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Preface

This document was written in WordPerfect 6.1 and has two features only available when viewed
on the computer.  They are included especially to aid the student:

HYPERTEXT  (jumping to connections in the document)
Green, bold, underlined text is , which, when you click on it,  takes you to another part
of the document, usually to define or otherwise reference the green text.  To return from a
definition, first turn on the hypertext feature bar by clicking Tools/Hypertext from the menu bar. 
Then click on the Back button to return you from whence you came.

QUATTRO PRO  (experimenting with data in the tables)
In addition, IF you have Quattro Pro 6.02 (for Windows) spreadsheet installed, you can double-
click on most of the tables to open an abbreviated version of Quattro Pro (this takes time to
open).  Then you can experiment with the data, at least in cells that are in Italics.  Other cells are
“protected.”  If you do experiment, do not resave this document or some of the references in the
text to the tables will be wrong.  “Comments” near the tables explain particulars.

This document was designed to be printed on a Hewlett-Packard LaserJet 4si.  If a printer with
less resolution is used, even a Hewlett-Packard LaserJet IIISi, the colors of the fonts in the tables
may have to be changed before they are legible.
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Section 1:  General

1.1. Background

Congress directed the Secretary of Transportation, through the Intermodal Surface
Transportation Efficiency Act (ISTEA ) of 1991, to carry out a study or studies to determine the
impact of safety belt and motorcycle helmet use. The Act required the report of findings to be
submitted to Congress 40 months after funds had been made available by the Secretary for these
studies. In order to carry out the studies described in the Act, the National Highway Traffic Safety
Administration (NHTSA) used the resources provided in the legislation to fund states to develop
Crash Outcome Data Evaluation Systems (CODES). NHTSA prepared a Report  to Congress1

based on these analyses.

The data sets resulting from CODES have been used to develop this report and its accompanying
Technical Report , but are of much broader interest to NHTSA. Therefore, it would be useful to2

train selected analysts at the National Center of Statistical Analysis (NCSA) to use the existing
CODES data.

In the past, research questions that needed data from disparate data sets required the construction
of small-scale, labor intensive, hand-linked data sets. The states in the CODES project used a
cost-efficient method ( ) of matching crash data to medical and insurance
data. NHTSA wants to expand the establishment and use of these linked data sets within non-
CODES states and territories. Therefore, it would also like to produce a training program for
analysts in the state agencies corresponding to NCSA.

1.2.  Scope and Objectives 

This report addresses , a powerful statistical analysis used extensively in the
CODES Report to Congress. It allows more advanced analyses than two simpler types of
analysis: the Chi-square test (which tests for the independence of two qualitative ( )
variables), and linear regression (which analyzes relationships between continuous ( or

) scales). It allows researchers using qualitative measures of effectiveness, such as ‘died
versus survived,’ to investigate relationships between that measure and many other measures
simultaneously, whether those other measures are qualitative or quantitative. In the future, the
CODES data sets, described in the CODES Usage Manual (the deliverable for task 2 of this
project), will be analyzed to answer many questions other than those addressed in the Report to
Congress. In addition, the CODES states and other states will continue to collect and analyze
linked data sets similar to those collected for the original project. This document will introduce
logistic regression to analysts who have limited experience or no experience with it.
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Section 2:  Assumptions

This document is based on the following assumptions:

2.1. User’s Experience
Although the document presents some material on the Chi-square test and linear regression, that
information is a review rather than an introduction. The document assumes that the user has had a
first course in applied statistics (not necessarily theoretical statistics), at the undergraduate level
or higher, or has had the equivalent experience with statistics. In particular, the user should be
familiar with:
< The four basic scales of measurement: , , , and ;
<  and simple Chi-square tests of association used to test differences in

proportions;
< Basic  for predicting one measure from other measures.

2.2. Dependent Variable Type
The dependent variable in the analyses using  will always be a dichotomous
(binary, yes-no, true-false) variable, such as died versus survived, or injured versus not injured.
Logistic regression does allow an ordinal variable, e.g. a rank order of the severity of injury from
0 to 4, as the dependent variable, but only binary severity measures are discussed in this
document.

2.3. Software
The examples in this document use PROC LOGISTIC of SAS , although there are other®3

procedures within SAS that also do logistic regression (PROC CATMOD and PROC PROBIT).
Of course, many other statistical software packages can compute logistic regression but they will
not be discussed here.

2.4. Application, Not Theory
The thrust of the document is application of the logistic regression, not its underlying theory. 

2.5. System Generalization
The CODES data at NHTSA reside only on VAX machines in the NHTSA Research and
Development Data Center due to security agreements with the states and, in the case of the larger
states, due to data storage requirements. As a result, descriptions of analysis examples will not be
generalized beyond that system.



Driver SexDriver SexDriver SexVehicle
TotalsFemaleMaleTotalsFemaleMaleTotalsFemaleMaleType

3.42.21.2187.0065.08121.9218777110Cars
9.96.53.563.0021.9241.08631053PickUps

= Chi-13.38.74.6250.0087.00163.0025087163Totals
Square
StatisticCell Chi-Square Values Expected Values =Observed Values

 = (O-E)^2/ERow Total * Col. Total
/Grand Total

3

Figure 1.  Example of Chi-Square Test.

Section 3:  Review of Pertinent Statistical Concepts

3.1. Causality
The statistical techniques discussed in this document measure associations between variables, but
they do not guarantee causality. For example, just because urban crash locations are associated
with lower mortality rates does not mean rural crash locations are the root cause of more deaths.
As another example, just because lower posted speed limits are associated with lower mortality
rates does not mean that higher speed limits cause more deaths. In both examples, the speed of
the vehicles is a better reason for the associations. Greater forces are involved when a vehicle is
going 55 miles per hour than 25 miles per hour. However, since NHTSA did not have vehicle
speed available, it used these two variables as substitutes or surrogates for vehicle speed. 
Therefore, even if posted speed limit was a perfect predictor  of injury level, it would not prove
that higher speed limits caused more injuries.

Causality must be established though experimentation, which controls all but one or a few of the
variables thought to affect the outcome variable. In the case of human injury as the outcome
variable, such experiments would be illegal and unethical. Therefore, studies are made  of existing
records, such as the Fatal Accident Reporting System (FARS) and the CODES data files,
supplemented by experiments using instrument crash dummies, cadavers, or pigs as subjects.

3.2. Chi-square test of association among qualitative variables
This analysis tests for an association or dependence between two variables. More sophisticated
versions can relate more than two variables, but in this document we will wait until we discuss

 before addressing that situation. Almost any basic statistical textbook will
discuss this test. Two books with more detail are Upton  and Fleiss .4  5

3.2.1 Example: The simplest version of the Chi-square test deals with two binary variables.  In
this example, type of vehicle (car versus pick-up truck) and gender of driver will be used.  One
might expect drivers of  pick-ups to be male more often than female. Actually, there are more
male drivers for almost any vehicle type, so what we really mean is the  of a driver
being a male is higher if the vehicle is a pick-up (as opposed to a car). Statistically, this means
there is an association or dependence between driver sex and type of vehicle. 
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The rationale behind the test is shown in Figure 1. If there is no association, then the distributions
of vehicle type will be the same for males, for females, and for the Row totals.  In the Row Totals,
about 75% of the vehicles are cars, so if there is no association, 75% of the males should be
driving cars and 75% of the females should be driving cars.  At the same time, if there is no
association, then the distributions of sex will be the same for cars, for pickups, and for the
Column Totals.  In the Column totals about 66% of the drivers are male, so if there is no
association, 66% of the cars should be driven by males and 66% of the pickups should be driven
by males.  Here is how the Expected Values are computed: For each cell, the row total for the
cell is multiplied by the column total for the cell, and then divided by the grand total
(187 * 163 / 250 = 121.92 for the upper left cell).  If there is no association, the expected values
will be near the observed values.

The Chi-Square statistic measures how much the observed value (O) in each cell is different from
its expected value (E). Each difference (O-E) is squared, then divided by the expected value. The
total of all the cell Chi-Squares is the Chi-Square statistic for the whole table.

3.2.2 Interpretation: If the Chi-Square statistic is relatively large, then there is an association
between the two variables, that is, one can be predicted from the other.  In the case of the 2 X 2
table, the statistic must be larger than 3.84 if you are using the 5% , or 6.63
for the 1% level of significance. With a value of 13.3, here we have a statistically significant
difference. The statistic can range from 0 (if the expected values are exactly the same as the
observed values) to the grand total (250 in this case). The latter means the variables are perfectly
associated. However, this can occur in two directions: (1) All males drove pick-ups and all
females drove cars, or (2) All females drove pick-ups and males drove cars. Note that the size of
the Chi-Square statistic does not tell the direction of the association.  It does not tell whether
males are associated with pick-ups or cars.  It is fairly obvious here that males are associated with
pick-up trucks, but the direction is not so obvious in more complex situations.  There are many
other measures of association, some of which do show the direction of the association. We will
deal with two of them, the  and , later.

3.2.3 Warnings:  This Chi-Square Test is an approximation of tests which use the more
sophisticated multinomial distribution.  The Chi-Square formula given is the simplest possible. For
a better test of the 2 X 2 table, Yates’ correction is generally used, which gives a closer, more
conservative approximation.  If the expected values are very large, the difference is negligible. In
the present example the Yates’ corrected statistic is 8% lower than the uncorrected. When using
SAS , Yates’ correction is called “Continuity Adj. Chi-Square.” For tables larger than 2 X 2, Yates’®3

correction does not apply and the formulas used in the table are appropriate.

