnmower, for example, emissions
are likely to be afunction of factors such as height of grass and the speed with which the
operator attemptsto cut the grass. For a compactor, emissions are a function of engine load and
engine RPM. To the extent that some nonroad sources have characteristic activity patterns that
do not vary from one situation to another, it may be possible to develop average emission factors
from arepresentative sample of on-board measurements without the need for detailed
explanatory models. However, to the extent that nonroad emissions are influenced by variation
in activity from one situation to another, more detailed explanatory models and information on
activity may be warranted. In the absence of pilot data regarding these issues, it is difficult to
make specific recommendations regarding the key study design factorsto be considered in
site/route selection for non-road sources.

Driver Selection. It iswidely assumed and yet not extensively quantified that driver behavior
plays an important role regarding real world emissions.

For on-road sources, NCSU has collected data with different drivers for the same vehicle and has
found in some cases that two drivers can produce very similar on-road emissions, but that in
other cases two drivers can produce very different on-road emissions. For example, adriver with
“aggressive” behavior will typically accelerate more rapidly and produce higher emissions than a
driver with more moderate behavior. Some studies have quantified the difference that driver
behavior hasin the laboratory. For example, Webster and Shih (1996) have found that the
variability in repeated emissions measurements of the same vehicle on driving cycletests, such
asthe IM 240 test, can be as large as an order-of-magnitude. Some of these differences may be
attributable to differencesin typical driving behavior, while others may have been artifacts of the
study (e.g., throttle snaps).

The selection of drivers, therefore, can play an important role regarding on-road emissions
measurements. In a particular study area, it is suggested that al on-road drivers be asked to
conduct multiple runs in which they drive on the same route, and the average speed traces
obtained can be compared. Speed traces can be averaged if speed is plotted versus distance
driven, and if averages are taken in bins with respect to a specific distance segment of the route.
Averaging over multiple runsis needed in order to smooth out some of the inherent variability in
the on-road measurement technique. Speed cannot be averaged on an elapsed time basis because
trip durations will differ from one run to another. Drivers could be classified into categories
such as “gentle”, “moderate,” and “aggressive’ based upon measures such as maximum
acceleration rate, maximum speed, average speed, and acceleration noise, with respect to the
average speed trace obtained from the multiple runs. Acceleration noise is ameasure of the
variability in acceleration during atrip. Drivers should be scored in specific behavior categories
and the emissions for these categories should be compared. If there are statistically significant
differences in these categories, then the categories are useful explanatory variables. If emissions
do not differ among two or more of the categories, then it will be possible to combine or
eliminate some categories without loss of explanatory power. Specific numerical criteriafor the
categories are not proposed here because there are not sufficient datain the calibration data set to
develop such categories.
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It is recommended that the study design include primary drivers and secondary drivers. Each
primary driver would be assigned to a specific subset of the primary vehicles, and all datawith
that subset of primary vehicles would be collected with the same primary driver. Each primary
driver would also operate a subset of the secondary vehicles. Methods for benchmarking and
comparing the primary drivers with each other on the same vehicle and route are needed. As
noted in the NCSU study (Frey at al., 2001), it is possible that several drivers may have similar
behavior and, therefore, produce similar emissions on the road.

Secondary driverswould be used to supplement the primary driversin collecting data with both
primary and secondary vehicles. In some cases, secondary vehiclesthat are recruited might be
driven by their owners, who would be considered to be secondary drivers. Secondary drivers,
with driving behavior different from the primary drivers, could be used to repeat some of the
data collection runs made with the primary driver for purposes of comparing driving behavior.

Similar considerations may apply to most if not all nonroad source categories. For many
nonroad equipment categories, such as CFl equipment, vehicle speed is not the most useful
measure of activity. Other measures of activity, such as engine RPM and engine load on a
microscale, will be more useful and offer agreat deal of explanatory power for NOy and CO,
emissions from diesel engine powered equipment, as indicated in Chapter 5. Driver behavior can
be evaluated with respect to how rapidly engine RPM and load change in these types of
equipment. If differences are found that significantly influence emissions, then a driver behavior
scoring system similar to the one suggested for on-road vehicles can be developed. A key
consideration is to create driver behavior categories only if they offer explanatory power with
regard to emissions, and not to create categories without verification that thisis the case.

Scheduling. The scheduling of data collection plays an important role in determined the
uncontrollable conditions that will be faced regarding ambient conditions, traffic conditions (in
the case of on-road vehicles), and other conditions that may influence emissions for various
source categories.

Key considerations in scheduling include:

Timeof Year —In locations where there is seasonality, the selection of atime of year for
data collection will influence the range of ambient temperatures and weather
conditions that can be expected during the study period.

Day of Week —for on-road studies, the day of the week will influence the range of
variation and the typical conditions that can be expected for traffic flow. For
example, there are differences in traffic patterns for weekdays, weekends, and
holidays. Some weekdays, such as Fridays, have different traffic flow patterns that
other weekdays, because of the influence of flextime and other commuting/shopping
patterns, especially in the afternoon. Traffic patterns may be influenced by large
employers or industries, aswell as by specia events.

