New Generation Mobile Source Emissions Modeling

John Koupal EPA Office of Transportation and Air Quality (OTAQ)

FACA Modeling Workgroup January 16, 2001

MOBILE6

- Current status
 - ⇒Coding and Alpha Testing complete
 - ⇒Limited beta testing underway
- Release: January 31, 2001
- Next Steps
 - ⇒Finalizing technical documentation
 - ⇒ Adding PM, Toxics
 - **⇒** Validation

MOBILE6 Major Emission Content Changes

- Exhaust Emissions
 - ⇒ Light and heavy duty emission rates
 - ⇒ Facility-based off-cycle and speed corrections
 - ⇒Sulfur effects and fuel composition
 - ⇒Heavy duty NOx excess
 - ⇒ Air Conditioning
- Evaporative Emissions
 - ⇒Liquid leaker emissions
 - ⇒New diurnals and resting loss data
 - ⇒ Multi-day and partial-day diurnals

MOBILE6 - Fleet and Activity Changes

- Fleet characterization
 - ⇒ Mileage accumulation
 - ⇒ Registration (age) distributions
 - ⇒VMT mix
- Vehicle activity
 - ⇒ Trip length estimates
 - ⇒ Soak time distributions
 - ⇒Trip start and trip ends
 - ⇒ VMT by hour of day, facility, speed

MOBILE6 Structural Changes

- Separation of start/running
- Additional vehicle sub-classes
 - ⇒LDGT 1-4, HDGV 2b-8b, HDDV 2b-8b, Buses
- Database output option disaggregated by:
 - **⇒** pollutant
 - ⇒ start/running (exhaust)
 - ⇒resting/running/diurnal/hot soak/refuel (evap)
 - ⇒ vehicle class
 - ⇒age
 - **⇒** facility
 - ⇒hour

MOBILE6 is a much better tool...

- Better represents real world emissions
- Better estimates program benefits
- More useful tool for transportation applications

BUT

It is still fundamentally a "macro-scale" model.

A NEW GENERATION EMISSIONS

MODEL IS NEEDED

NRC Recommendations

- Develop microscale and mesoscale modeling capability for transportation applications
- Coordinate with DOT, ARB and others to develop long-range mobile source emissions modeling plan
- Improved emission characterization:
 - ⇒In-use emissions
 - ⇒ High Emitters
 - ⇒ Heavy-Duty Vehicles
 - ⇒PM and Toxics

NRC Recommendations, cont.

- Model evaluation:
 - ⇒ Validation
 - ⇒ Sensitivity and Uncertainty analyses
- More frequent updates

New Generation Model - Effort to Date

- DOT coordination
 - ⇒ Short-term goal: TRANSIMS pilot implementation
 - ⇒Long-term goal: Coordinate TRANSIMS and NGM
- Site visits
 - ⇒ ARB: EMFAC2000, GIS work
 - ⇒ UC Riverside: Comprehensive Modal Emissions Model
 - ⇒Georgia Tech: MEASURE / MOBILE MEASURE
- Intra-Agency Mobile Source Modeling Workgroup
 ⇒OTAQ, ORD, OAQPS, Region

New Generation Model - Planning Goals

- Issue Paper / Initial Proposal April 2001
- Comprehensive Plan September 2001
 - ⇒ Model system structure
 - ⇒ Model algorithms
 - ⇒ Underlying data and research needs
 - ⇒ Linkage with transportation and air quality models
 - ⇒ Validation plan
 - ⇒ Project timing

New Generation Model -Proposed Guidelines (1)

COMPREHENSIVE: Estimate emissions at the microscale, mesoscale or macroscale for criteria pollutants, particulate matter, air toxics, and greenhouse gases

- Consistency between scales (emissions, activity, fleets)
- What are the important elements at each scale?
 ⇒ e.g., regional programs less important for evaluating TCMs
- Data limitations (e.g. microscale data for toxics, PM)

Model Scope

New Generation Emissions Model

New Generation Model -Proposed Guidelines (2)

COMPATIBLE with current and advanced transportation and air quality modeling frameworks (TRANSIMS, MODELS3)

- Supporting widely varied approaches/software for transportation activity generation (micro → macro)
- MODELS3 integration
- Software issues

New Generation Model -Proposed Guidelines (3)

USEABLE as defined by: ease of use, reasonable software/hardware requirements, ability to generate and input activity and fleet information at the desired level of analysis.

- "Ease of use" means different things for different users
- External software applications (e.g.GIS)= \$\$\$
- Current meso/micro models require more than a PC
- Users will have wide-ranging data availability:
 - ⇒ Low-end: aggregate VMT, vehicle registration
 - ⇒ High-end: Remote sensing, vehicle address matching, land-use

New Generation Model -Proposed Guidelines (4)

DATA-DRIVEN: underlying database structure allowing updates based on new data from multiple sources, including in-use emissions and activity data

- Updates = new data integrated into existing structure
- Goal is a shared dataset
- How would PEMS and/or GPS data fit?