It is important to note that in large computerized data sets, it is easy to run hundreds of tests, and
some of these tests will appear significant when actually it is only a random occurrence, and there
is really no significant association. Two of the ways to test whether the association is real or not
are to (1) check the literature to see if such an association has been significant elsewhere, or (2)
run the same test on another independent sample (use data from another year or another location).
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Figure 2.  Example of Linear Regression (Fictitious Data)

3.3. Linear Regression between quantitative variables
Linear regression measures the relationship between quantitative variables and is used to predict
the outcome (dependent) variable in future situations. The simplest case is between two variables,
such as age and height, or blood pressure and pounds overweight, or speed in a crash and inches
of crush on the front of a vehicle.  The last will be used as an example here.  One variable (crush)
is the outcome (dependent) variable, and the other (speed) is the independent variable, also called
the covariate or regressor.

There are more sophisticated types of regression.  In multiple regression, there is one outcome 
(dependent) variable and many covariates.  In the CODES project, this type was used to
investigate the effect of many covariates on the cost of hospitalization.  Even more sophisticated
is multivariate analysis, which has multiple outcome (dependent) variables and one or more
covariates.  This approach is required when there are repeated measurements over time on the
same case (which, in different projects, could be a person, an intersection, or a state).  More detail
on linear regression analysis is given in Kleinbaum and Kupper .6
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     3.3.1 Example: The table in Figure 2 shows some data from a fictitious research study in
which engineers crashed ten identical cars into an immovable object, varying the speed at which
the cars hit and measuring the centimeters of crush in the front end of each car.  Since all variables
except speed are held constant, one can say in this case that the speed causes the crush.  Two
lines are shown in the top graph:  The crooked line (red on the screen or black on a print-out)
shows the data as measured.  The straight line (green on the screen or gray on a print-out) shows
the predictions resulting from the linear regression.  The   of the straight line is the X
coefficient (see the line in Figure 2 near the bottom of the table).  This is also referred to as the
‘parameter’ for the covariate.  The  is the predicted crush when speed is 0 (see the line
labeled Constant just below Regression Output).  These are the two computed constants in
simple regression.  In general, the formula for the line is Y’ = $ + $ X, or in this case, Y’ =0  1

-5.682+0.855*X.  $  (0.855) is the parameter for the covariate ‘speed.’  Y’ (y-prime) is the1

predicted value of crush.

3.3.2 Interpretation: If the observed points are very close to the line, as they are in this case,
then the relationship between the variables is very strong.  The amount of association is quantified
by the Pearson , which is 0.97 in this case, almost perfect. The line
above, R Squared, shows how much of the variability in the crush data is explained by the linear
regression.  If speed was unknown, the best guess for crush would be 37.1 cm, and one measure
of the variability of that estimate would be 850.69.  If the speed was known, the best estimate
would be given by the regression formula, and one measure of the variability around the
regression line would be 45.71.  The difference in these measures (850.69 - 45.71 = 804.98) is the
variance explained by the regression formula, and the  of the variance explained by the
regression results is 804.98/850.69 = 0.946.  Note that this is R Squared.

This example showed a very strong relationship, as is common in a well-controlled engineering
study.  In crash investigation the associations will seldom, if ever, be this strong.  Many of the
statistics in the table, which are obviously significant in this case, may need to be tested when
experimental controls are less rigorous.  Kleinbaum and Kupper  show how to test whether the6

 is significantly different than zero, whether the intercept is significantly different than zero,
whether slopes (or intercepts) from two different sets of data are statistically different, and so
forth.

As a rough test, however, you can look at the range of the parameter (the coefficient for speed),
plus or minus two standard errors for the parameter.  For the slope in this case, the range is
0.855-(2*0.068) to 0.855+(2*0.068), which is 0.719 to 0.991. Because this range does not
include zero, the slope is significantly greater than zero.  This is good, because you can use speed
to predict crush.  (In crash reconstructions, you could reverse the outcome measure and the
covariate, re-run the regression analysis, and predict speed before impact from crush.)  For the
intercept in this case, the range is -5.682-(2*7.126) to -5.682+(2*7.126), which is -19.934 to
8.570. Because this range does include zero, the intercept is not significantly greater than zero.  In
this case, this is good because it is obvious that crush would be zero at zero speed.
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3.3.3 Warnings: Linear regression is not appropriate when the data do not fit a straight line, as in
Y = X .  Graphing the data and the regression line will show large non-linear trends.  The2

Residual column and the lower graph in the table allow closer inspection.  The scatter of points
above and below the zero residual line should be random.  In this fictitious example, the residual
at 100 Km/hr is the highest of all, showing more crush than expected.  Above 90Km/hr, the
relationship may become non-linear.  This relationship is definitely nonlinear at and below zero,
because the car does not expand if it sits at the barrier or if it backs away from the barrier.  On the
other hand, within the range examined, the data are extremely linear.  Even in data that are
obviously non-linear, small sections may be straight enough to be approximated, for engineering
purposes, by linear regression.  Common sense must be applied in all situations.

In addition, linear regression requires  or  scales of measurement, since it assumes
that for a constant change at any point on the independent variable, one can expect a constant
change in the dependent variable.  For instance, if the difference between 5 and 10 on the
measurement scale is not the same as the difference between 35 and 40, then the linear regression
formula will not be meaningful.



InjuryMortality
Number

9,988InjuredDead168
64,224UninjuredAlive74,044
74,212Totals74,212

Odds of
0.15552InjuryDying0.00227

6.430No InjurySurvival440.738
          One is the reciprocal of the other.

Logit of
-1.86099InjuryDying-6.08845
1.86099No InjurySurvival6.08845

-0.00000Totals0.00000

Probability of
0.13459InjuryDying0.00226
0.86541No InjurySurvival0.99774
1.00000Totals1.00000
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Figure 3.  Comparison of Odds, Probabilities,
and Logits.

Section 4: Logistic Regression

4.1. , , and .
All three of these terms describe how often
something happens relative to its opposite
happening, such as winning or losing, or dying
or surviving.  Thus, they all deal with a special
case of  measurement scales:
dichotomous (binary) outcome measures.

Figure 3 shows the differences among the three. 
The data are for drivers in police-reported
crashes, derived from one of the CODES states. 
The identical totals are not a coincidence.  It is
the same data set, but with two different cut-
points to make the dichotomies.

Odds are one category divided by the other,
(168/74,044) so odds for dying are the
reciprocal of the odds for surviving.  Thus the
odds of dying are approximately 1 to 440, and
the odds of injury are 1 to 6.5 (or 2 to 13 to use
whole numbers).  Odds can range from zero to
plus infinity, with the odds of 1 indicating neutrality, or no difference.

The logits are simply the natural log of the odds [Ln(odds) or Log (odds)].  Note that the twoe

logits are always symmetrical (they sum to zero).  They range from minus infinity to plus infinity,
but because they are logarithms, the numbers usually range from +5 to -5, even when dealing with
very rare occurrences.

The probabilities are one category divided by the total (168/74,212).  Note that they always sum
to 1.000.  The probability of dying is .00226, or approximately 2 in a thousand.  The probability
of injury is .13459, or roughly more than 1 in ten.  The range of probabilities is zero to one.  Note
that when a very small number is in the numerator and a very large number is in the denominator,
odds almost equal probabilities, but this is not true for the majority of cases.

4.2. , , and .
Briefly, an odds ratio (O.R.) is the ratio of two odds, and relative risk (R.R.) is the ratio of two
probabilities.  Another dichotomous factor (called the regressor, covariate, or independent
variable), such as safety-belt use, splits the data into two parts, and odds (or probabilities) are
computed for each part.  Generally, the top of each ratio is associated with the dangerous
condition even though, for the CODES report, NHTSA decided to put the  (or

) for belt users (rather than non-users) on top.  This was so effectiveness measures
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would be similar to those reported previously.   is merely 100*(1- ). 
Note that unlike the simple Chi-Square test of association, a direction is implied with 
and relative risk.  No one expects deaths to increase when safety belts are worn, or incidence of
measles to be higher when students are not exposed to a child with the disease.

4.2.1 Example: The table in Figure 4 continues the example from Figure 3, but now the odds
and probabilities are separated for each belt condition.  The dead and the alive are separated into
belted and unbelted, and likewise for the injured and uninjured.  The top section presents the raw
numbers, the middle section shows the odds and odds ratio, and the bottom section shows
probabilities, the relative risk, and effectiveness.

4.2.2 Interpretation: Look at the Mortality side.  Your odds of dying while wearing a safety belt 
are 64 to 62,424, or roughly 1 to 1000.  Your odds of dying without a belt buckled are 104 to
11,620, or roughly 1 to 100.  The odds ratio, using belted divided by unbelted, is 0.1146.  This is
approximately 1/9, so you can say, “Your odds of dying with your safety belt fastened are roughly
one ninth your odds of dying with your safety belt unfastened.”  Or you can compute the inverse
of 0.1146, which is 8.73, and say,  “Your odds of dying if your safety belt is unfastened are
roughly nine times higher than your  of dying if your safety belt is fastened.”

The interpretations of the  and  are similar, and the actual numbers are
very close when dealing with fatalities.  However, the differences are greater when dealing with
any injury (which is not so rare).  Here the odds of injury, given the driver was belted, are 19 to
100, but the  in the same situation is 16 in 100.  The odds ratio is 0.371 but the
relative risk is 0.472.  The important point is that the two numbers are based on the same data,
and have similar meanings.  Trouble arises when people compare two studies (where one study
uses odds and the another uses probabilities) and do not realize the statistics are different.