Time of Day — Time of day clearly influences the traffic congestion and traffic flow
expected, such as for peak travel time periods during “rush” hours, versus lunchtime
periods, versus other times of day. Time of day also influences the average ambient
temperature that can be expected. The variation in ambient temperature between a
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morning data collection period and an afternoon data collection period can be
especially important in spring or fall.

Scheduling can be categorized broadly into a primary schedule and a secondary schedule. The
primary schedule would represent the highest priority combination of time of day, day of week,
and time of year for which data collection is desired for the largest portion of drivers, vehicles,
and routes. The secondary schedule would represent other combinations for which
supplemental data are needed.

For nonroad equipment, there may be few issues analogous to those that impact traffic flow for
the on-road equipment, but factors that influence ambient conditions, such as time of year and
time of day, are likely to be important. L& G equipment and CFl equipment, for example, do not
have to contend with traffic flow problems, but they may have to contend with environmental
conditions (e.g., dry versus wet ground) that may influence activity.

Fuel Selection. A key benefit of on-board emissions measurement is the opportunity to measure
emissions during real-world operating conditions. Thisincludes the fuel used for the vehicle. It
would be logistically difficult to require that all vehiclesin areal-world on-board study use a
standard fuel, such as Indolene, although this could be done if sufficient resources were devoted
to fueling vehiclesthisway. However, the use of a non-real world fuel would defeat the main
purpose of areal-world field study. A more practical approach would be to collect data based
upon the typical fuel available in the study area, and to obtain data to the extent possible
regarding the fuel formulation. However, care regarding the fueling of the vehicle is needed,
especialy for vehicles recruited from motor pools or fleet operators. For example, the North
Carolinamotor pool fuelsits vehicles with a gasoline/ethanol blend that is different from the
retail gasoline available in the state.

Sample Size. Aspreviously noted, on-board data collection is essentially an observational
experimental technique. Therefore, there will be variability in uncontrollable factors that will
lead to variability in emissions. Depending on the objective of the study, it may be important to
minimize the influence of thistype of variability by collecting data for repeated runs with the
same vehicle, route, travel direction, driver, time of day, and instrument and to take the average
of the repeated runs. The confidence interval for the average can be calculated using appropriate
statistical methods and used to evaluate the stability of the mean. A narrower confidence interval
would imply amore stable or reliable estimate of the mean than would awider confidence
interval. If the objective is make comparisons of emissions between two situations, such as
before and after aTCM or TIP isimplemented, between aternative routes, or between
aternative drivers, then it will be important to have sufficiently narrow confidence intervals for
the mean that the statistical significance of the comparison can be meaningfully evaluated. Of
course, confidence intervals can be narrowed by increasing the sample size, and so it is possible
to obtain statistically significant differences with very large sample sizes even though the
difference may not be of practical significance. However, a more common problem with
emissions data is that the sample sizes are too small, and therefore the confidence intervals are
too wide, to reliably infer differences with statistical significance when they really exist and are
of practical importance. In the study by NCSU regarding the effect of traffic signal timing and
coordination on emissions, runs were repeated approximately 20 times for each

186



driver/vehicle/route/time of day/travel direction combination in both the before and after cases
(Frey et al., 2001).

Although comparison studies may motivate a large number of repeated runs, studies aimed at
characterizing fleet average emissions do not require alarge number of runs per vehicle, but they
do require that a sufficient number of vehicles be deployed so as to produce reliable results. In,
the case of estimating fleet average emissions, the key sample size consideration is the number of
vehicles deployed on a given facility type under similar conditions. An overall sample size of 50
to 100 vehicles, or more if possible, would be preferred in each study area on primary routes. A
smaller sample of approximately 20 vehicles should be deployed on secondary routes.

8.3  Illustrative Examples of Specific Study Designsfor LDGV, HDDV, and Nonroad
Vehicles

In this section, we discuss and illustrate some of the key considerations in developing specific
study designs for LDGV, HDDV, and nonroad vehicles.

831 LDGV

For atypical emission measurement center and/or study area, a preliminary estimate of the
number of data collection runsfor LDGV can be made based upon the following example
assumptions:

Number of Round-Robin Vehicles: 5
Number of Primary Vehicles: 20
Number of Secondary Vehicles: 80

Number of Primary Routes: 5
Number of Secondary Routes: 10

Number of Time of Day Periods: 5 (e.g., AM peak, PM peak, lunchtime, daytime off-
peak, night-time off-peak)

Day of Week Categories 4 (e.g., Mon-Thur, Friday, Sat, Sun)
Seasonal Categories: 4 (Winter, Spring, Summer, Fall)

Round-robin vehicles should be deployed, if possible, on al primary routes during all time of
day periods during a week, and data should be collected in the same season or similar ambient
conditions in each study areato the extent possible. Thisresultsin (5 vehicles) x (5 primary
routes) x (5 time of day periods) x (4 day of week categories) = 500 data collection runs at each
study area. If atypical data collection run takes 20 minutes, then atotal of 167 hours of data
collection isinvolved, or 33 hours of data per vehicle.

