FINAL REPORT

M obile Sour ce Emissions New Generation M odel:
Using A Hybrid Database Prediction Technique

February 6, 2002

Prepared for:
U.S. Environmental Protection Agency
ASD
2000 Traverwood Drive
Ann Arbor, M1 48105

Matthew Barth, Principal Investigator
Theodore Younglove, Co-Principal Investigator
Carrie Malcolm, Assistant Development Engineer
George Scora, Junior Development Engineer
College of Engineering-Center for Environmental Research and Technology
University of California
Riverside, CA 92521
(909) 781-5781
(909) 781-5790 fax

01-TS-26655-02-DFR



University of California, Riverside, CE-CERT NGM On-Board Data Analysis and Collection




University of California, Riverside, CE-CERT NGM On-Board Data Analysis and Collection

Table of Contents
Y 01 1 = T ST 1
1 a1 oo (3Tt A o o USSP 3
2. Model Development and TESHING ....c..coereeirieieierene e 5
21  Mode Development MethodolOgy ........c.ccoeiereririieieneresese e 5
2 I Y Yo (0 o P RSSPPRN 7
B Y 1= o o= TS 10
2. 1.3 MBCTOSCAIR ....eveeeesie ettt sttt sttt ettt sae e 12
2.2 PilOt DEMONSIIELION .....ccueeiieiieeieeie e see e eee st see e e e ste e sseesreeeesreesneeeesneesseenes 13
2.2.1 On-Road Spark IgNition .........ccceeceieeiieie e 13
2.2.2 On-Road Compression [gNitioN..........ccoeeereeeeieeienesesie s 26
2.2.3 Off-Road Compression [gnitioN...........ccceceeveiieceere e 31
2.3 RESUITS SUMMBIY .....cuiiiiiiiriieiieiee ettt bbbt n e e sne e 35
3. Future Data CollECHION.........coiiee et 37
31 SAMPIE SIZE ESHMELES ......cceeieiieeieeieieste ettt ne s 38
3.2 General PEMS Sampling Issuesand Needs..........ccccceveeieiiececsiesee e 40
3.3  Database Model-Specific Sampling Issues and Needs...........c.ccocerereeienenesennens 41
34  Specific Recommendations for On-Road Data Collection............cccccevveveceennenne. 41
35  Specific Recommendations for Laboratory Data Collection.............ccccevenerenenne 43
3.6  Specific Recommendations for Supplemental Data Collection..............ccccueu...e. 43
Integration of New and Old Data ...........cccceeieiieiieie s 45
Conclusions and ReCOMMENALIONS.........cceiiiirerieieee e 46
REFEIBINCES ...ttt bbbttt nae e 49




University of California, Riverside, CE-CERT NGM On-Board Data Analysis and Collection

List of Tables

Table 1. Microscale model development reqUIreMENES. .........occeveererereneseee e 10
Table 2. Mesoscale model development reqUIreMENTS..........coveeereererereneseeesee e 11
Table 3. Trip Driving SUMMEIY SEBLISLICS. .....coveeeierieriesiesieeieeee e neen 12
Table 4. Macroscale model development reqUIreMENES. ........cccecvereerererenesesesee e 13
Table 5. Vehiclesincluded in the training database. ...........ccceveiineneneneseeeee s 14
Table 6. Vehiclesincluded in the prediction database. ...........ccccevererininininieeeeeeseee 14
Table 7. Microscale model results for on-road spark ignition vehicles. ... 17
Table 8. Sample Of [INK dalaDase..........coveieieieree e 19
Table 9. Car validation emission results for the mesocale level. ... 20
Table10.  Significant driving SUMMAry StaliSHCS. .......ccvreriririeerere e 22
Table11l.  Principal components analysisresultsfor LDV data. ........cccceeevveveneeneeneseeneene 23
Table12.  Regression of principal components on emissions of training trips..........ccccceeeeenee. 24
Table13.  Macroscale emission calculations using MatChing trips.........ccocevererereeieeneseseeee. 25
Table14. Car modeling emission results for the macroscale level. ..........ooovviviiecveiennene, 25
Table15.  Vehiclesincluded in the on-road Cl prediction database. ............ccocoeeeeeeeicneieniene. 26
Table16. Vehiclesincluded in the on-road Cl prediction database. ............ccccoeeeeieeiciiieneene. 26
Table17. Microscale model results for on-road spark ignition vehicles ..., 27
Table18. Busvalidation emission results for the mesocale level. ..., 28
Table19.  Principal components results for on-road compression ignition vehicles................ 30
Table20.  On-road compression ignition VEhiCle results. ..o, 30
Table21. Nonroad validation emission results for the microscale level.............cccooeieiinenne. 34
Table22.  Percent difference between actual and predicted model results..........c.ccocevervnnenee. 37
Table23. Comparison of emissions results for one test vehicle with inclusion of 1ab data..... 45

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

Disaggregation of PEMS driving data for hybrid emissions database/GIS approaches.6

Example speed trace divided into modal Segments..........cccccveeeveeiecceceese e, 7
Example speed trace modally divided at the peak with matched speed segments......... 8
Driving trace match of an aggressive driver with aless aggressive driver. .................. 9
Example of link based mesoscale methodology, see text for details. ... 11
S0BK tIME FEYIESSION. ......vevieieeieetiesteete st e e et e teeste e e sse e tesaeesseeseeseesseesesseesseennesnnens 15
Example microscale model output for 1998 Chevrolet Lumina. ............cccceevveiieeneene 16
Map Of VENICIE LIPS, ..ottt ne e 17
Map of test dataand Modeled [INKS...........ccceveeiiiie i 18
Link CO,, CO, HC, and NOx emissions for vehiclesin the database...........c.cec........ 21
Plot of al light-duty trips against Factor 1 and Factor 2. ............ccccevevevceeieececeeceene, 24
Plot of al light-duty trips against Factor 1 and Factor 4. ............cccceeveecieieececeeceene, 24
Map Of VENICIE TIPS, ..ottt st neeneens 27
Map of test vehicle dataand modeled [INKS...........ccooveieeieciecece e 28
Link CO,, CO, HC, and NOx emissions for buses in the database............cccoveeeeeuneee. 29
Scraper microscale MOdeling rESUILS. ........ccoveie e 32
Compactor microscale Modeling FESUILS. ........c.ccveveieiiere e 33
Bulldozer microscale modeling rESUILS. ........ccveiiiieeieeseee e 34




University of California, Riverside, CE-CERT NGM On-Board Data Analysis and Collection

Figure 19.
Figure 20.

Figure 21.
Figure 22.

Car emissions for microscale, mesoscale, and macroscale

for COg, CO, NOX, QNA HC......oveiiiieiiee ettt ee e st e s s e e e s seas e e e s s sraeeessereees 35
Bus emissions for microscale, mesoscale, and macroscale for

(@ T OO I N (@) =0 To [ = [T 36
Mean difference (observed-predicted) for CO,, CO, HC, and NO from car data. ...... 38

Mean difference (observed-predicted) for CO,, CO, HC, and NO from bus data. ..... 39







University of California, Riverside, CE-CERT NGM On-Board Data Analysis and Collection

Abstract

The U.S. Environmental Protection Agency (EPA) is developing a New Generation Model
(NGM) to more accurately predict in-use vehicle emissions at the micro-, meso-, and macro-
scales. One of the characteristics of the NGM is that it should be able to predict emissions based
on data collected from in-use vehicles under actual operating conditions. By contrast, today’s
regulatory models are based primarily on data only from dynamometer |aboratories. This report
describes activities conducted by the University of California, Riverside, College of Engineering-
Center for Environmental Research and Technology (CE-CERT) under a data anaysis
“shootout” conducted by the EPA. EPA provided driving and emissions data from twelve spark
ignition (Sl) light-duty vehicles (LDVS), twelve compression ignition (Cl) heavy-duty vehicles
(HDDVs), and three CI off-road vehicles. The data were collected using the EPA’s new Portable
Emissions Measurement System (PEMS). Using these data, CE-CERT’s objective was to
estimate emissions from three similar vehicles under actual operating conditions determined by
EPA.

CE-CERT chose a hybrid database model for its approach. In the hybrid database model,
emissions are predicted by searching a second-by-second emissions database for the most similar
vehicle and driving pattern, then using the previously observed emission rate in the database as
the estimated emission rate for the vehicle to be predicted. In this hybrid approach the vehicle
activity data are pre-processed to improve the speed and accuracy of the matching process. The
methodology for this hybrid database model was developed for the micro-, meso-, and macro-
scale levels. Predictions for the three on-road LDV's and three HDDV s were produced using the
methodology for each level of the model. In addition, microscale emissions estimates were
produced for the three off-road test vehicles.

The ability of the hybrid database model to easily incorporate new data, including existing
laboratory data, was demonstrated by the microscale prediction of one of the LDVs using a
combination of the NGM data and data from one additional comparable vehicle from CE-
CERT’s existing database. Preliminary sampling plans for the data collection of the NGM were
also developed.

After presentation of the results to EPA staff, CE-CERT was provided with the actual emissions
for the prediction vehicles. The average percent difference between modeled and actua
emissions by model implementation level are presented below. The microscale version of the
model did very well in predicting the non-road emissions and in general performed quite well on
the buses and to alesser degree on the cars where the CO levels were overpredicted by 84%. The
mesoscale and macroscale versions of the model did well overal, with the exception of CO on
the cars. The overprediction of CO is due to a lower CO emission rate in the vehicles to be
predicted than that observed in many of the vehiclesin the modeling database.