For , one could say, “If unbelted drivers had worn their belts, 88% of those who
died would have survived the crash.”  For the injury figures, one could say, “If all unbelted drivers
had been wearing their belts, 53% of those who were injured would not have been injured.”

4.2.3 Warnings:  These figures have not been adjusted for over-reporting (people who were
unbelted often say they were belted).  More realistic estimates of odds ratios and effectiveness are
given in the Report to Congress .  1

With these measures, one must be very careful when assigning the values for the dependent and
independent variables.  Reversing which is a 0 and which is a 1 inverts the interpretation.  For the
outcome measures in this example, 1 meant dead (for mortality) or injured (for morbidity).  For
the covariate, 1 meant belted. 

If ‘dead’ (the dependent variable) had been coded as 0, and ‘survived’ had been coded as 1, the
odds ratio would be inversed ( 1 / 0.114552 = 8.73), but the relative risk would not, because it
would be using two different probabilities.  The probability of surviving, given belt was worn, =
0.998976, and given belt was not worn, = 0.991129.  RR(surviving) =  1.007917, which is not the
reciprocal of 0.115458.  If ‘unbelted’ (the independent variable) had been coded as 1, the odds



InjuryMortality
Number:

A9,988InjuredBeltedDead64A
B52,500UninjuredBeltedAlive62,424B
C3,973InjuredUnbeltedDead104C
D7,751UninjuredUnbeltedAlive11,620D

74,212Grand Total74,212

E=A/B0.190248Of BeingOdds, givenOf Dying0.001025E=A/B
InjuredBelted

F=C/D0.512579Of BeingOdds, givenOf Dying0.008950F=C/D
InjuredUnbelted

E/F0.371158Odds Ratio0.114552E/F

G=0.159839Of BeingProbability,Of Dying0.001024G=
A/(A+B)Injuredgiven beltedA/(A+B)
H=0.338878Of BeingProbability,Of Dying0.008871H=
C/(C+D)Injuredgiven unbeltedC/(C+D)
RR=G/H0.471671Relative Risk0.115458RR=G/H
100*(1-RR)52.83%Effectiveness88.45%100*(1-RR)
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Figure 4.  Odds Ratios, Relative Risk, and Effectiveness.

ratio would be inversed ( 1 / 0.114552 = 8.73 for mortality, and 1 / 0.371158 = 2.69 for injury),
and the relative risk would be inversed also ( 1 / 0.115458 = 8.66 for mortality, and 1 / 0.471671
= 2.12 for injury).

4.3. Regressions Using 
The logits have an advantage over odds or probabilities.  Their neutral point is zero and they are
symmetrical about zero.  See .  The logit for dying (-6.08845) is the opposite of the logit
for surviving (+6.08845).  This is not true for odds or probability.

When we transform odds into logits and use logistic regression, we assume the resulting function
is linear, and the problem can be treated, in a rough sense, like linear regression.  As a minimum,
we avoid the embarrassing problem of computing  odds or probabilities that are less than zero,
which might happen if we used odds or probabilities as raw data in a regression analysis.  Thus,

 allows  outcome variables to be compared with multiple covariates,
which can be any measurement scale, nominal through ratio.  For more background and detail in
its use and interpretation, see Hosmer and Lemeshow .7

4.3.1 Example: The table in Figure 5 displays probabilities, odds, and logits for some
hypothetical data which were manipulated to emphasize how logits could be more linear than the
others.  As before, vehicle drivers are separated into injured and uninjured, belted and unbelted,
plus a measure of crash intensity called Delta-V.
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Figure 5.  Relations among Probability, Odds, and Logits.  Hypothetical Data on the Relationships among Injury, Belt Us
Speed upon Impact).

Col A Col B Col C Col D Col E Col F Col G Col H Col I Col J Col K Co
Belted Ln(Col D) Unbelted Ln(Col I) (D

Odds of Probability Logit  Odds of Probability Logit Od
Delta-V Injured Uninjured Injury of Injury Ln(Odds) Injured Uninjured Injury of Injury Ln(Odds) Ra

10 131 9869 0.013 0.013 -4.322 504 9496 0.053 0.050 -2.936 0
20 271 9729 0.028 0.027 -3.581 1003 8997 0.111 0.100 -2.194 0
30 554 9446 0.059 0.055 -2.836 1900 8100 0.235 0.190 -1.450 0
40 1074 8926 0.120 0.107 -2.118 3250 6750 0.481 0.325 -0.731 0
50 2000 8000 0.250 0.200 -1.386 5000 5000 1.000 0.500 0.000 0
60 3469 6531 0.531 0.347 -0.633 6800 3200 2.125 0.680 0.754 0
70 5159 4841 1.066 0.516 0.064 8100 1900 4.263 0.810 1.450 0
80 6923 3077 2.250 0.692 0.811 9000 1000 9.000 0.900 2.197 0
80 8200 1800 4.556 0.820 1.516 9480 520 18.231 0.948 2.903 0

100 9066 934 9.707 0.907 2.273 9749 251 38.841 0.975 3.659 0
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4.3.2 Interpretation: As Delta-V goes up, so does the severity of the crash, as can be seen from
the steadily increasing , , and  of injury as Delta-V increases.  There is
also a safety effect between the belted and unbelted groups.  On every row, the odds,
probabilities, and logits of injury are lower for belted drivers than for unbelted drivers.

The graphs at the bottom of the figure reveal the patterns among the three measures.  In the
probability graph, on the left, are two curves showing the familiar ogive shape: little change near
zero probability, the sharpest increases between probabilities of 0.4 and 0.6, and decreasing
change as probabilities approach 1.0.  However, note that the ‘belted’ curve is always lower than
the ‘unbelted’ curve, showing the safety effect.

The odds graph, in the middle, appears to show overlap at the low end when there actually is
none.  As can be seen from column L, there is a constant ratio between the belted odds and the
unbelted odds, also showing that belted drivers have a safety advantage.  Remember that odds are
not symmetric: the neutral point for odds is one, and the space between 0 and 1 holds as much
information as the space between 1 and infinity.  

The logit graph, on the right, takes care of this problem.  The constant  becomes a
constant difference (-1.38) between the logits for belted and unbelted.  (Remember that
subtraction of logarithms is the same as division with regular numbers.)  The last column shows
that the exponent of the difference between the logits is the same as the odds ratio. 
e  = Odds Ratio (e = approximately 2.718).(Delta Logits)

In short, at a very low Delta-V, few drivers are hurt; at a very high Delta-V, many drivers are
hurt; but the effect of being belted is constant across all Delta-V’s.  (Remember that these are
hypothetical data: Such well-behaved data are very rare if they exist at all.  Also remember that
making a logit transformation does not force the data to be linear, but it often makes it more
linear.)  Finally, although the logit transformation is the one used in PROC LOGISTIC, there are
other transformations which are also used and might prove more useful to you.  See PROC
CATMOD for other possibilities.

4.4. Another Example Using One Covariate and Real Data
This example is the simplest type, and is analogous to a 2 X 2 table.  The outcome variable
(M_OutC_A) is injury versus no injury, and the covariate (BeltUse) is safety-belt use.  The SAS®3

output on the next page is from Wisconsin.  In the program log, lines in Boldface are the original
program lines, regular text was added by SAS.  Lines in Italics are additional notes.  Following
the SAS output are explanatory notes.

/*Jon Walker. CODES.   PROC LOGISTIC for Wisconsin data
* From file WiLog2.SAS;1
*/

OPTIONS LS=80 PS=64 NOCENTER NOOVP ;   

PROC FORMAT;
  VALUE Yes2No
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0 = "No"
1 = " Yes " /*Space before ‘ Yes’ makes odds ratios go in right

direction*/  
;

RUN ;

LIBNAME CRASH ' ##############  '; Names have been deleted for security
purposes.
/* DataSet within #############  is #########  */
/* Includes proper vehicles (and cycles) for mandated model. */

DATA ;
   SET CRASH. ######## ;

  IF CaseType = 1 /* Car/van/pickup Drivers only*/ ;
ATTRIB M_OutC_A FORMAT=Yes2No. LABEL="Any Injury " ;  
ATTRIB M_OutC_B FORMAT=Yes2No. LABEL="Transported/worse " ;
ATTRIB M_OutC_C FORMAT=Yes2No. LABEL="Hospitalized " ;
ATTRIB M_OutC_D FORMAT=Yes2No. LABEL="Fatal Injury " ;
/* Reformat Injury Levels: Put Odds Ratios in right direction. */
RUN ;

PROC LOGISTIC SIMPLE ;  
  MODEL M_OutC_A = BeltUse ;  
TITLE1 ' CODES: WI: ############# dataset. ' ;
TITLE2 "PROC LOGISTIC (BeltUse only) for the odds of any injury, ";
TITLE3 "for Car/van/pickups drivers. " ;
RUN ;

<<<SAS LOG>>>      <<<SAS LOG>>>      <<<SAS LOG>>>      
1 The SAS System                           16:59 Wednesday, August 17, 1994

NOTE: Copyright (c) 1989-1992 by SAS Institute Inc., Cary, NC, USA. 
NOTE: SAS (r) Proprietary Software Release 6.08  TS410
      Licensed to U.S. DEPARTMENT OF TRANSPORTATION/NHTSA, Site 0003589006.

