Summary of Swedish Research Using Crash Recorder Data

Robert Thomson & Helen Fagerlind Crash Safety Division

Chalmers Crash Safety Division

- Injury Biomechanics Research
 Primary focus on:
 - neck injuries
 - head injuries
 - pedestrian safety

Research Tools

- Mechanical Testing
 - Including development of crash test dummies
 - BioRID: Biofidelic Rear Impact Dummy
- Computer Simulation
 - MADYMO
 - RADIOSS
 - LS-Dyna

Accident Investigation / Reconstruction

Chalmers University of Technology

CHALMERS

Crash Severity

Conventional Reconstruction Methods

Crash Recorder / EDR

- Opportunity to look "inside" the crash event
- Remove one level of uncertainty in collision analysis
- Allows injury causes and injury mechanisms to be better understood

Crash Recorder Systems in Sweden

- Volvo Cars
 - Digital Accident Research Recorder (DARR)
- Saab Automobile AB
 - Crash Memory
- Folksam Research
 - Crash Pulse Recorder (CPR)

DARR

- Volvo Cars airbag sensor uses a piezoelectric accelerometer
- A recording function during the impact phase was added to the sensor in 1994
- Only Volvo Cars has access to the recorded data

CHALMERS

DARR Data Processing

Crash Memory

 Saab Automobile AB collects crash pulses in Sweden for internal research purposes

Crash Pulse Recorder (CPR)

- Folksam Research developed the CPR
- Since 1992, 160 000 cars have been equipped in Sweden
- Previous vehicles fitted with a CPR include Honda, Opel etc., currently installed in most new Toyota vehicles registered in Sweden

Crash Pulse Recorder (CPR)

- Innovative crash event recorder
- Motion of a spring-mass mechanism saved on photographic film
 - 3 g activation threshold
 - 1000 Hz recording rate
- Film is processed after unit is removed from vehicle

Crash Pulse Recorder (CPR)

- Accident data presented by Folksam researchers
- Cooperation with:
 - Chalmers

. . .

- Autoliv Research
- Swedish National Road Administration

CPR Data Applications

- Grouping injury data with reliable collision severity parameters
- Analysis of crash pulse components
 Peak and average acceleration
 - Pulse shape characteristics
 - ΔV , ΔV_{33} , ΔV_{66} , ...

CHALMERS

Chalmers University of Technology

CPR Analyses

Pulse shape characteristics to investigate injury thresholds injury mechanisms

20

25

30

15

Peak Acceleration [g]

10

0.8

0.6

0.4

0.2

0

5

Risk

CPR Recorded Pulse Shapes

Comparison of Occupant Responses

Long term neck injury

No long term injury

Simulation based on crash pulses shown in previous slide

Results in: The effect of crash pulse shape on AIS1 neck injuries in frontal impacts Kullgren A, Thomson R, Krafft M 1999 IRCOBI Conference, Barcelona, Spain

CPR Applications

- Reconstruction of occupant kinematics using advanced occupant simulation codes with crash pulse data as input
- Currently used in developing an injury criterion for neck injuries
- Take advantage of the "non-volunteer" test subjects
 - Can provide data not available from biomechanical testing based on human volunteers

CHALMERS

Potential Applications of Detailed Crash Data in Sweden

- Pre-crash data to investigate collision causation
 - Evaluation of active safety systems
- Continued accident reconstruction of occupant kinematics
- National and European Union research activities

Potential for EDR Standardisation

- Opportunity to focus research activities away from "guesswork" of injury severity measures and focus on injury biomechanics
- Better product performance
- Better rulemaking
- Safer roads!

Contact Information

- Robert Thomson
 - -+46 31 772 3645
 - robert.thomson@me.chalmers.se
- Helen Fagerlind
 - -+46 31 773 3613
 - helen.fagerlind@me.chalmers.se