Aver age Per cent Difference- Average Percent Difference- | Average Percent Difference-
Micro M eso Macro
HC|CO|CO2| NO HC | CO | CO2| NO HC | CO |[CO2| NO
Car 26%|84%| 17% | 6% |Car |-12% | 123% | -16% | -2% |Car | 10% | 71% | -9% | 37%
Bus 2% | 8% | -6% |-32% |Bus | -12% | 24% | 5% |-28% |Bus | 14% | -2% | 11% | -23%
Off-road -7% | -2%




University of California, Riverside, CE-CERT NGM On-Board Data Analysis and Collection

Independent of the NGM program, CE-CERT has been developing a Comprehensive Modal
Emissions Model (CMEM) framework [Barth et al., 1996, 1997, 1999 and An, 1997]. Appendix
B of this report describes activities conducted by CE-CERT in which the CMEM was used to
predict emissions of vehicles from the EPA New Generation Model “shootout.” This work was
conducted under separate funding and was carried out separately from CE-CERT's NGM
modeling work. The CMEM framework was designed to predict vehicle emissions based on
operating mode, driving conditions, terrain, driver habits, and other variables. CMEM is
fundamentally a load-based model. CMEM is a model suitable for the next generation of mobile
source modeling, but was designed to predict emissions of groups of vehicles. However, this data
analysis was conducted because of the opportunity that it presented for a blind analysis of real
on-road emissions data.

The objective of the work described in Appendix B was to assess the CMEM framework’s
appropriateness for use in the NGM by testing its ability to predict emissions from a small fleet
of test vehicles whose actual emissions EPA had measured under a variety of operating
conditions. This work was conducted with the standard laboratory calibration of CMEM. Future
work will involve calibration of CMEM to the on-road data. EPA provided data on the vehicles
and their operating parameters and CMEM was operated to provide an estimate of their
emissions. CE-CERT used two approaches to quantify emissions within the CMEM framework:
(1) prediction of the vehicle emissions using the standard CMEM composite vehicle categories,
and (2) prediction of the individua vehicles with the most similar individual vehicle parameter
set within the NCHRP test fleet. A comparison of the results from the two methods found good
agreement for some vehicle types and operating modes, and poorer agreement for others. One
reason for this variability may be the small population of vehicles and the limited operating
conditions for which data were available in this study.

The CMEM results for the category predictions were compared with the actual results using the
laboratory calibration of CMEM and the average percent differences results are presented below.
In addition, the CMEM results were corrected using the average difference in observed and
predicted emissions within the appropriate CMEM categories. This category correction improved
the results somewhat; however, the calibration of CMEM to the on-road data is the preferred
method and is currently under development under the on-going research. In both the corrected
and uncorrected CMEM runs the CO, emissions were very close to the measured emissions. CO
emissions had the largest percent difference from the measured data, but with the category
correction the results were improved.

Average Per cent Difference- |Average Percent Difference-
CMEM Raw CMEM Category Corrected
HC | CO |CO2| NO HC | CO |CO2| NO

Car | 57% |-157%| -2% | 34% |Car | 37% | -53% | 0.6% | 43%
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1. Introduction

The United States Environmental Protection Agency (EPA) is in the process of developing a
New Generation Model (NGM) for estimation of mobile source emissions [USEPA, 2001]. The
NGM is expected to be a system of modeling tools that can be used for the estimation of
emissions both for on-road and off-road mobile sources. The EPA has identified four broad
objectives:

1. The model should encompass all pollutants including CO, CO,, HC, NOx, PM, air
toxics, and greenhouse gases.

2. The model should be developed according to principles of sound science.
3. The software design should be efficient and flexible.
4. The model should be implemented in a coordinated, clear and consistent manner.

On-board emissions data, gathered using on-board emissions measurement devices, are to be an
important part of the NGM effort. EPA is working on the development of on-board measurement
technology, termed Portable Emissions Measurement System or PEMS [USEPA, 2001]. This
report documents the methodology and results of work conducted by CE-CERT in the
development of a hybrid database model for predicting emissions rates. In a hybrid database
model some or al of the data are preprocessed for use in matching the existing data to the data to
be predicted.

In addition to total vehicle miles traveled (VMT), four main factors can significantly influence
mobile source emissions:

e Vehiclefleet mix (model year as well as car/truck);
e Proportion and type of high emitting vehicles;
e Soak time distributions;

e Driving behavior.

Because these factors change with both time and location, it is important that the data collection
and modeling alow for flexibility in these items. As hot-stabilized emissions decline over the
next ten years due to improved automotive technology, these factors will only increase in
importance. Understanding these variables, however, is more data-intensive than previous-
generation modeling efforts. Design of the NGM should be conducted with due consideration of
the sampling burden for users balanced with the need for accuracy of the model. A highly
accurate model with nearly impossible data requirements will not serve the user community well.

The University of California, Riverside, College of Engineering-Center for Environmental
Research and Technology (CE-CERT) has been researching mobile source emissions modeling
for nearly 10 years. In 1992-1995, CE-CERT developed a new framework for integrating
transportation and emissions models, the Integrated Transportation/Emissions Modeling (ITEM)
framework models [Barth et al., 1995, 1997a]. CE-CERT wrote a proposal to the Nationa
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Cooperative Highway Research Program (NCHRP) and was subsequently awarded a multi-
million-dollar project to collect a wide variety of second-by-second mobile source emissions data
and develop a Comprehensive Modal Emissions Model (CMEM). The overall objective of this
research project (carried out from 1995 to 2000 as NCHRP Project 25-11) was to develop and
verify amodal emissions and fuel consumption model that accurately reflects Light-Duty Vehicle
(LDV, i.e, cars and small trucks) emissions produced as a function of the vehicle's operating
mode. Further background on modal emission modeling and this NCHRP project is given in
[Barth et a. 1996, 1997b, 1999] and [An, 1997].

The need for a new mobile source model that is capable of predicting emissions in a consistent
manner from the microscale to the macroscale has been recognized for several years. Model
development and implementation efforts at the EPA and CE-CERT have both been conducted
with and eye to the future with on-road data collection and real-world modeling of emissions.
The hybrid database model developed as part of this project, as well as CMEM, represents two of
the possible approaches to the NGM. The on-going projects at CE-CERT provide synergy in the
development of aframework for implementation of aNGM.
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2. Model Development and Testing

CE-CERT initialy explored three conceptua approaches to this New Generation Model on-
board data analysis project.

e Hybrid Gl S/Database approach. Emissions are estimated directly from datain a
database. Hybridization of the database is achieved through pre-processing of the
data to facilitate matching of the driving segments to be predicted with the best
available driving segment in the database.

e Multivariate Statistical Equation-Based approach. Emissions are estimated
using statistical relationships between the measured variables such as speed and
measured emissions.

e Driving Summary Statistic approach. Emissions are estimated by correlating
driving summary statistics with emissions. Driving summary statistics are cal culated
from readily available trip information and are designed to measure important trip
characteristics. Average trip speed is a commonly used driving summary statistic.

The multivariate statistical equation approach was dropped from consideration because it was
found to have problems with prediction errors when used on vehicles whose driving behavior
was at or beyond the range of the behavior observed in the training sample used to develop the
model. The statistical summary approach was used in the preprocessing of the macroscale
predictions for the hybrid database model; however, it was not used on its own because the
precision of the estimates varied considerably between types of vehicles. The hybrid database
modeling methodology was selected for further development because it was simple in concept
and would provide the greatest ease of expansion and easy incorporation into a Geographical
Information System (GIS) framework.

2.1 Model Development Methodology

The database methodology uses existing data to predict emissions. The difficulty with applying
this methodology is the “sparse matrix” problem: In general terms, as the number of cellsin a
matrix increase the amount of randomly collected data necessary to obtain observations in every
cell of the matrix expands rapidly. The number of different vehicles, driving behaviors, and road
conditions that exist in the real world make for a near infinite number of combinations of
conditions that must be matched for accurate emissions prediction if an exact match is required.
Our solution to this problem is to conduct a hybridization of the basic approach. This uses
preprocessing of the data in combination with statistical “maps’ to identify the closest driving
data to that to be modeled. In addition, the implementation of the model is conducted differently
at the micro-, meso-, and macro- scales because a greater degree of matching can be obtained
within the existing data for the smaller time-scale events. It is easier to match a particular modal
event than it isaportion of atrip or an entiretrip.

The final approach chosen is a modification of Approach 3 described in EPA Solicitation PR-CI-
01-12239, in which the NGM comprises a large database of emissions measurements with
corresponding driving and location (via GPS) data. A key element in the success of this
methodology is the matching of the existing emissions measurements to the operating conditions
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being modeled. The unique aspect of the CE-CERT methodology is the application of
preprocessing of the data as well as the use of the GPS-based location data to identify roadway
type and to obtain accurate grade information. A balance must be achieved between properly
identifying factors about a driving segment that affect emissions and readily matching the
database elements to the desired situation. The GIS aspects are of less use in characterization of
the off-road data because of the increased difficulty in identification of geographic features that
may influence emission rates.

At this stage of development, the data set used for matching was selected from the vehicles that
most closely match the vehicle to be predicted. The optimum situation would be for the database
to contain several vehicles having the same mileage and options as the vehicle to be predicted. In
this pilot project, vehicles were selected based on the judgment of the research team for those
most likely to have similar emission rates and emissions behavior over the observed operating
conditions. In an automated implementation the matching methodology likely would vary by
vehicle technology type, with different factors used for matching carbureted vehicles than those
used for fuel injected vehicles for example.

At the microscale level, the driving traces were disaggregated into moda segments
encompassing accelerations, decelerations, steady-state cruises, etc. At the mesoscale level, the
driving traces were disaggregated into roadway/driving-based events. At the macroscale leve,
the driving traces were used in a trip-based manner (see Figure 1). Consistency of emission rates
is maintained through the use of the same basic data for each level of the model. Emission rates
are estimated by querying the database to find a driving condition similar to the one being
estimated based on vehicle, roadway, and driving behavior characteristics. A regression on
principal components analysis is used to identify groupings of variables that are correlated with
emissions to simplify the search process.