NOTE: Running on VAXSTATION Model 4000-90 Serial Number 13000202.

1          /*Jon Walker. CODES.   PROC LOGISTIC for Wisconsin data
4          * From file WiLog2.SAS;1
5          */
6          
7          OPTIONS LS=80 PS=64 NOCENTER NOOVP ;   
8          
9          PROC FORMAT;
10           VALUE Yes2No
11         0 = "No"
12         1 = " Yes " /*Makes odds ratios go in right direction*/
13         ;  
NOTE: Format YES2NO has been output.
14         RUN ;
NOTE: PROCEDURE FORMAT used the following computer resources:
      Buffered IO:         40   Elapsed time:        0 00:00:02.42
      Direct IO:           40   CPU time:            0 00:00:00.22
      Page Faults:        704
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15         
16         LIBNAME CRASH ' #############  : #############  ';
NOTE: Libref CRASH was successfully assigned as follows: 
      Engine:        V608 
      Physical Name: #############  : #############  
17         /* DataSet within [ #############  ] is #############   */
18         /* Includes proper vehicles (and cycles) for mandated model. */
19         
20         DATA ;
21            SET CRASH.#############  ;
22  IF CaseType = 1 /* Car/van/pickup Drivers only*/  ;
23         ATTRIB M_OutC_A FORMAT=Yes2No. LABEL="Any Injury " ;
24         ATTRIB M_OutC_B FORMAT=Yes2No. LABEL="Transported/worse ";
25         ATTRIB M_OutC_C FORMAT=Yes2No. LABEL="Hospitalized " ;
26         ATTRIB M_OutC_D FORMAT=Yes2No. LABEL="Fatal Injury " ;
27          /* Reformat Injury Levels: Put Odds Ratios in right direction. */
28         
29         RUN ;
NOTE: The data set WORK.DATA1 has 167642 observations and 44 variables.
NOTE: DATA statement used the following computer resources:
      Buffered IO:        594   Elapsed time:        0 00:02:20.59
      Direct IO:         2597   CPU time:            0 00:00:26.94
      Page Faults:       1144
30         
31         
32          PROC LOGISTIC SIMPLE ;  
33            MODEL M_OutC_A = BeltUse ;   
34          TITLE1 ' CODES: WI: ################ dataset. ' ;
35          TITLE2 "PROC LOGISTIC (BeltUse only) for the odds of any injury, ";
36          TITLE3 "for Car/van/pickups drivers. " ;
37          RUN ;

NOTE: PROC LOGISTIC is modeling the probability that M_OUTC_A=' Yes'. One way 
      to change this to model the probability that M_OUTC_A='No' is to specify 
      the DESCENDING option on the PROC statement. Refer to Technical Report 
      P-229 or the SAS System Help Files for details.
NOTE: At least one W.D format was too small for the number to be printed. The 
      decimal may be shifted by the "BEST" format.
NOTE: The PROCEDURE LOGISTIC printed page 1.
NOTE: PROCEDURE LOGISTIC used the following computer resources:
      Buffered IO:        223   Elapsed time:        0 00:03:25.17
      Direct IO:         4927   CPU time:            0 00:01:39.48  
      Page Faults:       1037
NOTE: The SAS Session used the following computer resources:
      Buffered IO:       1510   Elapsed time:        0 00:16:44.45  
      Direct IO:        18227   CPU time:            0 00:05:41.32
      Page Faults:       5739
NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
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-----------------------Start of SAS Output Listing----------------------------
 CODES: WI: ################ dataset.       16:59 Wednesday, August 17, 1994  
1
PROC LOGISTIC (BeltUse only) for the odds of any injury, 
for Car/van/pickups drivers. 

The LOGISTIC Procedure

Data Set: WORK.DATA1   
Response Variable: M_OUTC_A  Any Injury
Response Levels: 2
Number of Observations: 167642  
Link Function: Logit  

      Response Profile
 
Ordered
  Value  M_OUTC_A     Count

      1   Yes         17726  
      2  No          149916

                 Simple Statistics for Explanatory Variables
 
                                   Standard                           Variable
Variable M_OUTC_A         Mean    Deviation      Minimum      Maximum   Label 
                          
BELTUSE   Yes   0.668848     0.470641            0     1.000000 
         No     0.896435     0.304696            0     1.000000 
                  ------------ ------------ ------------ ------------
         Total  0.872371     0.333677            0     1.000000 

                    Criteria for Assessing Model Fit
 
                            Intercept
              Intercept        and   
Criterion       Only       Covariates    Chi-Square for Covariates

AIC           113163.40     107445.05         .                          
SC            113173.43     107465.11         .                          
-2 LOG L      113161.40     107441.05     5720.353 with 1 DF (p=0.0001)  
Score              .             . 7374.305 with 1 DF (p=0.0001)  

                 Analysis of Maximum Likelihood Estimates
 
            Parameter Standard    Wald       Pr >    Standardized     Odds
Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio
               
INTERCPT 1    -0.9727   0.0153  4029.8457     0.0001            .    0.378 
BELTUSE  1    -1.4553   0.0181  6485.1911     0.0001    -0.267717    0.233 
                                                                                                            

Association of Predicted Probabilities and Observed Responses

 Concordant = 29.7%          Somers' D = 0.228
 Discordant =  6.9%          Gamma     = 0.622
 Tied       = 63.4%          Tau-a     = 0.043
 (2657411016 pairs)          c         = 0.614
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Explanation of notes in preceding listing:

NOTE Explanation                                                                                                                         

1. Sets SAS  options for run: LS=80: output is 80 columns wide; PS=64: 64 lines per page;®3

NOCENTER: Left justify lines; NOOVP: Do not over-print (over-printing was used on
mainframe ‘line printers’ to simulate a BOLD  typeface).

2. PROC FORMAT sets up an output format that can later be assigned to values of a
variable using an  statement.  In this case, the space before the Y in ‘ Yes’ also
changes the order of the outcome variable when SAS runs PROC LOGISTIC.  This is one
of several possible ways to make sure SAS interprets the values of the outcome variable in
the direction NHTSA wanted.  Another way, which does not need any formatting, is to
add the word DESCENDING:  Line 32 in your program file would look like: PROC
LOGISTIC SIMPLE DESCENDING ;              NOTE:  If you are using SAS version 5,
you will use PROC LOGIST (no ‘ic’) and the direction of the parameters will be reversed,
so you will not need DESCENDING or the space before the Y in ‘ Yes’.

3. CaseType was a variable used by Wisconsin to separate motorcycle cases from passenger
car cases.

4. The ATTRIBute statement assigns a output FORMAT (either predefined by SAS or, as
here, defined in a PROC FORMAT step) and a LABEL to a variable.  This improves the
appearance and understandability of the output.  The statement can also be used to assign
an INFORMAT and LENGTH, both of which can be used when creating a SAS data set.

5. Beginning of the Logistic Regression Procedure.  SIMPLE generates basic statistics about
each covariate (independent factor).

6. The outcome variable (only one) goes on the left of the equals sign, all covariates go on
the right.  The covariates must be numeric (not character variables), even though they
usually stand for a qualitative difference, such as male versus female.  There is one way to
have two variables on the left (SAS, pages 1073-1075), but it does not apply to the data
file structure generally used in this type of research.

7. This procedure took about one and two-thirds minutes in the central processing unit of a
VAX computer.  This is a long time, but would have been up to ten times longer on a PC.

8. This total time on the VAX includes three other simple PROC LOGISTICs not shown in
this listing. 

9. The total of ‘full’ observations (drivers), i.e., those with no missing data on ALL of the
variables in the model.  If your data set includes some observations with missing values,
SAS will give you a warning telling you how many observations were deleted due to
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missing values.  Wisconsin used data files that were restricted to ‘full’ observations so the
warning does not appear here.

10. Logit is the function SAS uses by default and is appropriate for these analyses.

11. The number of injured drivers on this line, the number of uninjured drivers on the next.

12. Basic statistics for BeltUse, but only for injured drivers.  Because 0 is unbelted and 1 is
belted, the mean is also the  wearing their belts.  If other values are used, this
will not be true.  (SAS does not require 0 and 1).  The mean multiplied by the number of
injured drivers gives the number of belted, injured drivers.  If the covariate is continuous,
such as age, then the mean will be the average age for the injured drivers, and similarly for
the other statistics.

13. Basic statistics for BeltUse, but only for uninjured drivers.  As expected, a higher
proportion of the uninjured drivers were wearing their safety belts.  The mean multiplied
by the number of uninjured drivers gives the number of belted, uninjured drivers.

14. Basic statistics for BeltUse for all drivers.

15. First, ignore the column headed ‘Intercept Only.’  All of the other ‘Criteria’ are ways to
assess how well the model explains the data.  In the simplest model, a 2 X 2 analysis,
‘Score’ will be identical to the simple Chi-square statistic.  The ‘Criteria’ are most useful
in comparing results from different models of the same data.  In the right column, a higher
Chi-Square is better than a lower Chi-Square, but for the tests in the middle column, a
lower value is better.  Values in the ‘Intercept Only’ column will not change as long as
you are using the same data and same outcome variable.

16. This is the parameter (coefficient) for the intercept.  It is the  for injury if the driver
was in the ‘zero’ group on all the covariates.  The  for injury appear in the right
column.   In this 2 X 2 example it is simply the parameter for the unbelted.  For the
intercept, the label on the last column is a misnomer, because it gives the odds of injury,
not an odds ratio.  It is not as useful if continuous covariates are included.  For instance, if
the covariates were belt use, driver age, and posted speed limit, then the predicted odds of
injury would be for those drivers who were unbelted, 0 years old, and driving on a road
with 0 speed limit.

