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Abstract

We describe a performance study of a multi-zone application benchmark implemented in

several OpenMP approaches that exploit multi-level parallelism and deal with unbalanced

workload. The multi-zone application was derived from the well-known NAS Parallel Bench-

marks (NPB) suite that involves flow solvers on collections of loosely coupled discretization

meshes. Parallel versions of this application have been developed using the Subteam concept

and Workqueuing model as extensions to the current OpenMP. We examine the performance

impact of these extensions to OpenMP and compare with hybrid and nested OpenMP ap-

proaches on a large shared memory parallel system.

1 Introduction

Since its introduction in 1997, OpenMP has become the de facto standard for shared memory

parallel programming. The notable advantages of the model are its global view of memory space

that simplifies programming development and its incremental approach toward parallelization.

However, it is a big challenge to scale OpenMP codes to tens or hundreds of processors. One

of the difficulties is a result of limited parallelism that can be exploited on a single level of

loop nest. Although the current standard [8] allows one to use nested OpenMP parallel regions,

the performance is not very satisfactory. One of the known issues with nested OpenMP is its

lack of support for thread team reuse at the nesting level, which affects the overall application

performance and will be more profound on multi-core, multi-chip architectures. There is no

guarantee that the same OS threads will be used at each invocation of parallel regions although

many OS and compilers have provided support for thread affinity at a single level. To remedy

this deficiency, the NANOS compiler team [1] has introduced the GROUPS clause to the outer

parallel region to specify a thread group composition prior to the start of nested parallel regions,

and Zhang [13] proposed extensions for thread mapping and grouping.
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Chapman and collaborators [5] proposed the Subteam concept to improve work distribution

by introducing subteams of threads within a single level of thread team, as an alternative for

nested OpenMP. Conceptually, a subteam is similar to a process subgroup in the MPI context.

The user has control over how threads are subdivided in order to suit application needs. The

subteam proposal introduced an onthreads clause to a work-sharing directive so that the work,

including the implicit barrier at the end of the construct, will be performed among the subset

of threads within the team.

One of the prominent extensions to the current OpenMP is the Workqueuing (or Taskq)

model first introduced by Shah et al. [9] and implemented in the Intel C++ compiler [10].

It was designed to work with recursive algorithms and cases where work units can only be

determined dynamically. Because of its dynamic nature, Taskq can also be used effectively in an

unbalanced workload environment. The Taskq model will be included in the coming OpenMP

3.0 release [4]. Although the final tasking directive in OpenMP 3.0 will not be the same as the

original Intel Taskq proposal, it should still be quite intuitive to understand what potential the

more dynamic approach can offer to applications.

In this study, we will compare different OpenMP approaches for the parallelization of a

multi-zone application benchmark and report performance results from a large shared memory

machine. In Section 2, we briefly discuss the application under consideration. The different

implementations of our benchmark code are described in Section 3 and the machine description

and performance results are presented in Section 4. We conclude our study in Section 5 where

we also elaborate on future work.

2 Multi-Zone Application Benchmark

The multi-zone application benchmarks were developed [6, 11] as an extension to the origi-

nal NAS Parallel Benchmarks (NPBs) [2]. These benchmarks involve solving the application

benchmarks BT, SP, and LU on collections of loosely coupled discretization meshes (or zones).

The solutions on the meshes are updated independently, but after each time step they ex-

change boundary value information. This strategy, which is common among many production

structured-mesh flow solver codes, provides relatively easy to exploit coarse-grain parallelism

between zones. Since the individual application benchmark also allows fine-grain parallelism

within each zone, this NPB extension, named NPB Multi-Zone (NPB-MZ), is a good candidate

for testing hybrid and multi-level parallelization tools and strategies.