Tripbased | Facility specific link | Mode based
based

Arterial

/

Arterial

Arterial

Arterial Large Aterial

Large Arterial Arterial
El

Arterial

—

Arterial

MIcroseale Mesoscale Microscale

Figure 1. Disaggregation of PEMS driving data for hybrid emissions database/GI S approaches.
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In this hybrid approach, data from the PEM S units were used to build up a database of emissions
traces in a spatial framework that can be used for on-road based emissions estimates as well as
for larger area estimates.

2.1.1 Microscale
At the microscale level, the methodology involves dividing the trip to be predicted into separate

modal events. Individual accelerations, decelerations, cruises, and idles are identified visually,
and then flagged in the data set (Figure 2).

80. - &

w0 | - i

Z
be
>
)

<
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220 240 260 280 300 320 340 360 380 400

Time (seconds)

Figure 2. Example speed trace divided into modal segments.

At present, this process is conducted visually using speed plots as shown in Figure 2. In a full
implementation of the methodology this step would be automated, both for speed and for
consistency of segmentation. Initially the modes were divided at their end points; however, in the
case of acceleration events the matching driving trace frequently did not end at the correct speed
(Figure 3). Differences in emissions were found between accelerations peaking and similar
accelerations that did not peak at the end of the segment. For this reason, acceleration modes

included the peak inflection point to ensure that the matching trace was the closest event that
ended at the same speed.
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Figure 3. Example speed trace modally divided at the peak with matched speed segments appearing in aternating
colors.

Speed matching was chosen in combination with acceleration and power matching to try and
keep gear selection effects to a minimum so emissions would be representative of typical driving
in the speed under consideration. Each modal segment is then matched to al possible equal
length segments within the prediction data set. That is, a moving window of the same number of
seconds from the prediction data set is compared with the driving trace to be matched. For
example, if atwelve second speed segment were to be matched, it would first be compared with
the first twelve seconds of the first trip. The twelve second segment would then be matched with
seconds 2 through 13, then 3 through 14, and so on until it is compared with the last twelve
seconds of the trip. The twelve second segment would then be compared with the first twelve
seconds of the second trip, and so on until it is compared with the last twelve seconds of the last
trip in the prediction data set. A match score is calculated for each of the matching segments
using three weighted criteria, the sum of the squared difference in speeds for each second, the
sum of the squared difference in accelerations, and the sum of the squared difference in grade
across the modal event. The current match score uses an 80, 10, 10 weighting of speed,
acceleration, and grade that was determined empirically.

While the modal approach increases the ability of the database methodology to find matching
driving segments, there are still limitations on the number and type of vehicles that are available
for matching. In addition, differences in driver aggressiveness play a role in the ability of the
database to match a driving trace. Matching an aggressive driver with a less aggressive driver
resulted in consistent mismatches at higher speed accelerations (Figure 4).
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Figure 4. Driving trace match of an aggressive driver (blue line) with aless aggressive driver (alternating green,
pink, and red segments).

Catalyst temperature and efficiency play a critical role in the emissions characteristics of modern
automobiles. Because of the large effect catalysts have on emissions, matching of driving
behavior aoneisnot likely to produce accurate emissions estimates. For this pilot demonstration,
the trips were divided into cold operation and hot operation sections. Driving behavior in cold
sections was then matched to cold sections within the data set, and hot operation segments were
matched to hot operation segments in the prediction data set. With the relatively small number of
trips and vehicles in this study, it was decided to break the trips into only two parts because of
the need for finding ssimilar driving behavior. Implementation of this methodology will require
sufficiently large numbers of trips so that the full range of vehicle operation from cold to hot can
be matched to a variety of modal behaviors at the second-by-second level. Table 1 summarizes
the approach to microscale modeling.
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Table 1. Microscale model development requirements.

Database preparation Prediction data preparation
. Division of trips into hot and cold driving 3 Select matching vehicle or vehicles in
segments. prediction data set.
e Divide trips to be predicted into modal
segments.

3 Estimate Cold and Hot modal segments.

e Run matching program to identify closest
driving trace for each modal segment to be
predicted.

3 Use gramg/second emission rates from

prediction data set for matching segments of the

segment to be predicted.
Sum g/s for the trip and calculate g/mi.

2.1.2 Mesoscale

The methodology at the mesoscale level involves matching of driving segments on individual
road links to similar links in the prediction data set. This link-based approach introduces greater
variability in the driving behavior and terrain covered, and the limitations of the “sparse matrix”
are magnified. Therefore, with the small data set used in this project, we would expect less
accuracy at the mesoscal e than at the microscale level.

Emission estimates for a vehicle on an individual road segment are calculated using similar
driving behavior on similar road segments. In this implementation, many of the road segments
were modeled using the same road segment. This level of matching would be achievable for
individual cities only if they were to have collected large amounts of on-road data. However, it
does represent the highest level of development that can be achieved for mesoscale emissions
modeling with this modeling methodology. The more typical application would involve the
identification of the most similar driving segment in the database to the link being modeled. The
key element of this mesoscale implementation is the identification of characteristics that can be
used to identify driving segments that have similar emission rates.

In the general implementation, roadway characteristics would be used to classify each driving
event, resulting in a multivariate classification for each event based on the characteristics of the
roadway. Within each roadway the driving behavior would be classified using driving summary
statistics to enable matching of driving as well as roadway. Examples of possible variables for
roadway classification are physical characteristics such as type, length, average grade, maximum
grade, posted speed, etc.,, and traffic characteristics since driving behavior greatly affects
emissions. This multivariate classification of the driving events is a critica component of
implementation of this methodology. It is not possible to collect multiple sets of PEMS data for
multiple vehicles on even a small proportion of the roads in a particular area. However, for the
prediction of the emissions rate on a given roadway section, it should be sufficient to find a
similar set of driving conditions in the PEMS database that does have sufficient emissions
estimates for characterization. Future implementation will be based on identifying similar links
with similar driving conditions to those being model ed.

10
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Figure 5. Example of link based mesoscale methodology, see text for details.

Best case scenario is that the emissions to be predicted are on a specific road link that occurs
within the database. This requires matching the appropriate vehicles and matching the
appropriate driving behavior for those vehicles on the correct links. However, in the typical case
the emissions that are to be predicted are on a specific road links that does not exist within the
database. This requires matching the road link characteristics, the appropriate vehicles, and the
appropriate driving behavior for those vehicles on the correct links. An example of thisis shown
in Figure 5. The gray line represents links with existing data and the red line is the trip to be
predicted. The emissions for portion of the trip that overlaps Links 9, 1 and 2 will be predicted by
using the values from a similar vehicle in the database with similar driving behavior over each
link. The remaining section of the trip would be divided by roadway type, and the database
would be searched to find a link that best matches the characteristics of each section with a
similar vehicle. Table 2 summarizes the approach to mesoscale modeling.

Table 2. Mesoscale model development requirements.

Database preparation Prediction data preparation
. Divide trips in prediction database into road 3 Select matching vehicle or vehicles in
links. prediction data set.
e  Cdculate driving summary statistics for each e  ldentify linksin the trip to be predicted.
road link. (Not done for this project because of . Estimate matching road link emissions using
data limitations). corresponding emissions from the database.

. Estimate unmatched road links using the most
similar road link (and traffic conditions in the
full implementation).

11
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2.1.3 Macroscale

At the macroscal e, the hybrid database model predicts the emission rate of the target trip by using
the emission rate of the most similar trip in the database. In this implementation, preprocessing
of the driving characteristics and roadway characteristics are used to overcome the sparse matrix
problem. At the trip level, it is unlikely that a matching trip will be found for most if not al of
the trips to be predicted. It is thus essentia that the methodology include statistical means of
identifying the best trip possible for use in the prediction of the emission rates.

A four step process was used to identify the “best” trip matches:
e Calculation of driving summary statistics for al trips
e A stepwise regression was then used to identify the best trip summary statistics

e A principa components analysis (PCA) [Dunteman, 1989] was then run on the
selected driving statistics, driving conditions, and vehicle condition statistics

e A regression on principal components was then used to select the principal
components with the best correlation to emissions.

The driving summary statistics are statistical summaries of second-by-second driving and
roadway information that were used to characterize each trip in the database. The summary
statistics were designed to capture different aspects of driving using easily measurable variables
that would be readily available. In some of the initial work on developing a statistical second-by-
second model, speed and acceleration were identified as significant predictors of emissions. The
summary statistics are listed in Table 3. Average speed is a common driving summary statistic
used in modeling of on-road emissions. Many of the driving summary statistics were cal culated
with increasing and/or decreasing thresholds. This was done in order to identify the optimum
statistic based on the data, rather than a predetermined fixed level.

Table 3. Trip Driving Summary Statistics.

Mean (velocity) Average trip speed

Mean (grade) Average trip road grade

Mean (sp) Average trip specific power (sp = 2*v*a)

Sum velocity > X Sum of al speeds > X, where X =0, 5,10,...80mph.

Sum acceleration < X Sum of all decelerations < X where X =-10, -9, -8,...-1mph/s
Sum acceleration > X Sum of all accelerations > X, where X =0, 1,2,3,....10mph/s
Sumsp > X Sum of trip specific power > X, where X =0, 50, 100,...400
Sum grade related power Sum of sp as afunction of road grade

Sum grade >0 Sum of al positive grade values

Sumgrade< 0 Sum of all negative grade values

The stepwise regression is a linear regression procedure in which variables are added into the
regression equation based on their ability to improve the regression predictions. In this case, the
stepwise regression was used to screen the large number of driving summary statistics to identify
those which had the strongest predictive ability for emissions associated with the trips. In a
stepwise regression, the first variable added to the regression is the single variable having the
highest correlation with the dependent variable (CO,, CO, HC, or NO). After adding in the single
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best variable, the next variable added is the one that statistically improves the regression the
most. The procedure continues in a stepwise fashion until no variables significantly improve the
regression.