17. This is the parameter for belt use.  Because it is less than zero, then using the belt is
associated with relatively lower odds of injury.  Because the ‘Pr > Chi-Square is less than

 chosen for this study, the effect is significant.  If a covariate’s
parameter is significantly greater than zero, then the presence of the covariate (whatever
was coded as 1) increases the odds of injury, relative to the absence of the covariate.  If
the parameter is significantly less than zero, then there is a safety effect because the odds
are relatively lower in the covariate’s presence.
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The standard error is a measure of the precision of the parameter estimate.  It  must be
small relative to the parameter or the effect will not be significant.  When plotting the
parameters, it is advisable to plot a 95% confidence interval.  The top of the interval is the
parameter plus (1.96 times the standard error), and the bottom is the parameter minus
(1.96 times the standard error).  Note that if you decide to plot  rather than
parameters, you must compute the confidence intervals before changing to odds ratios. 
Plotting the odds ratios will then have unsymmetrical looking confidence intervals, but this
is the correct way to do it.

In the case of a continuous covariate, such as age of the driver, the parameter may be
extremely small, because it is the log of the ratio of  for one year.  When plotting
these figures, it is advisable to multiply the parameter and the standard error by a constant,
say 25 years, before calculating the confidence interval.  This is especially true if the graph
compares the continuous covariate to one or more dichotomous covariates.

18. This is the  of injury by BeltUse.  It is derived from the parameter: Odds Ratio
= e .  If 1 in the outcome variable is defined as something negative (here it is injury)Parameter

then if the odds ratio is less than one, the covariate is a safety effect.  If it is more than
one, it is a danger effect.  If it is not significantly different from one, it has no effect.

4.5. The Same Data Using Multiple Covariates
This section is very similar to the previous section, except it adds the following covariates:  Male
(versus female: sex of driver), Rural (versus urban: locality of crash), and Intersection (versus no
intersection:  location of crash).  Only the most important parts of the output are reproduced here. 
Following the SAS  output are more explanatory notes.®3

<<<SAS LOG>>>      <<<SAS LOG>>>      <<<SAS LOG>>>      

16                                  

17         PROC LOGISTIC SIMPLE DESCENDING ;

18           MODEL M_OutC_A = BeltUse Male Rural Inter ;

19         TITLE1 " CODES: WI: PROC LOGISTIC for the odds of any injury, " ;

20         TITLE2 " for Car/van/pickups drivers, 4 Covariates only. " ;

21         RUN ;

NOTE: PROC LOGISTIC is modeling the probability that M_OUTC_A=1.

NOTE: At least one W.D format was too small for the number to be printed. The 

      decimal may be shifted by the "BEST" format.

NOTE: The PROCEDURE LOGISTIC printed pages 1-2.

NOTE: PROCEDURE LOGISTIC used the following computer resources:

      Buffered IO:        348   Elapsed time:        0 00:03:02.00

      Direct IO:         5709   CPU time:            0 00:01:26.59

      Page Faults:        934

(From the SAS output)
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The LOGISTIC Procedure
Data Set: WORK.DATA1   
Response Variable: M_OUTC_A  MRM Outcome A
Response Levels: 2
Number of Observations: 167642  
Link Function: Logit  

      Response Profile

Ordered
  Value  M_OUTC_A     Count
      1         1     17726 
      2         0    149916

                Simple Statistics for Explanatory Variables
 
                                      Standard
Variable  M_OUTC_A          Mean     Deviation       Minimum       Maximum

BELTUSE          1      0.668848      0.470641             0      1.000000  
           0      0.896435      0.304696             0      1.000000  

                    ------------  ------------  ------------  ------------
             Total      0.872371      0.333677             0      1.000000  

MALE             1      0.536669      0.498668             0      1.000000  
           0      0.597895      0.490325             0      1.000000  

                    ------------  ------------  ------------  ------------
             Total      0.591421      0.491573             0      1.000000  

RURAL            1      0.477152      0.499492             0      1.000000  
           0      0.374570      0.484013             0      1.000000  

                    ------------  ------------  ------------  ------------
             Total      0.385417      0.486695             0      1.000000  

INTER            1      0.471962      0.499227             0      1.000000  
           0      0.443115      0.496755             0      1.000000  

                    ------------  ------------  ------------  ------------
             Total      0.446165      0.497095             0      1.000000  

                    Criteria for Assessing Model Fit
 
                            Intercept
              Intercept        and   
Criterion       Only       Covariates    Chi-Square for Covariates

AIC           113163.40     106092.25         .      
SC            113173.43     106142.40         .                          
-2 LOG L      113161.40     106082.25     7079.147 with 4 DF (p=0.0001)  
Score              .             .        8690.529 with 4 DF (p=0.0001)  
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CODES: WI: PROC LOGISTIC for the odds of any injury,                        2

for Car/van/pickups drivers, 4 Covariates only.

The LOGISTIC Procedure

                 Analysis of Maximum Likelihood Estimates

 

            Parameter Standard    Wald       Pr >    Standardized     Odds

Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio

              

INTERCPT 1    -1.0681   0.0220  2348.3156     0.0001            .    0.344 

BELTUSE  1    -1.4922   0.0183  6643.4968     0.0001    -0.274522    0.225 

MALE     1    -0.3600   0.0165   474.4372     0.0001    -0.097560    0.698 

RURAL    1     0.5060   0.0170   887.2171     0.0001     0.135780    1.659 

INTER    1     0.2481   0.0170   214.2238     0.0001     0.068000    1.282 

              

Association of Predicted Probabilities and Observed Responses

 Concordant = 62.5%          Somers' D = 0.336

 Discordant = 28.9%          Gamma     = 0.368

 Tied       =  8.6%          Tau-a     = 0.064

 (2657411016 pairs)          c         = 0.668

Explanation of notes in preceding listing:

NOTE Explanation                                                                                                                         

19. To add more variables, simply list them on the right side of the = sign (no commas or
operators).  It should not matter which order they are in unless you use SELECTION= ...
as an option (SAS  page 1080).  All models in this document use a simple additive model®3

where all covariates are accounted for simultaneously.

20. These are the statistics for belt use, and are identical to those given previously.  ,
13, and 14) The only difference is that the values of M_OutC_A are not formatted.

21. These are the statistics for gender.  Overall, the drivers are 59.1% male, but the injured are
only 53.7% male, and the uninjured are 59.8% male.  This means that comparing all levels
of injury to no injury, males are slightly less likely to be injured.  However, this does not
hold when you compare fatalities to survivals. 

22. These are the statistics for locality.  Overall, 38.5% of the crashes were in rural localities,
but 47.7% of the crashes with injury were rural.  Remember that you can interpret these
means as proportions or percentages only if the values for the covariate are 0 and 1.
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23. These are the statistics for location.  Overall, 44.6% of the crashes were at intersections, 
but 47.2% of the crashes with injury were at intersections.

24. The scores under the ‘Intercept Only’ column are identical to the previous model and to
the next model.  The scores in the ‘Intercept and Covariates’ column  are slightly lower
than the simple 2X2 model (Injury and BeltUse only) which means this model gives us a
bit more information.  The slightly higher Chi-Square scores lead to the same conclusion.

25. The intercept is interpreted similarly to , except that the ‘zero’ group refers to
unbelted women drivers who were in urban crashes not at intersections.  Their odds of
injury are 0.344.

26. The odds ratio for BeltUse is slightly better that the previous model (0.233) which means
adding the other three covariates made using belts look a little safer than without them. 
BeltUse is by far the most powerful covariate, because its standardized estimate (-0.2745)
is farthest from zero.

27. The parameters and odds ratios for the other three covariates are smaller, but all are
statistically significant at the 0.0001 level.  Being male is associated with lower odds of
injury, but crashing in a rural area or at an intersection are both associated with higher
odds of injury.

4.6. Coding a Multiple-category Variable into Several Binary Variables
Binary covariates, like those used in the previous section, and continuous covariates ( or

 scales) like age or posted speed limit, can be entered into the model without any further
coding as long as they are all numeric variables.  However, variables such as crash type or seating
position must be reformulated into matrices of binary variables, sometimes called ‘Indicator
Variables.’  In the mandated model for CODES, there were five crash types (Rollover, Single-
vehicle hit fixed object, Single-vehicle hit non-fixed object, Multiple-vehicle head-on, and
Multiple-vehicle other).  In cross-tabulations such as PROC FREQ, a single variable with five
categories would be used, but here we use four binary variables (not five) which together give the
same information as the multiple-category variable.  This is the same process that is used in
regular multiple regression (PROC REG).

The crash types that have a corresponding binary variable are defined by a ‘1’ in that variable.  A
crash cannot be represented by a ‘1’ in more than one variable.  Put another way, the crash types
are mutually exclusive.  The last crash type, Multiple-vehicle-other in this case, is defined by ‘0’s
in all four binary variables.  This category is called the ‘reference category’ because all other
categories are compared to it.  See the table on the next page.

Any category may be chosen as the reference category, but the results might be easier to interpret
if you choose the one that has the lowest proportion on the outcome variable.  In this instance,
that translates to the crash type that has the lowest proportion of injury.  This way, the PROC
LOGISTIC parameters for the four binary crash variables would be positive, and all the odds
ratios would be greater than one.  According to this advice, ‘Single-vehicle hits non-fixed object’



22

should have been the reference category in the CODES project rather than the one that was
chosen.