NPB-MZ contains three application benchmarks: BT-MZ, SP-MZ, and LU-MZ, with prob-

lem sizes defined from Class S to Class F. The difference between classes comes from how the

number of zones and the size of each zone are defined in each benchmark. We focus our study

on the BT-MZ benchmark because it was designed to have uneven-sized zones, which allows us

to test various load balancing strategies. For example, the Class B problem has 64 zones with

sizes ranging from 3K to 60K mesh points. Previously, the hybrid MPI+OpenMP [6] and nested

OpenMP [1] programming models have been used to exploit parallelism in NPB-MZ beyond a

single level. These approaches will be briefly described in the next section.
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3 Benchmark Implementations

In this section, we describe five approaches of using OpenMP and its extension to implement

the BT-MZ benchmark. Three of the approaches exploit multi-level parallelism and the other

two are concerned with balancing workload dynamically.

3.1 Hybrid MPI+OpenMP

The hybrid MPI+OpenMP implementation exploits two levels of parallelism in the multi-zone

benchmark in which OpenMP is applied for fine grained intra-zone parallelization and MPI

is used for coarse grained inter-zone parallelization. Load balancing in BT-MZ is based on

a bin-packing algorithm with an additional adjustment from OpenMP threads [6]. In this

strategy, multiple zones are clustered into zone groups among which the computational workload

is evenly distributed. Each zone group is then unqiuely assigned to each MPI process for parallel

execution. The procedure involves sorting zones by size in descending order and bin-packing

into zone groups. Exchanging boundary data within each time step requires MPI many-to-many

communication. The hybrid version is fully described in Ref. [6] and is part of the standard NPB

distribution. We will use the hybrid version as the baseline for comparison with other OpenMP

implementations.

3.2 Nested OpenMP

The nested OpenMP implementation is based on the two-level approach of the hybrid version

except that OpenMP is used for both levels of parallelism. The inner level parallelization for

loop parallelism within each zone is essentially the same as that of the hybrid version. The

only addition is the “num_threads” clause to each inner parallel region to specify the number

of threads. The first (outer) level OpenMP exploits coarse-grained parallelism between zones.

A code sketch of the iteration loop using nested OpenMP is illustrated in Fig. 1. The outer

level parallelization is adopted from the MPI approach: workloads from zones are explicitly

distributed among the outer-level threads. The difference is that OpenMP now works on the

shared data space as opposed to private data in the MPI version. The load balancing is done

statically through the same bin-packing algorithm where zones are first sorted by size, then

assigned to the least loaded thread one by one. The routine “map_zones” returns the number

and list of zones (num_proc_zones and proc_zone_id) assigned to a given thread (myid) as

well as the number of threads (nthreads) for the inner parallel regions. This information is

then passed to the “num_threads” clause in the solver routines. The MPI communication calls

inside “exch_qbc” for boundary data exchange are replaced with direct memory copy and proper

barrier synchronization.

In order to reduce the fork-and-join overhead associated with the inner-level parallel regions,

a variant was also created: a single parallel construct is applied to the time step loop block and

all inner-parallel regions are replaced with orphaned “omp do” constructs. This version, namely

version 2, will be discussed together with the first version in the results section.
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!$omp parallel private(myid,...)

myid = omp_get_thread_num()

call map zones(myid,..,nthreads,&

& num proc zones,proc zone id)

do step=1,niter

call exch_qbc(u,...,nthreads)

do iz = 1, num_proc_zones

zone = proc_zone_id(iz)

call adi(u(zone),..,nthreads)

end do

end do

!$omp end parallel

subroutine adi(u,..,nthreads)

!$omp parallel do &

!$omp& num threads(nthreads)

do k=2,nz-1

solve for u in the current zone

end do

!$omp parallel private(myid,...)

myid = omp_get_thread_num()

call map zones(myid,..,mytid,&

& proc thread team)

t1 = proc_thread_team(1,mytid)

t2 = proc_thread_team(2,mytid)

do step=1,niter

call exch_qbc(u,...,t1,t2)

do iz = 1, num_proc_zones

zone = proc_zone_id(iz)

call adi(u(zone),..,t1,t2)

end do

end do

!$omp end parallel

subroutine adi(u,..,t1,t2)

!$omp do onthreads(t1:t2:1)

do k=2,nz-1

solve for u in the current zone

end do

Figure 1: Sample nested OpenMP code on the left and Subteam code on the right.