The principal components analysis is a statistical procedure that reduces a large number of
possibly correlated variables into a smaller number of independent variables that are linear
combinations of the original variables. These “principal components’ represent most of the
variability found in the original variables, but simplify presentation and analysis. In this case, the
principal components were constructed to identify trips having similar driving and emissions
behavior that could then be used to identify the appropriate trips for use in predicting the
emissions of the test trips.

The regression on principal components is a statistical procedure in which dependent variables
are regressed on the new composite variables in a stepwise fashion. In this analysis, the principal
components are independent, eliminating the problems with co-linearity in the driving summary
statistics. The primary goal of the regression on principal components was to identify the correct
principal components for use in plotting the trips to identify groupings of trips whose emissions
behavior would be similar. Table 4 summarizes the approach to macroscale modeling.

Table 4. Macroscale model development requirements.

Database preparation
. Preprocess trip data to calculate trip summary
statistics (Table 3).
. Perform stepwise regression of trip summary
statistics against trip CO,, CO, HC, and NO.
. Select best trip summary dtatistics for
characterization of driving effects on emissions.

Prediction data preparation
3 Run principal components analysis on al trips
summary statistics.
Regress principal component scores against
trip CO,, CO, HC, and NO.
. Plot al trips on best two principal components
and identify matching trips to the trips to be

predicted.

e Edimate grams/second for trips to be
predicted from matching trips grams/ second.

. Apply estimated emission rate to trip and
calculate cumulative trip CO,, CO, HC, and
NO.

2.2 Pilot Data Demonstration

2.2.1 On-Road Spark Ignition

The EPA provided a total of twelve data sets for on-road spark ignition light-duty vehicles for
testing the modeling approach (Table 5). Vehicle 13 was eliminated from the prediction database
because of problems in the collection of NO data. These vehicles were driven a total of 55 trips
with a variety of distances and soak times with a total of 50 trips available after removal of
vehicle 13. The database model requires a large amount of data to function well, including
vehicle types and operating conditions. The model will be very sensitive to differences in
emission rates between the individual vehicles in cases where the sample size is smal.
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Additional study that is beyond the scope of this current project will be required to determine

what size datasets will be required for optimum performance.

Table5. Vehiclesincluded in the training database.

Vehicle Make Model Model Odometer Number of
Number Y ear Trips
2 FORD TAURUS GL 1997 79984 7
5 SATURN SATURN 1998 37278 3
6 CHEVROLET MALIBU LS 1999 26288 3
7 SATURN SATURN 1999 43242 3
11 FORD TAURUS SE 1998 78187 4
12 FORD ESCORT 1997 71446 3
14 CHEVROLET CAVALIER 1996 86999 9
15 CHEVROLET CAVALIER 1998 56803 3
16 MERCURY MY STIQUE SPORT 1998 29233 9
17 FORD TAURUS SE 1998 41319 5
18 FORD TAURUS GL 1996 94321 1

From the activity and emissions data provided for each of the 50 trips in the training database,
CE-CERT s task was to predict emissions from three additional vehicles over atotal of six trips,
as summarized in Table 6. All three vehicles have at least one similar vehicle in the prediction
set. However, vehicle-to-vehicle differences in emission rates are likely to cause bias problemsin
the predictions with this limited data set. In afull implementation of the hybrid database model a
larger sample of vehicles for each vehicle to be predicted should average out vehicle variability
effects.

Table 6. Vehiclesincluded in the prediction database.

Vehicle Make Model Model Year Odometer Number of
Number Trips
1 CHEVROLET LUMINA LS 1998 44362 1
2 MERCURY SABLELS 1996 96099 2
3 FORD ESCORT 1999 39429 3
Microscale

The first step in the application of the microscale level was to select the closest vehicle in the
training database for each of the vehicles to be predicted. In this implementation, because of the
small number of available vehicles, selection of the matching vehicles was done manually. In the
full implementation vehicles likely would be assigned to equivalent groups based on emissions
behavior and technology. For the 1998 Chevrolet Lumina, we selected the 1999 Chevrolet
Malibu and the 1998 Ford Taurus SE. The Taurus was added to the prediction data because the
Lumina driver was more aggressive than the Malibu driver, making for poor fits at the higher
power events. The 1996 Mercury Sable was fit with the 1996 Chevrolet Cavalier to keep a
similar power to weight ratio with the same model year and similar mileage. Differences in
emissions behavior were observed in analysis of the NCHRP vehicle test fleet between some
early Tier 1 vehicles and later models so the match was based on similar mileage and model year
instead of matching the make and model [Scoraet al., 2000]. The 1999 Ford Escort was modeled
using the 1997 Ford Escort in the model database.
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The six trips to be predicted were then manually divided into modal events. The third step in the
microscale modeling was to estimate the warm up time period for the vehicles to be predicted.
The soak time from each of the vehicles in the training data set was regressed against the
estimated warm up time for the trip (Figure 6) where warm up time was estimated from the data
using emissions on similar driving events. For this implementation soaks greater than 200
minutes were assigned a warm up time of 150 seconds. In some cases this was difficult because
of the driving patterns observed during the warm up period. The modal matching program was
then run to find the best match for each segment of each trip. The output for the 1998 Chevrolet
Luminais presented in Figure 7. All output figures are presented in Appendix A.

Warmup (seconds)

‘50 T T T T T T T T T T T T T T T T T T
-100 0 100 200 300 400 500 600 700 800 900
Soak (Minutes)

Figure 6. Soak time regression.
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The results for the microscale modeling runs for al six on-road light-duty Sl vehicle trips are
summarized in Table 7.

Table 7. Microscale model results for on-road spark ignition vehicles.

Car Trip CO2 (g) CO (g9 NOX (g) HC ()
SRM089 2 11495.65 12.98 7.77 191
Subtotal 11495.65 12.98 7.77 191
3DAUS86 3 6640.00 45.56 3.94 2.75
3DAUS86 5 9144.49 40.75 3.80 4.97
Subtotal 15784.49 86.32 7.74 7.73
RAK416 2 3596.94 137.80 11.15 5.27
RAK416 4 4252.84 98.41 10.82 4.68
RAK416 5 4398.59 32.88 6.39 2.02
Subtotal 12248.37 | 269.09 28.35 11.96

Tota 39528.51 | 368.38 43.86 21.60

Mesoscale

Thefirst step in the mesoscale level is to divide the database into road links. A link is defined as
a unigue section of roadway, typically between major intersections. The vehicles provided in the

pilot study were separated by trip and were plotted in ArcView (Figure 8).
__,_J
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Figure 8. Map of vehicletrips.
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The vehicle data provided for model prediction data were also broken into trips and plotted in
ArcView, (Figure 9).

s Validation Data
—— Highway
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— Residential/County
0 2 4 6 Miles
ey

2L

Figure 9. Map of test data and modeled links.

For demonstration purposes, the test data provided by the EPA for modeling were used to
determine the location of road links. In a complete model implementation, links will be created
throughout the entire designated area. For now, links were broken down into segments by
roadway type and, to some extent, availability of the pilot data. If alink contained a small portion
of a different roadway type, then that section was included to reduce the overall number of links
in the analysis. For example, Link 13 (see Figure 9) is primarily on a residential/county road but
contains a small section of highway driving.

The first approach explored for this level consisted of creating an Avenue model in ArcView
[ESRI, 2001]. The model looked at two trips at a time and searched for overlapping points. If
overlapping points were found, then a new table was created for each trip of just the overlapping
sections. These new tables were then summarized. The process was repeated for each possible
pair of trips. The resulting summary table summarized each pair and contained statistics for
speed, length of trip, time, grade, and emissions.

This method worked, but it limited the number of individual links that could be compared. This
approach might be better suited for a situation where large amounts of data existed and the user
was trying to match a few vehicles. The only preparation that is required in this modeling method
is to plot the unmatched data over the existing data and run the program. For the pilot study, a
better methodology was to create a database of links where the links could be combined in any
manner to form atrip. The new approach takes longer to set up initially because for each link all
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the vehicle trips that pass over that link need to be summarized and entered into a database.
However, the new approach allows for more data to be incorporated, an important factor with the
limited amount of available data.

An analysis of link emissions showed that vehicle trip emission rates vary over the same links,
even when the vehicle is the same. Thisis due to differences in driving that would be included in
the matching for the full implementation. With the limits on the available data for this project
matching of driving behavior within links was not done. A sample of the link databaseis givenin
Table 8. Thisvariability shows that driving behavior isimportant factor in determining emissions
aswell as vehicle type.

Table 8. Sample of link database.

Link| Direction| Car |Avg. Speed| HC(g) | CO(g) [CO2 (g) [NOx ()
2 N 02t03 69.91 0.03 332 | 50331 | 0.90
2 N 06t03 55.67 0.05 040 | 39210 | 0.49
2 N 11t04 66.87 0.07 112 | 59232 | 0.27
2 N 14t04 62.06 0.27 13.38 | 625.58 | 0.38
2 N RAKt05| 66.68

2 S 02t01 71.05 0.34 422 |61255| 1.36
2 S 02t04 67.59 0.28 260 | 58955 | 0.75
2 S 05t02 55.89 0.11 0.23 | 43576 | 0.26
2 S 11t01 62.94 0.06 0.88 | 501.65 | 0.22
2 S 14t07 65.64 0.20 524 | 49537 | 0.25
2 S 15t02 62.78 0.14 438 | 41179 | 0.59
2 S RAKt02| 75.98

2 S RAKt04| 75.45

A database of average speed, average grade, and average total emissions in grams was created by
direction for each link. Each trip was plotted individually and a separate table was created for
every link that the trip encompassed. These tables were then summarized and added to the
database. Because the database is relatively small, each vehicle in the prediction database was
included. To determine the emissions for atrip, the sums of the links are calculated. For example,
if avehicle travels on Link 1 North, Link 2 North, and Link 3 North, the emissions for the trip
will be the sum of the separate links. If there are no overlapping data for a link, then a similar
link with available data was used in its place. As more data become available, vehicle type will
be matched as well as links.