BINARY MODEL VARIABLES

CRASH TYPE Roll SVFO SVO MVH

Roll over (whether single or multiple vehicle) 1 0 0 0

Single vehicle hits fixed object (pole, tree, etc.) 0 1 0 0

Single vehicle hits non-fixed object (parked car,
pedestrian, railway train)

0 0 1 0

Multiple-vehicle, head-on crash 0 0 0 1

Multiple-vehicle crash, other than head-on 0 0 0 0

The table below show the analogous table for seating position, which was collapsed into three
categories:  Driver, front-seat passenger, and rear-seat passenger.

BINARY MODEL VARIABLES

SEATING POSITION Driver FrntPas

Driver 1 0

Front Seat Passenger 0 1

Rear Seat Passenger 0 0

4.6.1  Interpretation of Odds Ratios from Multiple-category Variables.
For example, take the second table (Seating Position), and use ‘any injury versus no injury’ as the
outcome variable.  In New York, the odds ratio for Driver was 1.93 and the odds ratio for
FrntPas was 1.35 (both highly significant).  This means that the odds of injury to a driver were
93% higher than the odds of injury to a back seat passenger, and likewise, the odds of injury to a
front seat passenger were 35% higher than the odds of injury to a back seat passenger.  It does
not tell you what the odds of injury were in any situation, only the ratios between them.  You
could conclude that the back seat was the safest place to be in a crash, and you might be tempted
to conclude that the driver’s seat was the most dangerous.  However, these two odds ratios do
not test the difference between the driver and front seat passengers.  The driver would have
higher odds of injury, but the difference might not be significant.
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4.7. An Example Using the Full Set of Mandated Covariates 
The example below show the same analysis for Wisconsin with all the covariates.  Driver and
FrntPas are omitted because Wisconsin only used drivers.  Because they did not have sufficient
information on uninjured passengers, all passengers were omitted.  Only the most important parts
of the output are reproduced here.  Following the SAS output are more explanatory notes.

From the SAS Log:
25         
26         PROC LOGISTIC SIMPLE ;
27           MODEL M_OutC_A = BeltUse Roll SVFO SVO MVH Rural Age 
28         Male Slim Wet Time Inter PC ;
29         TITLE1 " CODES: WI: PROC LOGISTIC for the odds " ;
30         TITLE2 " of any injury, for Car/van/pickups drivers. " ;
31         RUN ;

NOTE: PROC LOGISTIC is modeling the probability that M_OUTC_A=' Yes'. One way 
      to change this to model the probability that M_OUTC_A='No' is to specify 
      the DESCENDING option on the PROC statement. Refer to Technical Report 
      P-229 or the SAS System Help Files for details.
NOTE: At least one W.D format was too small for the number to be printed. The 
      decimal may be shifted by the "BEST" format.
NOTE: The PROCEDURE LOGISTIC printed pages 1-3.
NOTE: PROCEDURE LOGISTIC used the following computer resources:
      Buffered IO:        714   Elapsed time:        0 00:05:17.34 
      Direct IO:        10947   CPU time:            0 00:02:26.11
      Page Faults:       1314

///////////////////////// START of SAS output listing \\\\\\\\\\\\\\\\\\\\\\\\
CODES: WI: PROC LOGISTIC for the odds of any injury, for Car/van/pickups
drivers. 

The LOGISTIC Procedure

Data Set: WORK.DATA1   
Response Variable: M_OUTC_A  Any Injury
Response Levels: 2
Number of Observations: 167642  
Link Function: Logit  

      Response Profile
 
Ordered
  Value  M_OUTC_A     Count

      1   Yes         17726  
      2  No          149916
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               Simple Statistics for Explanatory Variables
 
                                      Standard
Variable  M_OUTC_A          Mean     Deviation       Minimum       Maximum

BELTUSE    Yes    0.668848      0.470641             0      1.000000  
          No      0.896435      0.304696             0      1.000000  
                    ------------  ------------  ------------  ------------
          Total   0.872371      0.333677             0      1.000000  

ROLL       Yes          0.065835      0.248001             0      1.000000  
          No            0.017196      0.130003             0      1.000000  

              ------------  ------------  ------------  ------------
          Total         0.022339      0.147785             0      1.000000  

SVFO       Yes          0.157057      0.363865             0      1.000000  
          No            0.066937      0.249915             0      1.000000  
                    ------------  ------------  ------------  ------------
          Total         0.076467      0.265744             0      1.000000  

SVO        Yes          0.106172      0.308066             0      1.000000  
          No            0.188752      0.391313             0      1.000000  
                    ------------  ------------  ------------  ------------
          Total         0.180021      0.384206             0      1.000000  

MVH        Yes          0.059461      0.236492             0      1.000000  
          No            0.015402      0.123146             0      1.000000  
                    ------------  ------------  ------------  ------------
          Total         0.020061      0.140208             0      1.000000  

RURAL      Yes          0.477152      0.499492             0      1.000000  
    No            0.374570      0.484013             0      1.000000  

                    ------------  ------------  ------------  ------------
          Total         0.385417      0.486695             0      1.000000  

AGE        Yes         34.817048     16.804835      8.000000     93.000000  
    No           36.115531     16.611883      9.000000     99.000000  

                    ------------  ------------  ------------  ------------
          Total        35.978233     16.637133      8.000000     99.000000  

MALE       Yes          0.536669      0.498668             0      1.000000  
    No            0.597895      0.490325             0      1.000000  

                    ------------  ------------  ------------  ------------
          Total         0.591421      0.491573             0      1.000000  

SPLIM      Yes         40.730847     12.763017      5.000000     65.000000  
    No           37.166080     12.902392      5.000000     65.000000  

                    ------------  ------------  ------------  ------------
          Total        37.543008     12.934223      5.000000     65.000000  
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The LOGISTIC Procedure

                Simple Statistics for Explanatory Variables
 
                                      Standard
Variable  M_OUTC_A          Mean     Deviation       Minimum       Maximum

WET        Yes          0.350220      0.477052             0      1.000000  
    No            0.384008      0.486362             0      1.000000  

                    ------------  ------------  ------------  ------------
          Total         0.380436      0.485495             0      1.000000  

TIME       Yes          0.257926      0.437506             0      1.000000  
     No            0.184163      0.387618             0      1.000000  

                    ------------  ------------  ------------  ------------
          Total         0.191963      0.393845             0      1.000000  

INTER      Yes          0.471962      0.499227             0      1.000000  
    No            0.443115      0.496755             0      1.000000  

                    ------------  ------------  ------------  ------------
          Total         0.446165      0.497095             0      1.000000  

PC         Yes          0.810674      0.391779             0      1.000000  
    No            0.758545      0.427967             0      1.000000  

                    ------------  ------------  ------------  ------------
          Total         0.764057      0.424588             0      1.000000  

                    Criteria for Assessing Model Fit
 
                            Intercept
              Intercept        and   
Criterion       Only       Covariates    Chi-Square for Covariates

AIC           113163.40     101099.40   .                          
SC            113173.43     101239.81         .                          
-2 LOG L      113161.40     101071.40    12090.006 with 13 DF (p=0.0001) 
Score              .             .       14481.074 with 13 DF (p=0.0001) 

                 Analysis of Maximum Likelihood Estimates
 
            Parameter Standard    Wald       Pr >    Standardized     Odds
Variable DF  Estimate   Error  Chi-Square Chi-Square   Estimate      Ratio
              
INTERCPT 1    -2.4227   0.0466  2703.6718     0.0001            .    0.089 
BELTUSE  1    -1.4185   0.0193  5388.7167     0.0001    -0.260958    0.242 
ROLL     1     1.1945   0.0429   774.3640     0.0001     0.097323    3.302 
SVFO     1     0.7324   0.0280   684.2170     0.0001     0.107309    2.080 
SVO      1    -0.6293   0.0301   436.6856     0.0001    -0.133311    0.533 
MVH      1     1.4680   0.0416  1243.6812     0.0001     0.113477    4.340 
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RURAL    1     0.0477   0.0230     4.3057     0.0380     0.012801    1.049 
AGE      1    0.00207 0.000514    16.1678     0.0001     0.018950    1.002 
MALE     1    -0.3677   0.0174   449.0257     0.0001    -0.099652    0.692 
SPLIM    1     0.0269 0.000882   926.7895     0.0001     0.191530    1.027 
WET      1    -0.2661   0.0178   222.7600     0.0001    -0.071232    0.766 
TIME     1     0.2736   0.0210   170.1425     0.0001     0.059417    1.315 
INTER    1     0.4126   0.0191   464.5763     0.0001     0.113074    1.511 
PC       1     0.3327   0.0219   230.3157     0.0001     0.077872    1.395 

Association of Predicted Probabilities and Observed Responses

 Concordant = 72.5%          Somers' D = 0.460  
 Discordant = 26.5%          Gamma     = 0.464
 Tied       =  0.9%          Tau-a     = 0.087
 (2657411016 pairs)          c         = 0.730

Explanation of notes in preceding listing:

NOTE Explanation                                                                                                                         

28. Roll, SVFO, SVO, and MVH are the indicator variables that allow us to interpret crash-
type effects, as discussed in section 4.6.  These means can be interpreted similarly to those
discussed before, but with the addition of a dependence among these four and the implied
reference group, ‘Multiple-Vehicle Other.’  The proportions for the reference group can
be found by subtracting the other four from 1.  Thus, the proportion of the injured who
were in ‘Multiple-Vehicle Other’ crashes is 1.0 - .065835 - .157057 -.106172 - .059461 =
.611475.  So 61% of those injured were in a ‘Multiple-Vehicle Other’ crash.