All primary vehicles should be deployed on all routes during all time periods, all days of week

categories, and all seasons. For each vehicle, therefore, the minimum number of runs would be:
(15 routes) x (5 time of day periods) x (4 day of week categories) x (4 seasons) = 1,200 data

187



collection runs/primary vehicle. At 20 minutes per run of on-road driving, thiswould be a total
of 400 hours of data collected with each primary vehicle.

Secondary vehicles should be deployed on the primary routes for purposes of developing fleet
emissions characterizations under similar conditions. However, it may not be possible to have
the secondary vehicle during the entire study period, and therefore it may not be possible to
deploy secondary vehiclesin al seasons. For each secondary vehicle, there would be a
minimum of (5 routes) x (5 time of day periods) x (4 day of week categories) = 100 data
collection runs/secondary vehicle. At 20 minutes per run of on-road driving, thiswould be a
total of 33 hours of data per vehicle.

Based upon these example estimates, an illustrative (but not definitive) number of data collection
runs for a single study area would be as follows (assuming 20 minutes per data collection run):

No. Time of Day of Total
No. of of Day Week Seasonal | Number | Hours of
Vehicle | Vehicles | routes | Categories | Categories | Categories | of Runs Data
Round- 5 5 5 4 N/a 500 167
robin
Primary 20 15 5 4 4 24,000 8,000
Secondary 80 5 5 4 N/a 8,000 2667
Tota 32,500 10,834

The resources to conduct such a study in a given study area would include time, personnel,
equipment, vehicles, computer data storage, software, and money.

By comparison, the NCSU on-board emissions study aimed at evaluating the effects of traffic
congestion and signal timing and coordination involved atotal of approximately 1,200 one-way
trips and produced 160 hours of data.

The actual study design may not require the number of runs asindicated here. For example, the
estimate above assumesthat it is necessary to collect data for 5 time of day categories on
Saturday and Sunday. However, fewer time of day categories may be needed on these days of
the week. On the other hand, it would be desirable to repeat some of these runs during each year
of afive year study, which can increase the total number of runs. In addition, the study design
above does not include different drivers for each vehicle, which could cause a doubling or
tripling of the number of runsif two or three drivers with different behaviors are used for each
combination of vehicle, route, time of day, day of week, and season indicated above. A "run"is
defined as aone-way trip. If around-trip is made on each route, then the number of "runs' and
the number of hours of data collection would be twice that shown above. However, the actual
scheduling of round-trips versus one-way runs may not be affected, becauseit istypically just as
easy to make around-trip of data collection in a given time of day period asit isto make a one-
way run of data collection.

For each hour of data collection, it is prudent to assume that there is a comparable amount of
time involved in data screening, data reduction, and data analysis. At a conceptual level, the cost
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of a study such as thiswould include a study area director, a senior analyst or engineer, severa
assistants with respect to data analysis, and several assistants who serve as the primary drivers.
Of course, vehicle owners or others can be included as secondary drivers, and it is not essential
that all vehicles be driven by all primary drivers. Each study areawould need typically five or
more on-board measurement systems, with sufficient hardware and technical support to keep
them operational. Each study area would need to recruit vehicles, with costs in some cases for
payments for rental fees, incentives to private owners, or purchase of some vehicles (e.g., older,
used vehicles that might be high emitters and that would otherwise be under-represented in the
study). Each center would require sufficient computer capability to store and handle the large
amount of data generated by the field data collection effort.

The example given hereillustrates that it is not possible or prudent to conduct a study based
upon a combinatorial specification of all possible study conditions. Instead, the study should be
based upon a base case comprised of primary drivers, primary vehicles, primary routes, and
primary schedules, with incorporation of secondary drivers, secondary vehicles, secondary
routes, and secondary schedules, to supplement the base case data collection efforts in order to
observe awider range of variation in activity and emissions. For example, the secondary
vehicles could be deployed only in weekday time periods that represent the largest contribution
to total vehicle-milestraveled, and do not need to be deployed in all of the time periods for
which the primary vehicles are deployed. While there can be a component of the study that
involves instrumentation of vehicles operated by their owners as part of their regular business,
the study design should include stratification as well to make sure that variability in factors
influencing emissions are captured with sufficient sample sizes to support model development.

832 HDDV

The scope of data collection for HDDV should take into account activity patterns unique to these
types of vehicles. While there are many specific variations in the application and duty cycle of
diesel equipment, the main categories include medium heavy duty trucks, which typicaly are
applied to local service, heavy duty trucks applied to long-haul service, transit buses, and school
buses. A representative set of vehicles should beincluded in the test plan from each of these
four major categories. These categories need not receive equal weight in the study design. The
number of vehicles selected in each category should be proportion to the expected contribution
of each category to overal emissions. In the absence of good prior estimates of such
contributions, surrogates such as registration fractions or VMT fractions could be used to make
aninitial priority list of HDDV vehicle types for recruitment and testing. EPA should solicit
advise from expertsinvolved in HDDV work, either directly or through contractors, to be sure
that the u