The results of the model validation data for the mesoscale level are shown in Table 9 for each
trip, each vehicle, and total emissions.
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Table 9. Car validation emission results for the mesocale level.

Car Trip CO:(9) | CO(9 | NOx(g | HC(9)
SRM089 2 6977.85 128.66 12.33 2.30
Subtotal 6977.85 128.66 12.33 2.30
3DAUS6 3 3396.23 39.78 3.00 2.72
3DAUS86 5 7860.86 146.66 15.86 3.63
Subtotal 11257.10 | 186.44 18.86 6.35
RAKA416 2 3784.65 38.76 2.83 2.83
RAK416 4 2912.96 19.04 294 1.26
RAKA416 5 3175.43 35.45 2.55 0.99
Subtotal 9873.04 93.26 8.32 5.08
Total 28107.99 | 408.36 39.51 13.73

Modeling the mesoscale level in GIS not only creates a visual representation of where vehicles
are driven, as in Figures 8 and 9, but also creates a map of total emissions by link. Emissions

were summed by link for all vehicle trips in the pilot study and validation dataset and are shown
in Figure 10.
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Figure 10. Link CO,, CO, HC, and NOx emissions for vehiclesin the pilot study and validation database.
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Macroscale

The first step in the macroscale estimation of trip emissions is to pre-process the vehicle activity
data using severa trip summary statistics designed to characterize driving behavior. As noted
before, the summary dstatistics were calculated from easily available driving and roadway
variables shown to correlate with second-by-second emissions. The trip summary statistics are
listed in Table 3in Section 2.1.3.

The resulting trip summary statistics were then used in a stepwise regression against CO,, CO,
HC, and NO to identify the best trip summary statistics for relating driving behavior to
emissions. With the relatively small number of trips available for this project, this pre-screening
of the trip summary statistics was necessary for reducing the number of variables that would be
included in the principal components analysis. This was done to keep the number of variablesin
the principal components analysis small compared to the number of degrees of freedom.

Using the emission results from the training data set, the stepwise regression identified ten
driving summary statistics that were significant. The statistics are presented in Table 10.

Table 10. Significant driving summary statistics.

Dependent Variable Significant Driving Statistics
CO, Sum velocity > 0 mph
Sum velocity > 70 mph
Sum acceleration < -6 mph/sec.
Sum sp > 400
Sumgrade<0
CO Sum acceleration > 5 mph/sec.
Sum sp > 100
HC Sum sp > 50
NO Sum velocity > 45 mph
Sum velocity > 80

Based on these results, a principal components analysis was conducted on a sub-set of the driving
summary statistics for the training trips as well as the six test trips. Soak time, cycle length, and
driving distance were added to the set of driving characteristics because of their effects on
emissions. The principal components analysis identified five significant factors within the data
(Table 11). The factor loadings represent the correlation of the original variables with the five
factors. Large (near 1) positive and negative values indicate variables that are strongly associated
with the factor.

22



University of California, Riverside, CE-CERT NGM On-Board Data Analysis and Collection

Table 11. Principal components analysis results for LDV data set showing variables and factor loadings for the five
significant factors (eigenvalue >1).

Orthogonal Solution
Inclusion criteria: Criteria 1 from finalstats.csv (imported).svd
Factor 1 Factor2 Factor3 Factor4  Factor 5

mean(vel) .597 -.136 .186 .567 122
mean(acc) .080 .072 .691 .077 .149
mean(grade) .027 .011 .799 -.102 -.092
mean(sp) -.257 432 277 -.029 716
cycle length .962 .048 .013 .051 .037
sumvel >0 .895 -.053 .067 .399 | -3.967E-4
sumvel > 45 745 -.074 .052 579 -.070
sumvel >80 .080 .093 -.088 .858 -.013
sumacc <-5 -.549 -.219 -.012 -.020 -.619
sumacc >5 .364 .559 -.038 .024 .357
sumsp >0 .893 .206 .018 .293 217
sumsp > 150 .628 .538 -.064 272 312
sumsp > 350 .169 782 -.085 .039 -.162
sum grade related pow er .924 .162 .042 .263 .180
soak 122 -.226 -.041 .017 .765
sumgrade <0 -.929 -.087 .052 .012 -.002
sumgrade >0 .940 .016 .109 -.085 -.034
sumacc >0 .903 .239 .016 .068 .259

The first factor accounts for 49% of the variability between trips, the second factor accounts for
about 11%, and the other three significant factors account for 6% to 7% of the variability
between trips. The first factor is primarily a total trip factor, with weight high for cumulative
variables such as Sum velocity >0 and Sum acceleration >0 etc. The second factor is more
heavily weighted on the higher power and acceleration variables. The third factor is primarily a
function of mean acceleration and mean grade, while the fourth factor loads heavily on the
summaries of the higher power events. The fifth factor is a mixture of the deceleration summary,
soak time, and mean specific power.

The large number of trip summary statistics were converted to five principal components, and the
principal components scores of al training and testing trips were computed. Regressions were
then run to identify the principal components that best predicted the total trip emissions of CO,,
CO, HC, and NO using only the principal components scores of the training data. The two best
principal components for estimating each of the emissions were then compiled (Table 12) and
used to produce plots of all trips, including the test trips. In this manner, the nearest training trips
in terms of emissions related driving behavior can be identified by plotting al trips on an XY
plot of the corresponding principal components scores. For CO, and NO, the two significant
principal components were Factor 1 and Factor 4. For CO and HC, the two significant principal
components were Factor 1 and Factor 2. The trips are plotted on these factors in Figures 11 and
12.
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Table 12. Regression of principal components on emissions of training trips.

Regression First PC Second PC R-square
CO2 Factor 1 Factor 4 .932
CcO Factor 1 Factor 2 .625
HC Factor 1 Factor 2 .553
NO Factor 1 Factor 4 .631
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Figure 12. Plot of al light-duty trips against Factor 1 and Factor 4.

It should be noted that two of the test trips in the plot of Factor 1 and 2 are on the outer edge of
the driving conditions found in the training trips. This may cause some problems in the
estimation of the emissions for these trips because they are at the outer edge of the observed
driving behavior.
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The emission rates for each of the test trips were then calculated using the average emission rate
of the three closest test trips on the appropriate plot (Table 13). In this example, al of the
vehicles were used to give a robust data set for the principal components analysis without
screening for similarity to the test vehicles. If this methodology were to be implemented it would
likely give better predictionsif the matching is done only against similar vehicles.

Table 13. Macroscale emission cal culations using matching trips.

Trip SRMO089TR_2 3DAU86TR_3 3DAUB6TR_5 RAK416TR_2 RAK416TR_4 RAK416TR_5
CO2(1) 2.491951 2.806772 2.412036 3.38824 3.38824 3.410387
C0O2(2) 2.67037 2.326812 2.917962 2.927351 2.927351 2.80672
CO2(3) 2.04947 3.698247 4.259898 4.259898 2.616704
Avg. g/s 2.403930333 2.566792 3.009415 3.525163 3.525163 2.944603667
Total seconds 3373 1521 2334 916 1106 1555
Estimated Sum CO2  8108.457014 3904.090632 7023.97461 3229.049308 3898.830278 4578.858702
CO(1) 0.059418 0.036074 0.036074 0.03289 0.03289 0.044808
CO(2) 0.015362 0.004205 0.038925 0.009137 0.009137 0.010087
CO(3) 0.021053 0.021053 0.015362 0.015362

Avg. g/s 0.03739 0.020444 0.032017333 0.019129667 0.019129667 0.0274475
Total seconds 3373 1521 2334 916 1106 1555
Estimated Sum CO 126.11647 31.095324 74.728456 17.52277467 21.15741133 42.6808625
HC(1) 0.000935 0.000864 0.000864 0.002095 0.002095 0.003462
HC(2) 0.000753 0.00618 0.002945 0.00179 0.00179 0.000369
HC(3) 0.001409 0.001409 0.000753 0.000753

Avg. g/s 0.000844 0.002817667 0.001739333 0.001546 0.001546 0.0019155
Total seconds 3373 1521 2334 916 1106 1555
Estimated Sum HC 2.846812 4.285671 4.059604 1.416136 1.709876 2.9786025
NO(1) 0.004943 0.002529 0.010405 0.009116 0.009116 0.008112
NO(2) 0.00248 0.009064 0.002841 0.003094 0.003094 0.002529
NO(2) 0.00419 0.007123 0.004461 0.004461 0.001511
Avg. g/s 0.003871 0.0057965 0.006789667 0.005557 0.005557 0.004050667
Total seconds 3373 1521 2334 916 1106 1555
Estimated Sum NO 13.056883 8.8164765 15.847082 5.090212 6.146042 6.298786667

The results from Table 13 are summarized in Table 14.

Table 14. Car modeling emission results for the macroscale level.

Car Trip CO2(g) CO(0) NOx (g) HC (g)
SRM089 2 8108.46 126.12 13.06 2.85
Subtotal 8108.46 126.12 13.06 2.85
3DAU86 3 3904.09 31.10 8.82 4.29
3DAUS86 5 7023.97 74.73 15.85 4.06
Subtotal 10928.07 | 105.82 24.66 8.35
RAK416 2 3229.05 17.52 5.09 1.42
RAK416 4 3898.83 21.16 6.15 1.71
RAK416 5 4578.86 42.68 6.30 2.98
Subtotal 11706.74 81.36 17.54 6.10
Total 30743.26 | 313.30 55.26 17.30
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2.2.2 On-Road Compression Ignition

The EPA provided atotal of 12 on-road compression ignition (Cl) datasets for use in building the
NGM model (Table 15). The on-road Cl vehicles were all buses driven over regular bus routes,
including stops. These buses were driven atotal of 45 trips with a variety of distances and routes.
The similarity between buses makes the prediction dataset more robust because all buses can be
used for prediction of the testing busses.

Table 15. Vehiclesincluded in the on-road Cl prediction database.