29. Age is a ratio scale, so the mean is not a proportion, but the average age of all who were
injured, all who were uninjured, and everyone in the file.  By comparing the injured and
uninjured means, you would think younger people would be more likely to be injured and
the parameter would be negative.  However, the opposite is true.  After adjusting for all
the other variables, older people are more likely to be injured.  However, more study
needs to be done on the age effect.

30. Posted speed limit is another ratio scale, even if it does make jumps of 5 or 10 mph.  As
you might suspect, those who were injured were traveling on roads with higher speed
limits on the average, although the difference seems small.

31. Wet refers to the slipperiness of the road.  Any slick road, due to ice, snow, rain, or oil,
was considered ‘wet.’  Surprisingly, more of the uninjured people were on wet roads
compared to the injured people.  Perhaps slick roads results in slower speeds and lower
energy crashes.
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32. Time is a binary classification of the time of the crash.  Crashes between 8:00 p.m. and
3:59 a.m. were classed as 1, all others were 0.  Alcohol-involved crashes are much higher
between 8 p.m. and 4 a.m., so this variable served more as a surrogate for alcohol
involvement than as a time variable.  26% of the injured were in this category, but only
18% of the uninjured were in this category.

33. PC is a surrogate for vehicle size.  1 means passenger car, 0 means pick-up truck or van. 
Vehicle weight, coded from the VIN, would have been preferable, but states either did not
have it on the crash file or it was too seldom recorded.  The breakdown by injury shows
that 81% of the injured were in a lighter vehicle, while 76% of the uninjured were in the
lighter vehicle.  This would imply injury is slightly more likely in a car than in a pick-up or
van, as is the case (see ).

34. The AIC is now 101,099.40 with all thirteen covariates.  With four covariates it was
106,092.25, and with one (BeltUse) it was 107,445.05.   Thus, there is more information
in the more complex model, although it is only a 6.2 percent decrease compared to the
simplest model.

35. The intercept still refers to the ‘zero’ groups for all covariates, but because there are now
13 covariates, it has little practical value in itself, but is still useful for reconstructing
probabilities of injury for specific groups.

36. The BeltUse parameter has remained very stable over all three models:  -1.4553 with
BeltUse alone, -1.4922 when three more covariates were added, and  -1.4185 with all
thirteen covariates.  In every case, use of a safety belt significantly reduces one’s odds of
injury.

37. Being in a rollover crash significantly increases one’s odds of injury relative to the
reference crash group, “Multiple-Vehicle Crashes, other than Head-On.”  This covariate is
third in magnitude, after “Multiple-Vehicle Head-on Crashes” and BeltUse.  With an odds
ratio of 3.302, people in rollover crashes had more than three times the odds of injury than
people in the reference crash group.

38. Single-vehicle crashes where a fixed object was struck are also relatively more dangerous
than the reference crash group, with a parameter of 0.7324 and an odds ratio of better
than two.

39. Single-vehicle crashes where a non-fixed object was struck are relatively safer than the
reference group.  By taking the reciprocal of the odds ratio:  1/0.533 = 1.876, one can
conclude that “Multiple-vehicle, Other” crashes have odds of injury that are 87.6% higher
than “Single-vehicle, Other” crashes.
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40. “Multiple-vehicle, Head-on” crashes are most dangerous of all, with odds more than four
times higher than the reference group.  A rough test shows that they are significantly more
dangerous than rollover crashes.  By using the standard errors of the parameter, we can
find the 5th percentile for the head-on crashes and compare it to the 95th percentile for the
rollover crashes.  If the two do not overlap, they are probably significantly different.  For
the head-on parameter, 1.4680 - (1.96 * 0.0416) = 1.3865 = the 5th percentile, and for the
rollover parameter, 1.1945 + (1.96 * 0.0429) = 1.2786 = the 95th percentile.  They do not
overlap and we can reasonably conclude that head-on crashes are more likely to cause
more injury.

41. A positive rural parameter (0.0477) and a chi-square probability of less than 0.05 (0.0380)
mean that rural crashes are associated with higher odds of injury.  However, not much can
be made of the fact, since there are many variables that could explain the odds ratio of
1.049:  Higher speed limits and poorer road design, to name two.

42. The age effect, although very small (0.00207), is very significant (0.0001).  Remember
that the parameter represents the effect for merely one year, so it may be more meaningful
to look at difference for a score of years.   Remember, if plotting the result, multiply both
the parameter and the standard error by 20.

43. The negative parameter (-0.3677) and odds ratio less than one (0.692)  indicate males are
less likely to be injured.  However, unlike most other covariates, the strength of the effect
weakens when more extreme output measures are used.  In a few states, when comparing
died to survived, the sign of the parameter is reversed, meaning it is better to be female at
that level of analysis.

44. The Speed Limit effect, also very small (0.0269), is also very significant (0.0001).  Here 
the parameter represents the effect for one mile per hour, so it may be more meaningful to
look at difference for a 25 mph.  Remember, if plotting the result, multiply both the
parameter and the standard error by 25.  Crashes with more speed have more energy, and
consequently more injuries.

45. Wet roads are relatively safer, according to this negative parameter.  This agrees with the
raw percentages in the simple statistics section (See ).

46. Time, the alcohol surrogate, is associated with higher odds of injury.  Note that in Utah,
where per capita consumption of alcohol is lowest in the country, this variable is not
significant.

47. Intersections are also associated with higher odds of injury.  
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48. If PC = 1, the person was in a passenger car; If PC = 0, in a truck or van.  This odds ratio
indicates cars are more dangerous, perhaps because the average car is lighter than the
average truck.

49. Somer’s D is an indicator of  association that ranges from -1 to +1 with 0 meaning no
association.  It is used here to tell how well the predictions fit the observations.  With only
BeltUse, it was .228, with three more variables it was .336, and with nine more variables it
is now .460.
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Section 5:  Summary
5.1. Uses of 
Logistic Regression is a great improvement over previous methods of analyzing dichotomous
outcome variables for several reasons.  It allows simultaneous investigation of many covariates,
allowing separation of covariate effects and makes each effect more easily interpretable.  The
regression model allows prediction of high-risk groups so prevention dollars can be spent where
they will be most effective.  Finally, this approach also allows construction of more complex
models than the straight additive approach, so interactions among the covariates can also be
explored.

It should be noted that logistic regression uses the logit transformation, and there are other
transformations that may result in a better fit of the data.  In SAS , PROC CATMOD, a more®3

general procedure for categorical modeling, offers other transformations.

5.2. Advanced Topics
Other researchers both in NCSA and the CODES states, have investigated additional topics of
interest using logistic regression.  Interested parties should contact these people directly.  For
current phone numbers and addresses contact Dennis Utter (202 366 5351), or Sandra Johnson
(202 366 5364).

Karl Kim, of Hawaii, (808 956 7381)  has done extensive modeling with Hawaii’s CODES data. 
He has developed a structural model to explain the relationships between certain driver
characteristics and behaviors, crash types, and injury severity.

Because belt use estimates as reported by the occupants in crashes are higher than those reported
by studies using independent roadside observers, Missouri, Utah, and Wisconsin have
experimented with models for adjusting reported belt use.  The adjusted data are then used to
estimate new belt-use .

Douglas Thompson, of Maine, (207 780 4682) has studied alternate models of safety-belt
effectiveness using within-vehicle analysis to better control variability, and has compared these
results to those derived from the standard model used in the CODES report . 1

Researchers in New York have used logistic regression to investigate differing injury patterns
among older drivers.

Ellen Hertz of NCSA (202 366 5360) has explored the use of PROC CATMOD as an alternative
to PROC LOGISTIC to compute relative risk.
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Section 6:  Definitions
Correlation Coefficient: A measure of association of quantitative variables.  After plotting the

relationship of two variables, such as height and weight, using Cartesian coordinates, if all
points line up exactly (and the line is not vertical or horizontal) then the correlation is
perfect: It will be +1.0 if it is a direct relationship (as one goes up, the other goes up), or
-1.0 if it is an inverse relationship (as one goes up, the other goes down).  If the points are
scattered randomly, then the correlation is zero, and there is no relation.  Its symbol is
usually a lower-case r.

It is related to the regression coefficient (in simple regression) by the following formula:

, where $  is the regression coefficient (slope), S  is the sample standard1      X

deviation of the X values, and S  is the sample standard deviation of the Y values.  ItsY

interpretation is different from the regression coefficient because the correlation
coefficient is the same no matter which variable is considered the X and which the Y.  For
the regression coefficient it will make a difference.  The two coefficients are also related in
the following way: If you standardized the raw data, and computed the regression
coefficient, it would be identical to the correlation coefficient.  Standardizing means each
X has its sample mean subtracted from it, then is divided by the sample

standard deviation: .  Likewise for the Y scores, .

Effectiveness: A measure of how effective a safety device/program is, expressed as a percentage.  
It can be interpreted as, “If all people not using the device had used the device, X percent
of them would not have suffered the consequence.” X is the effectiveness figure.  It is
derived from Relative Risk:   Eff. = (1-R.R.)*100.   See  for a comparison of

, , and, effectiveness.

Hypertext: A link that will let you move from one location in a current document to another
place within that document, to another document, or to a macro.