New Generation Model -Proposed Guidelines (5)

MODULAR: Structured to enable access, updates and validation of individual modules

- Emission "core" concept
- Some users may only desire certain data elements (particularly emissions), not entire model
- Validation plan defined in advance

New Generation Model -Proposed Guidelines (6)

WELL-DOCUMENTED: documentation covering the model and its use, model operation, structure, code, algorithms, inputs, testing and user guidance.

Considerations:

 Guidance documentation will be integral part of system if input data becomes non-standardized

New Generation Model -Proposed Guidelines (7)

"CERTIFIED": Consistent with emerging EPA guidelines for model development.

- Council for Regulatory Environmental Modeling (CREM)
 - ⇒ Peer review, validation, uncertainty, documentation
- Coding standards
- Handling uncertainty
 - ⇒ Model predictions <u>and assumptions</u>
 - ⇒ Policy (e.g. SIPs, Conformity)

New Generation Model -Proposed Guidelines (8)

COORDINATED: Developed in coordination with stakeholder, users and other entities engaged in mobile source modeling

- Role of the FACA Modeling Workgroup
- Coordination with ARB's post-EMFAC2000 work
- Developing a meaningful comment process

Short-Term Drivers

- Motor Vehicle Toxics Rule
 - ⇒ Desire micro/mesoscale emissions modeling in several urban area for improved exposure modeling resolution
- Desire to use microscale models to evaluate transportation measures in conformity analyses
 ⇒TRANSIMS pilot implementation begins Fall 2001
- Climate Change
 - ⇒ Need to develop inventory development capability for policy evaluation

Possible Interim Steps

- Develop macro/meso/microscale capability within Geographic Information System (GIS) framework
- MOBILE6 (with PM, toxics, GHGs) remains the basis of emission predictions
- Source of activity and fleet information depends on analysis scale
- Structure with an eye towards NGM

Possible Interim Steps - Macroscale

- Purpose: Develop a structure for national inventory development using MOBILE6 (w/ PM, Toxics, GHGs)
- Activity and fleet info aggregated by grid or county
- GIS would allow easy shift in scales: grid > county > nonattainment > state > region > nation
- Maintain national database for county-level activity, fleet and control program information

Possible Interim Steps - Micro/Mesoscale (1)

- MOBILE6 emissions disaggregated to smaller scale
- Allows evaluation of microscale vehicle activity within MOBILE6 SIP/Conformity budgets
 - ⇒ Initial step could simply be guidance which allows use of micro/meso models within context of MOBILE6 budgets
- Allows more resolved inventories accounting for speed/accel activity, spatial/temporal allocation (Toxics, Climate Change)

Possible Interim Steps - Micro/Mesoscale (2)

- Activity and fleet information
 - ⇒ MEASURE (Ga Tech/EPA ORD) framework promising
 - ⇒ Activity info via Travel Demand Model
 - Speed and volume by link
 - Disaggregation to speed/accel distribution via driving surveys
 - Trip generation/attraction by zone
 - Further spatial allocation based on land use
 - ⇒Fleet info via vehicle registration database
 - Spatial allocation via address matching, census data
 - Further refinement/validation possible with RSD

Possible Interim Steps - Micro/Mesoscale (3)

- Emissions information
 - ⇒ MOBILE6 (with PM, toxics, GHGs) provides aggregate emissions predictions
 - ⇒ Allocation of MOBILE6 emissions at the link level to account for speed/accel behavior on that link
 - Would require modal or microscale model to accomplish
 - Evaluate existing models (e.g. UC Riverside, Georgia Tech) to determine best approach
 - ⇒ Aggregate MOBILE6 emissions untouched for sources with no micro/meso component (e.g. evap, heavy-duty)

Possible Interim Steps - Micro/Mesoscale (4)

- Target selected urban areas
 ⇒Could support toxics rule exposure analysis
- Develop guidance for other areas to adopt
- Develop database for activity and fleet inputs

Interim Steps --- NGM

- Update modules as appropriate:
 - **⇒**Emissions
 - More integrated approach to macro/meso/micro emissions
 - Better data resolution on heavy-duty, toxics, PM, GHGs
 - PEMS
 - **⇒** Activity
 - Advanced transportation models, GPS
 - ⇒Fleets
 - RSD, VIN decoding
- Stretch Goal: Incorporate NONROAD

Next Steps

• Issue Paper / Initial Proposal - April 2001

• Comprehensive Plan - September 2001

• FACA Modeling Workgroup will meet in conjunction with the MSTRS to provide comment on these products

• Contact: koupal.john@epa.gov