Vehicle Number Make Model Model Year| Odometer | Number of Trips
1 NEW FLYER DETROIT 1996 216502 2
2 NEW FLYER DETROIT 1996 222245 4
4 NEW FLYER DETROIT 1996 228770 4
5 NEW FLYER DETROIT 1996 199188 4
6 NEW FLYER DETROIT 1996 200459 4
7 NEW FLYER DETROIT 1996 223471 4
8 NEW FLYER DETROIT 1996 260594 4
9 NEW FLYER DETROIT 1996 252253 4
10 NEW FLYER DETROIT 1995 283708 4
11 NEW FLYER DETROIT 1995 280484 4
14 NEW FLYER DETROIT 1995 216278 4
15 NEW FLYER DETROIT 1995 247379 3

Data from three buses for a total of 6 trips were provided for use in testing the model. The test
vehicles and their descriptions are provided in Table 16. All three vehicles match the vehicles in
the prediction dataset.

Table 16.Vehiclesincluded in the on-road CI testing database.

Vehicle Make Model Number of

Number Trips
385 NEW FLYER DETROIT 2
375 NEW FLYER DETROIT 2
360 NEW FLYER DETROIT 2

Microscale

For the microscale modeling of the busses al trips having good data were used for the matching
program because of the similarity of the vehicles. This increased processing time considerably,
but improved the fit of the speed traces over those of the on-road spark ignition vehicles. The
plots for the on-road compression ignition vehicles are collected in Appendix A. The results are
summarized in Table 17 for individual trips, vehicles, and total for the fleet.
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Table 17. Microscale model results for on-road spark ignition vehicles.

Bus Trip | CO2(g) | CO(g) | NOx (g) | HC(g)
360 2 16911.24| 68.96 | 165.41 2.67
360 3 11577.84| 40.99 | 119.36 1.91
Subtotal 28489.08| 109.95 | 284.77 4.58
375 2 14624.65| 46.66 | 152.69 2.74
375 3 15663.14| 46.29 | 189.38 3.09
Subtotal 30287.79| 92.94 | 342.08 5.82
385 3 17960.83| 69.82 | 211.04 2.78
385 4 10961.88| 52.70 | 127.78 2.23
Subtotal 28922.71| 122.52 | 338.82 5.00
Tota 87699.58| 325.42 | 965.66 | 15.41

Mesoscale

The mesoscale methodology for the bus data is similar than that for the car data. The pilot data
were plotted into ArcView along with the prediction data (Figures 13 and 14).
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Figure 13. Map of vehicle trips.
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Figure 14. Map of test vehicle data and modeled links.

The resulting emissions are presented in Table 18 for each trip, each bus and total emissions.

Table 18. Bus validation emission results for the mesocale level.

Bus Trip | CO2(g) | CO(g) | NOx (g) | HC(g)
360 2 11829.81| 47.23 125.65 147
360 3 11915.83| 39.20 | 102.88 1.05
Subtotal 23745.64| 86.43 | 228.53 2.52
375 2 20284.77| 77.79 | 216.65 3.16
375 3 24837.01| 85.79 | 254.31 3.13
Subtotal 45121.78| 163.58 | 470.96 6.29
385 3 17412.11| 75.43 | 203.12 2.90
385 4 10983.57| 46.34 | 118.66 1.63
Subtotal 28395.67| 121.76 | 321.77 4.53
Tota 97263.09| 371.77 | 1021.26 | 13.35

Total link emissions for the bus pilot study data and validation data were calculated and plotted
into ArcView (Figure 15).
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Figure 15. Link CO,, CO, HC, and NOx emissions for buses in the pilot study and validation database.
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Macroscale

The macroscale modeling of the on-road compression ignition vehicles followed the same
methodology as that of the on-road spark ignition vehicles. Trip summary statistics were
calculated for each trip in the training database and for the trips in the test vehicle data.
Regressions were run to identify the best summary statistics for the bus data, then these variables
were run in a principal components analysis to reduce the dimensionality of the variable space
(Table 19).

Table 19. Principal components results for on-road compression ignition vehicles.

Orthogonal Solution
Factor1 Factor2 Factor 3 Factor 4

mean(vel) -.247 .871 170 224
mean(acc) -.320 .022 .928 .026
mean(grade) .286 .238 .042 .540
mean(sp) -.022 -.049 .994 -.017
sumvel > 55 -.041 178 -.052 748
sumacc <-1 -.954 129 .105 .160
sumacc <0 -.942 .033 .188 .204
sumacc >4 .351 .206 -.040 -.622
sumsp > 50 922 .029 -.072 A77
sum grade related pow er .949 192 -.189 .039
Distance 406 .769 -411 .020

The emissions for each of the six test vehicle trips were then estimated using the average
emission rates of the three best fit trips from the database. The results are summarized in Table
20.

Table 20. On-road compression ignition vehicle results.

Bus Trip CO2 (g) CO (9) NOx () HC (9)
360 2 19115.51 62.68 226.96 2.87
360 3 12948.18 21.89 142.38 3.12
Subtotal 32063.69 84.57 369.34 5.99
375 2 17022.19 59.56 130.35 1.84
375 3 17706.32 59.02 176.77 2.83
Subtotal 3472851 | 118.58 307.13 4.67
385 3 19693.07 65.64 196.61 3.14
385 4 16739.92 25.81 222.89 3.49
Subtotal 36432.99 91.45 419.50 6.63
Total 103225.19| 294.59 1095.97 17.29
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2.2.3 Off-Road Compression Ignition

The EPA provided atotal of three off-road compression ignition (Cl) datasets for use in building
the NGM model, one scraper, one compactor, and one bulldozer. These pieces of equipment
were driven a total of approximately three hours with a variety of distances and routes. An
additional hour of operation data were provided for the test data set from the same vehicles. The
use of the same equipment makes the prediction dataset more robust.

Data from one additional hour of each of the three off-road vehicles were provided for use in
testing the model. This is the optimal case for the database model because each vehicle is
predicted with previous data collected on the same vehicle.

For the off-road vehicles there will only be microscale-based predictions because of the lack of
road link and trip equivalent events. In addition, the modal events will be matched using exhaust
flow instead of speed.

Microscale

The microscale methodology used in the modeling of the on-road data was adapted to the off-
road data by using the exhaust flow data in place of vehicle speed to define the operating modes.
The exhaust flow data was less smooth than the vehicle speed data, however the differences were
not sufficiently large to disrupt the matching of events.

Theresults are plotted in Figures 16 to 18 and are summarized in Table 21.
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Figure 16. Scraper microscale modeling results.
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Figure 17. Compactor microscale modeling results.
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Figure 18. Bulldozer microscale modeling results.

The predicted values for the off-road vehicles are summarized in Table 21. The NO emissions for
relative to the CO2 emissions were much higher the Bulldozer than for the Scraper or the

Compactor.

Table 21. Nonroad validation emission results for the microscale level.

Vehicle | CO2(Q) NO (g)

Scraper | 67400.26 | 621.27
Compactor | 83877.52 | 371.99
Bulldozer | 84263.83 | 1618.24
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2.3 Results Summary

The results of the model predictions at the micro-, meso-, and macro- scales are summarized in
Figures 19 and 20.
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Figure 19. Car emissions for microscale, mesoscale, and macroscale for CO,, CO, NOx, and HC.
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In genera the three levels of the model give similar predictions for the on-road compression
ignition vehicles. Some individua vehicles have greater variability between the three predictions,
likely due to vehicle to vehicle variability. The difficulty in getting a reasonable match at the
mesoscopic level may in part be due to driving differences on the links. In some cases the
average emission rate on a link was influenced by a trip on the link that had unusually high or
low emission rates and driving behavior. Overal the three levels of the model correspond better
on the compression ignition vehicles than on the spark ignition vehicles. Thisis at least in part
due to the greater degree of similarity between the vehicles within the compression ignition class.

After presentation of results to EPA staff, CE-CERT was provided with the actual emissions for
the test vehicles. The results are summarized as percent difference for the three levels of the
model in Table 22. For the off-road vehicles the results were quite good. In addition, the bus
predictions, with the exception of NO at the microscale level, were off by less than 30%.
Likewise, the car predictions, with the exception of CO at the microscale level and NO at the
macroscale level, were off by less than 30%

Table 22. Percent difference between actual and predicted for microscale, mesoscale, and macroscale model results.

Aver ge Per cent Difference-Micro |
HC CO COo2 NO
Car 26% 84% 17% 6%
Bus 2% 8% -6% -32%
Off-road -1% -2%
Aver age Per cent Difference-M eso
HC CO CO2 NO
Car -12% 123% -16% -2%
Bus -12% 24% 5% -28%
Aver age Per cent Difference-Macro
HC CO CO2 NO
Car 10% 71% -9% 37%
Bus 14% -2% 11% -23%

3. Future Data Collection

The PEMS data collection efforts will be a critical part of implementing EPA’s NGM. Data
collection should follow a test matrix that maximizes the quality and type of data that will make
the NGM arobust model. The PEMS unit is on-board equipment, so it is not possible to decide
exactly what road types and driving conditions will be measured by any regular in-use
installation. Care should be taken to capture true on-road emissions. Specifying the road types
and driving conditions needed for the NGM may compromise the data collection process, but
targeting recruitment on cities having a preponderance of desired conditions could be done. As
an example, Denver could be targeted for recruitment to collect high altitude and high road-grade
operation.
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The macroscale, mesoscale, and microscale levels have the same goal for data collection, collect
as much data as possible while covering the full range of operating conditions. The data can be
incorporated easily into al three levels as discussed in the previous section. The deployment of
PEMS units will be expensive, so proper statistical design will ensure maximum accuracy for the
minimum cost to the EPA. Recruitment should be random in order to obtain an unbiased sample
of driversfor data collection.