Intercept: In graphs of straight lines using Cartesian coordinates, the value of Y when X = 0, or
the point at which the line crosses the vertical (Y) axis.  In , the  of
a positive response (e.g., injury) when all the covariates are 0.

Interval Scale: A measurement scale in which different intervals along the scale have the same
meaning. For example, both Fahrenheit and Centigrade temperature scales fall into this
category, because on each scale (taken by itself), the 10 degrees between 20 and 30
degrees means the same as the 10 degrees between 90 and 100 degrees, at least from a
physical standpoint. Also, where two interval scales measure the same thing, there is a
multiplicative formula which may include the addition or subtraction of a constant
relating the two scales: CE = (5/9)*(FE- 32E). Interval scales have all the properties of

 and  scales, but may not have a ‘real zero’ point, necessary for a 
scale.
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Level of significance: Research is a gamble: There is so much variability in most data that we use
statistical tests to decide whether the patterns we observe (differences among groups or
associations among variables) are really true, or just chance occurrences. There are two
ways we can be correct: The test says there was an association, and there really is, or the
test says there is no association, and there really is not. There are also two ways we can be
incorrect: The test says there was an association but there really is none (called a Type 1
error, Alpha ["] error, or ‘false alarm’), or the test says there was no association but there
really is one (called a Type 2 error, Beta [$] error, or ‘miss’).  (This $ is not related to the
regression coefficient.)

Type 1 errors are set by the researcher: A 5% level of significance means a 5%
 of a Type 1 error, which in turn means that if there is really no association the

researcher will make the wrong decision 5 times (on the average) out of 100 repetitions of
the same study. It is important to note that in large computerized data sets, it is easy to
run hundreds of tests, and some of these will very likely be Type 1 errors!

Type 2 errors are not further discussed except to note that the two errors must be
balanced out. When a researcher selects a very low level of significance to reduce Type 1
error, she is raising the probability of a Type 2 error. See advanced texts on experimental
design for further discussion.

Logistic Regression: A statistical technique for examining relationships between an outcome
measure that is a  scale, and one or more other variables, often called covariates,
which can be any type of scale. The outcome measure can also be called a dependent
variable, and the covariates can be called independent variables or regressors. In the
CODES project, one of the outcome variables was died (versus survived) and some of the
covariates were safety belt use, sex, age, posted speed limit, roadway condition, and
vehicle type.  Effects are reported as the natural logarithms of the odds ratios (parameter
estimates) and as .

Logit : The natural logarithm of the . Where N  = the number of cases in one category, and0

N  = the number of cases in the other category, then the logit = log (N /N ) = ln(N /N ). In1              e 1 0   1 0

terms of probability, where p = N /(N +N ), the logit = ln(p/[1-p]). In this document, its1 1 0

main use is to allow linear regression when analyzing relationships with a dichotomous
outcome variable (dependent variable). Its main drawback comes when a category has a
zero count (an empty cell) which leads to an odds of 0 or undefined (division by 0). There
is no logarithm for either situation, which invariably leads to a failed solution when trying
to compute a .  In this case the variable with a zero must be removed
from the model and the regression re-run. See  for a comparison of ,

, and .

Nominal Scale: A measurement scale in which the only differences are qualitative, not
quantitative. Examples in crash research are safety belt use (yes or no) or crash type
(rollover, single-vehicle hitting fixed object, single vehicle hitting movable object,
multiple-vehicle with head-on collision, or multiple-vehicle with all other types of
collision). This is the simplest type of measurement scale. Two nominal scales measuring
the same thing can be related only if the definitions for all categories are exact matches.
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Odds: A way to express how often something happens, relative to something else happening.
They are often expressed as a ratio of two whole numbers. If a bettor says the odds are 3
to 2 (1.5:1) of the home team winning, it means she expects the home team to win 3 of
every 5 games and the away team to win 2 of every 5 games. Note this is not the same as
probability: The expected probability of the home team winning is 3/5 = 0.60. See 
 for a comparison of odds, , and .

Odds Ratio: A measure of the dependence of a variable, usually a dichotomous variable but
sometimes an ordinal variable, on a second variable, which often is also a dichotomous
variable.  When both variables are dichotomous, it is a ratio of two odds, where one odds
is affected by one part of the second dichotomous variable, and the other odds is affected
by the other part of the second dichotomous variable. For example: Does a team win more
at home than away?  Here the first variable (the outcome or dependent variable) is Won
versus Lost, and the second variable (the covariate, regressor, or independent variable) is
Home versus Away.  If their ‘home’ record is 32 won and 17 lost, and their ‘away’ record
is 26 won and 24 lost, then the odds ratio would be (32/17) / (26/24), or 1.74. An odds
ratio of 1.00 means the covariate (home versus away in this case) had no effect on the
outcome variable. An odds ratio significantly greater than one means that the numerator of
the covariate (in this case, playing at home) increases the outcome in the numerator of the
ratio (in this case, winning) relative to the denominator of the covariate (playing away).
An odds ratio significantly less than one means the numerator of the covariate decreases
the outcome in the numerator of the odds. An odds ratio is never negative, but can
approach 0 at the lower limit and infinity at the upper limit. See  for a comparison
of odds ratios,  , and .

Ordinal Scale: A measurement scale in which there are differences in quantity, such as the
KABC0 scale of injury used by police, or the injury/treatment scale used in the CODES
analysis of safety belts. Measurements on an ordinal scale are in order from high to low
(or vice versa) but do not necessarily have the properties of  or  scales, e.g.
the difference between K and A is not necessarily the same as the difference between A
and B, and the bottom of the scale is not necessarily a true zero even though this is the
case in these two examples. Ordinal scales are also called Rank scales. In the social
sciences, a large category of measures called Likert scales are also ordinal scales. An
example of a Likert scale is: “How comfortable do you feel right now? Assign a number
from 1 [very uncomfortable] to 5 [very comfortable].”

Probabilistic Linkage: A technique for linking computerized large data files efficiently. It
automatically sorts the data files into manageable blocks of cases, weighs each datum that
might be useful in a possible match, and computes a composite weight, or score.  This
weight measures the possibility that ‘case X from file A’ is the same as ‘case Y from file
B.’  High weights indicate matches, negative weights indicate non-matches, and low-
positive weights are questionable, and can be clerically verified.  The technique allows
population files, such as state-wide medical files and state-wide crash files, to be linked.
Thus, questions can be researched with less time and money and with more resulting
cases, compared to single-purpose, small scale studies that have to be limited due to
enormous clerical costs.
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Probability : A number, ranging from 0 to 1, expressing the likelihood of something happening.
Using the example of a sports team, the probability of winning is the number of wins
divided by the total number of games played.  In this sense, it is the number of successes
divided by the total number of trials.  However, it can also represent other quantities that
are not simple ratios, such as an area in a theoretical statistical distribution.  See 
for a comparison of probability, , and .

Proportion : In this document, proportion refers to a part of the whole, and thus is tied to
probability.  It is a ratio of two whole numbers, whereas a probability does not have to be
such.  Thus if a team has won 16 of their first 25 games, the proportion won can be
expressed as 16/25, 64/100, 64%, or 0.64.

Ratio Scale: A measurement scale in which different intervals along the scale have the same
meaning and there is a meaningful ‘zero point.’ For temperature, only the Kelvin scale is a
ratio scale because it uses ‘absolute zero,’ meaning at 0E there is no heat at all, which is
not true on the Fahrenheit and Centigrade scales. Two ratios scales measuring the same
quantity are related by only a constant multiplier, without adding or subtracting a constant.
For example, in length, 2.54 centimeters = 1 inch, and in angles, 2B/360 radians = 1E. A
ratio scale includes all the properties of the lesser scales: , , and .

Relative Risk: A measure of the dependence of one dichotomous variable on another. It is the
ratio of two probabilities. As the name implies, it is used to measure the effect of some
risk factor (not wearing a safety belt, speeding, being male, etc.) on the probability of
some negative outcome (losing, dying, becoming infected, etc.). For example, what is the
effect of playing out of town on losing a game?  Using the numbers from the problem
discussed under the definition of the , the probability of losing ‘away’ would be
24/(26+24) = 0.48, and the probability of losing at ‘home’ would be 17/(32+17) = 0.35.
The relative risk would then be 0.48/0.35, or 1.256. In this case, a ratio of greater than 1
implies that playing ‘away’ games increases the chances of losing.  Notice that this setup
of the ‘away’ problem is the converse of that in the definitions of odds ratio. 
Nevertheless, the overall results are the same.  Here, ‘playing away’ was associated with
losing more, there, ‘playing at home’ was associated with winning more.  Both statements
are saying the same thing.  See  for a comparison of relative risk, ,
and .

Slope: A measure (to be precise, the tangent) of the angle of a line on a graph which shows the
relationship between two variables.  A down slope is a negative slope (an inverse
relationship between the variables), an up slope is a positive slope (a direct relationship), a
flat line is a zero slope (no relationship: X changes but Y does not), and a vertical line is
an “undefined” slope (also no relationship: Y changes but X does not.  It is undefined due
to division by zero).  The short definition is ‘rise over run,’ which in terms of Cartesian
coordinates means the change in the Y-coordinate (vertical) is divided by the change in the
X-coordinate (horizontal).  If the slope is +2.0, then for every  increase of 1 in the
independent variable (X), the dependent variable (Y) increases 2.  If the slope is -2.0, for
every increase of 1 in the independent variable (X), the dependent variable (Y) decreases
2.
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