3.1 Sample size estimates

The bus data were used to estimate the number of vehicles that would be necessary for the
characterization of an additional set of vehicles. Predictions of the six bus test trips were run at
the microscale level using one randomly chosen bus, two, three, four, and eight busses. Plots of
the difference between observed and predicted trip emissions were then produced for CO,, CO,
HC, and NO (Figure 21).
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Figure 21. Mean difference (observed-predicted) for CO,, CO, HC, and NO from bus data.

From these plots it can be seen that in general, there is little improvement in the prediction
accuracy after four vehicles. With three to four vehicles, the confidence intervals for the mean
difference between actual emissions and predicted emissions includes 0 for CO,, CO, and HC. It
can also be seen that the NO mean difference does not converge to 0. Further examination of the
12 bus prediction database found that the peak NO emission rate for a subset of the buses was
lower than that of the other busses and also lower than the peak emission rates for the three
prediction busses. In the case of NO, the bus emission predictions are representative of a broader
vehicle fleet than was included in the three prediction vehicles.
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A similar analysis was conducted on the cars (Figure 22), however the analysis was limited
because of the lack of highly similar vehicles as was the case in the bus data. For this analysis the
1999 Ford Escort was predicted with 1) the 1997 Ford Escort in the prediction database, 2) the
1997 Escort and the 1998 Mercury Mystique, and 3) the 1997 Ford Escort, the 1998 Mercury
Mystique, and the 1998 Chevrolet Cavalier. This analysis was subject to a greater degree of
vehicle bias because the vehicle to be predicted was a single vehicle instead of a group of
vehicles, making the target potentially biased relative to the average vehicle in the class.
However, the main goal of identifying a rough number of vehicles necessary to characterize an
individual vehicles operation is still valid.
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Figure 22. Mean difference (observed-predicted) for CO,, CO, HC, and NO from car data.

Implementation of this approach in the NGM framework will initially require the collection and
categorization of large amounts of PEMS data. However, as more data are collected, the
inventory of road/traffic conditions that have been characterized will grow rapidly. Asthe PEMS
units are used, they collect emissions data over various road types and driving situations.
Individual cars will drive multiple times on the same roadway in some cases, providing data for
estimation on the variability of emissions and driving behaviors associated with a specific road
link. The standard application will be dependent upon the degree to which the area where the
model is being implemented can be matched to the link database. Individual users such as cities
and regional authorities would have the option of collecting area specific PEMS data.

The development of the database for this methodology is primarily a large stratified random
sample because the model itself is based on having observed data to match the specific situation
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that is to be modeled. Understanding vehicle-to-vehicle differences in emissions behavior across
a wide variety of driving conditions and road conditions will be critical both for the success of
this method and the development of sampling methodology. Our analysis of NCHRP test data
have shown significant differences in emissions behavior across technology types even over the
relatively limited range of driving conditions experienced in laboratory testing. Thus a key
element will be the preprocessing and identification of factors most closely related to emission
rates.

From the data available in this study we know that three hours of off-road operation data was
sufficient for predicting emissions of one additional hour of operation within 7% for CO2, and
within 5% for NO. With the limited off-road data in this study it was not possible to estimate the
variability in behavior and emissions within vehicle classes. For this reason, a small pilot study
that would include at least five vehicles within the three classes used in this study would be an
essential step in the planning of further sampling.

Off-road operation typically has very high engine load because of the type of work that these
vehicles do. Therefore, it is expected that the sampling methodology will be more focused on the
characterization of the vehicle/technology groups. As with on-road sources, the success of this
methodology depends highly upon having an observed emission rate for a similar vehicle and
operational conditions to the one being modeled.

3.2 General PEMS Sampling Issues and Needs

Stratified Random Sampling. On-road sampling with PEMS units should follow a stratified
random sampling methodology. Sampling to characterize the emissions from an on-road fleet
could be achieved with a smple random sample, but sampling for model development has
different goals and will require fewer total samples under a stratified methodology. The reason
for thisis the need to develop accurate modeling of the various sub-fleets within the general on-
road vehicle population. Possible stratification factors include:

e emission control technology

e car/truck

e normal emitter / high emitter

e type of high emitter (runsrich, runs lean, misfire, etc.)

Sampling proportional to emissions variability and emissions contribution. An additional
factor to be considered in general PEMS sampling is the determination of proper sample
allocation based upon emissions variability and emissions contribution. The accuracy of the
model for a particular sub fleet, regardless of the final form of the model, is going to be
proportional to the emissions variability within the sub fleet and the size of the sample. This
includes both vehicle to vehicle variability and variability in modal behavior between vehicles
within the sub fleet.

SULEV and other new technology vehicles. Manufacturer to manufacturer variability in
emissions control technology is relatively low for the current technology vehicles. Some
differences in catalyst warm up behavior exist within the Tier 1 vehicle fleet (Y ounglove 2000).
However the differences are primarily in the speed at which the closed-coupled catalysts warm
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up relative to the standard configurations. In the SULEV vehicle fleet there are likely to be large
differences in behavior from current technology vehicles as well as between manufacturers
within the SULEV fleet as they pursue different technological solutions to emissions control. As
an example, CO and HC absorber equipped SULEV vehicles would exhibit very different
emissions behavior across soak times from vehicles with pre-heated catalysts.

3.3 Database M odel — Specific Issues and Needs

Vehicles and operating conditions cannot be modeled well if they are not in the database
This is in contrast to CMEM and other physical parameter based models which use equations
that provide smooth calculation of emissions under any operating condition within the calibration
range of the model. With the database model it is not possible to extrapolate beyond the on-road
data collected for modeling. The use of current lab data to augment the on-road data will provide
awide range of vehicles for modeling, but with a more limited set of operational conditions than
that likely to be found in the on-road data. The data specific modeling methodology will also
require development of a methodology for characterizing the driving behavior within each
vehicle group because if operational “holes’ exist in the database they must be identified and
corrected. Several factorswill need to be estimated prior to development of a sampling design:

e on-road data collection dependent on the degree to which current lab data will be used
e modeling depends upon vehicle-to-vehicle variability in emission rates AND behavior

e modeling also depends upon similarity in emission rates and behavior within vehicle
technology groups

Emission correction factors. Smaller conditions that influence emission rates may be modeled
through correction factors if effects are consistent within technology groups. The database model
could be developed with a much smaller number of samples if some of the factors which
influence emissions have a consistent effect within the vehicle sub groups. Uniform effects, or
near uniform effects that might be accomplished with correction factors include:

o fud effects
e AC and other load effects
e temperature and humidity effects

3.4 Specific Recommendations For On-Road Data Collection

Initial scoping study of three to five vehicles. The main goa of this study is to determine the
approximate instalation time necessary for capturing the warmup and driving/emissions
behavior of a typical new LDV. One analysis of this data would be to use the data from each
vehicle to predict the trips from that vehicle. Our preliminary analysis using the shootout data
indicated that for an individual vehicle, the accuracy of predicting a trip from other trips of the
same vehicle ranged from 10% to 40% depending on trip characteristics, particularly soak time.
Thisanalysiswill help determine the installation time for future studies. Sampled vehicles should
be:

e 4dl in the same power/weight and emission technology class
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e atleast 20— 30 trips for each vehicle (5 —7 day install)
e Kkeep driver log to differentiate between drivers
e perform limited aggressive driving to capture al events

Follow up vehicle technology study. The main goal of this follow up study is to determine the
within group and between group variability in emissions, modal emissions behavior, and activity.
This information will be essential in the development of the test matrix for deployment of the
PEMS unit. This study will also allow for the estimation of the relative differences in emissions
between lab testing and on-road testing across the vehicle technology categories. At least 10
vehicles should be included within each major technology group. The length of installation
would depend upon the initial scoping study. Recommended vehicle technology groups:
e Cars
— Carbureted, no catalyst
— Carbureted, 2-way catalyst
— Carbureted, 3-way catalyst
— Fud injected, 3-way catalyst, Pre-Tier 1
— Fud injected, 3-way catalyst, Tier 1
e Trucks
— Carbureted, no catalyst
— Carbureted, 2-way catalyst
— Carbureted, 3-way catalyst
— Fud injected, 3-way catalyst, Pre-Tier 1
— Fud injected, 3-way catalyst, Tier 1

This follow up study would provide valid data for the initial stages of modeling of the NGM as
well as providing the information necessary for the design of the full scale deployment of the
PEMS units. The older vehicle technology groups, while having much higher emission levels,
may have more uniformity of emissions behavior across modal events. If this proves to be the
case, the 10 sampled vehicles may be sufficient for characterization of the behavior of the older
vehicle fleet. After completion and anaysis of this follow up study it will be possible to
determine the allocation of PEM S units necessary for development of the NGM.

Additional small scale studies. Several additional small scale studies using the PEMS units
should be considered. These studies would involve the installation of 15 to 20 PEMS units in
randomly selected vehicles either at different times of the year or at different locations having
different topography. The studies could include:

e fue effects
e grade effects
e seasonal effects
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3.5 Specific Recommendations For Laboratory Data Collection

Catalyst efficiency study. Catalyst behavior in the first two or three minutes of driving has a
large influence on the total emissions for the trip. As vehicle manufacturers continue to lower
hot-stabilized emissions the importance of the cold and warm start catalyst behavior will
continue to increase in importance. At the present time, catalyst behavior in the first couple of
minutes is not well characterized. Laboratory testing with pre- and post- catalyst sampling
provides the best source of accurate information for estimation of catalyst efficiency, light off
time, and improvements of warm up behavior modeling. A study of 10 — 20 vehicles, with
assorted mileage, soak times, and driving patterns at the start of each driving cycle would provide
arich data set for the estimation and modeling of catalyst behavior in the NGM.

Fuel effects study. The small size of fuel effects on emissions of individual vehicles makes the
measurement of fuel effects on road difficult. Thisis an important factor affecting emissions on a
regional scale and the inclusion of fuel effects in the NGM is important. For this reason, a
replicate of the on-road fuel effects study should be conducted in the lab to try and provide an
estimate of the scale of the fuel effects under controlled conditions.

e same fuelsin the on-road version
e variable driving/soak times

3.6 Specific recommendations for supplemental data collection

Implementation of the NGM will require accurate data on vehicle fleets as well as specific
vehicle driving behavior. While collection of this datais not directly related to the development
of the emission rate estimation portion of the model, it is critical for the implementation of the
model. The improvements in emissions modeling that can be accomplished through better
characterization of vehicle emissions moda behavior are of little use if real-world modal
behavior is not accurately characterized. The large differences in emissions rates across vehicle
technology groups and vehicle model year make accurate characterization of the on-road fleet at
least as important as improvements in the estimation of emissions of individua vehicles. In
research conducted at two national parks in the southwestern US, CE-CERT found that both the
vehicle fleet and the vehicle driving behavior differed significantly from the local default values
[Lents et al., 2001]. The difference in the age and vehicle class distribution of the parks resulted
in lower emissions estimates for all pollutants and vehicle classes at al speeds. VOC and CO
emissions range from about 34 to 48 percent lower than the baseline case, and NOx emissions
are about 53 percent lower than the baseline. The driving behavior within the two parks were
significantly different from each other and from the FTP driving cycle, with a variable effect on
emissions.

Vehicle activity. While the NGM can certainly be implemented with the current vehicle activity
representations used in Mobileb, its greatest value will be achieved if some additional vehicle
activity data are collected. Accurate soak time distributions and vehicle class specific driving
data would provide significant improvement in emissions predictions. The advent of relatively
inexpensive GPS data collection methods makes it possible to collect second-by-second driving
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trace data in a wide variety of vehicles. A modest vehicle activity study covering 5 to 10 cities
would provide adequate data for expansion of the vehicle activity characterization available for
the NGM. In addition, the study would serve as a case study for states and other government
entities to follow if they chose to improve their emissions modeling with locally specific driving
data.

Vehicle fleet data. Accurate characterization of the on-road fleet will improve emissions
estimates significantly. The collection of large numbers of license plates for vehicle fleet
characterization through digital still and digital video methods has been employed at CE-CERT.
Improvements in the NGM emissions estimates could be obtained by conducting a vehicle fleet
study in 5 to 10 cities to provide a more robust vehicle fleet profile. Analysis of the data would
focus on identification of methods for relating vehicle registration databases to the on-road fleet.
It is not anticipated that many states or other government agencies would want to spend the
money on locally specific on-road fleet studies so the development of an accurate methodol ogy
for estimating the on-road fleet from the vehicle registration records is essential.
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4. Integration of New and Old Data

For the NGM to be as, reliable, comparable, and accurate as current emissions models based on
dynamometer testing, a large amount of on-board data will need to be collected. Data will need to
be gathered for awide variety of vehicle types and driving conditions. Alternate data can serve to
fill voids while more data is collected. The variability of the PEMS will aso dictate the amount
of aternate data that will be required.

The limitation of on-board emissions data in fulfilling the scope of the NGM is the sheer amount
of data that is required to develop a thorough representation of different vehicle categories and
driving conditions. For thisreason, it is likely that rapid implementation of this methodology will
require defaulting to current laboratory testing data when emissions rates are needed for
vehicle/operational conditions that do not have PEM S data.

Data from other sources will be necessary in conjunction with on-board emissions data in the
NGM to address the limitations. Estimates of trip-to-trip variability and vehicle-to-vehicle
variability in emissions will be necessary for calculating the statistical power of the PEMS units
for differentiating between effects. In general, the higher the variability the greater the need for
laboratory data to estimate differences between fuels and other factors that do not have large-
scale differences.

Laboratory dynamometer data will serve both as a short-term step to fill the large data matrix,
and as an important tool for the study of fuel effects and catalyst efficiency effects. The PEMS
units will do the bulk of the data collection, however, the dynamometer data will fill many
essential gapsin the information necessary for accurate modeling.

The role of aternate emission testing will likely be in the evaluation of fuels and other factors
that have a small, but significant effect on emissions of individual vehicles. These types of
effects require more controlled conditions than that likely to be found in on-board testing.
Alternate emissions testing data will also play a significant role in the evaluation and estimation
of catalyst efficiency.

As noted above, the database methodology is ideally suited for the combining of laboratory and
on-road data for prediction of emissions. An example of incorporating new data into the
microscale level is shown in Table 23. CE-CERT's NCHRP database was searched to find a
vehicle similar to vehicle SRMO089TR_2 from the prediction test set. The new data was added to
the searchabl e database and new emissions results were determined.

Table 23. Comparison of emissions results for one test vehicle with inclusion of 1ab data.

SRM089TR 2] NGM |NGM/NCHRP
CO2(g) | 1149565 | 11573.04

CO (g) 12.98 10.94
NOX () 7.77 7.00
HC () 191 1.63
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The database methodology allows for easy inclusion of second-by-second laboratory data into the
microscale level as the previous example demonstrated. In addition, the current laboratory data
on vehicles having results for the FTP, US06, and EPA facility cycles can be included at the
mesoscale as well as the macroscale levels of the database model. In these cases, the laboratory
data would provide a robust data set for links and trips having similar driving behavior to the
driving cycles. The laboratory data provides a starting point for the database model that istied in
to the testing used to develop Mobile6, and allows for rapid expansion of the data matrix.

On-board data are likely too variable to accurately quantify small scale effects such as fuel. At
the present time laboratory data provides the best current methodology for measurement of these
effects. On-board emissions measurement variability will determine the scope of future
laboratory data collection. The greater the improvements in on-road measurement, the smaller the
need for laboratory testing. However, it is not likely that on-road emissions measurement will
replace laboratory data collection for the measurement of cold/warm start effects or for
estimation of catalyst efficiency.

5. Summary and Conclusions

In summary, the hybrid database model was developed and tested at the microscale, mesoscale,
and macroscale on both on-road spark ignition and compression ignition vehicles. In addition, it
was also tested at the microscale level on off-road compression ignition vehicles.

The hybrid database model approach has advantages and disadvantages:

Advantages

Consistency is maintained from microscale to mesoscale to macroscale by the use of the same
data for all three levels. In this study, because of the limited amount of data different prediction
sets were used at the different levels of the model. However, in alarger implementation the data
for al three levels would be the same, just broken down into smaller and smaller parts.

Emission estimates are based on directly measured “real world” emissions where the vehicles are
operated under typical road and environmental conditions. While laboratory dynamometers have
sophisticated computer controls to simulate the effects of wind resistance and road load, the on-
road datais directly measured under real conditions.

Sub 1-second driving events which may influence emissions are included in the data because the
data are directly included without the smoothing effects of modeling. Current computer
controlled vehicles monitor vehicle operation at much higher time resolution than current vehicle
emissions testing time resolution. Enrichment events and other computer controlled behaviors are
likely to be influenced by vehicle operation conditions that are not measured at the lower time
resolutions. The database model, by directly including the driving behavior in modal events,
includes these events.

The database methodology easily incorporates laboratory dynamometer emissions data as was
shown in Section 4. While the laboratory data must be measured at the second-by-second
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resolution to be included at the microscale level, bag results can still be incorporated at the
mesoscale and macroscale levels. Because there is little modeling overhead, resources can be
focused more on data collection than on the modeling itself.

The model can also be easily expanded with new on-road data, including toxics and greenhouse
gases. Because the model functions entirely on matching driving segments that are to be
predicted to driving segments within the database there is little overhead in modeling additional
emissions. For example, to predict NH3 the database search would be restricted to data sets
having NH3 emissions. The ability of the model to match the driving from the reduced data
would be hampered by the smaller pool of available vehicle trips, however there would be no
additional changes to the model.

Confidence bands can be estimated from the data for modal events, link emissions, and trip
emissions by modification of the search routine to identify multiple matches instead of using the
single best match to each moda event. At the mesoscale and macroscale levels the emissions
confidence bands would be calculted from the set of best link or trip matches.

Disadvantages

The single biggest problem with this methodology is the “sparse matrix” problem in which a
vehicle and driving condition must exist within the database to be predicted by the model. This
was overcome through the preprocessing of link and trip data to enable matching of driving
segments with “best” matches that do exist within the database. However, as was seen in the data
analysis, matching of vehiclesis subject to considerable variation in emissions rates even within
very similar vehicles.

The database methodology is also very data intensive, requiring both good vehicle matches, and
good driving matches. The methodology will be somewhat less data intensive if it can be
determined that effects such as air conditioning usage can be estimated through correction
factors. However, there will still be large amounts of data required on all vehicle types.

The third major disadvantage is that it is difficult to extend predictions beyond range of observed
vehicles and driving behavior. Unlike a physical parameter based approach, there is no way for
the database model to extrapolate beyond the range of the measured data.

Severa areas could be improved with additional research:

The cold start/warmup period for the microscale model could be modeled based on fuel use
instead of time. In this implementation of the database model the cold/warm division is based on
a regression of soak time on estimated warmup time. Anaysis of additional on-road and
laboratory data would improve the modeling of this critical portion of the trip. Modification of
the methodology to incorporate a fuel based warming estimate would improve the ability of the
model to predict emissions under a greater variety of starting driving patterns.

A second area where this methodology could be improved is the automation of the modal
division step of the modeling process. Testing of different methods of defining modes on the
microscale model would likely improve emission estimates. The short time scale of this project
precluded experimentation to identify the optimum methodology for dividing driving traces into
modal segments.

47



University of California, Riverside, CE-CERT NGM On-Board Data Analysis and Collection

The bus trip matching at the macroscale level could be improved with the development of better
driving summary statistics for the compression ignition vehicles. The summary statistics for the
bus data were statistically significant, however they were not highly correlated with emissions.
Improved summary statistics for the on-road compression ignition vehicles would do a better job
of relating driving behavior to emissions which will improve trip matching.
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