3.3 Subteam in OpenMP

The subteam version was derived from the nested OpenMP version. Changes include replacing

the inner level parallel regions with orphaned “omp do” constructs and adding the “onthreads”

clause to specify the subteam composition. The sample subteam code is listed in the right

panel of Fig. 1. The main difference is in the call to “map_zones.” This routine determines

which subteam (mytid) the current thread belongs to and what members are in the current

subteam (proc_thread_team) based on the load balancing scheme. Defining subteams could be

simplified by introducing a runtime function for subteam formation and management, which is

not included in the subteam proposal [5].

The same load-balancing scheme as described in the previous section is applied in the subteam

version to create zone groups. Each subteam works on one zone group, and thus, the number

of zone groups equals the number of subteams. We use an environment variable to specify the

number of subteams at runtime. Threads assigned to each subteam will work on loop-level

parallelism within each zone. There is no overlapping of thread ids among different subteams.

Similar to the nested OpenMP version, the routine “exch_qbc” uses direct array copy and

proper global barrier synchronization for boundary communication.

3.4 OpenMP at Outer Level

One of the advantages of OpenMP is its ability to handle unbalanced workload in a dynamic

fashion without much user intervention. The programming effort is much less than the explicit
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!$omp parallel private(zone,...)

do step=1,niter

call exch_qbc(u,...)

!$omp do schedule(runtime)

do iz = 1, num_zones

zone = zone_sort_id(iz)

call adi(u(zone),...)

end do

end do

!$omp end parallel

#pragma omp parallel private(zone)

for (step=1;step<=niter;step++) {

exch_qbc(u,...);

#pragma intel omp taskq

for (iz=0;iz<num_zones;iz++) {

zone = zone_sort_id[iz];

#pragma intel omp task \

captureprivate(zone)

adi(&u[zone],...);

}}

Figure 2: Code segment using OpenMP runtime scheduling (left) and Intel taskq directives

(right).

approach described in previous sections for handling load balance. The trade-off is potentially

higher overhead associated with dynamic scheduling and less thread-data affinity as would be

achieved in a static approach. To examine the potential performance trade-off, we developed

an OpenMP version that solely focuses on the coarse-grained parallelization of different zones

of the multi-zone benchmark. As illustrated in Fig. 2 left panel, this version is much simpler

and compact. The “omp do” directive is applied to the loop nest over multiple zones. There is

no explicit coding for load balancing, which is achieved through the OpenMP dynamic runtime

schedule. The use of the “schedule(runtime)” clause allows us to compare different OpenMP

loop schedules. A “zone_sort_id” array is used to store zone ids in different sorting schemes.

3.5 Workqueuing Model

We developed a Taskq version of the BT-MZ benchmark based on the Intel workqueuing model.

Because Intel implemented Taskq only in its C++ compiler for C/C++ applications and there is

no other vendor compiler available at this point for testing the concept, we had to first convert

the Fortran implementation of BT-MZ to the C counterpart. To minimize the performance

impact from such a conversion, we did the following:

• Fortran multi-dimensional arrays are converted to linearized C arrays, such as

u(m,i,j,k) -> u[m+5*(i+nxmax*(j+ny*k))],

• The restrict qualifier is added to pointer variables in subroutine argument to enable

compiler to perform optimization without pre-assumed pointer aliasing, for example

void add(double *restrict u, double *restrict rhs,..).

Once we had the C version, the Taskq implementation of the BT-MZ benchmark (Fig. 2 right

panel) is straightforward. Each work unit for a task is defined by the solver on an individual

zone. The “intel omp taskq” directive is added to the loop nest over zones. Inside the zone

loop nest, the “intel omp task” directive is used to generate tasks for each loop iteration

and the zone value is preserved for each task by the “captureprivate” clause. The implicit

synchronization at the end of the taskq construct guarantees the completion of all tasks before
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going to the next iteration. Again, to test the performance impact of workload ordering, we use

“zone_sort_id” to store the sorted zone ids.

4 Performance Results

In this section, we present performance results obtained on a large parallel system. We will first

give a brief description of the system and programming support.

4.1 Testing Environment

Our performance studies were conducted on an SGI Altix 3700BX2 system that is one of the 20

nodes in the Columbia supercomputer installed at NASA Ames Research Center [3]. The Altix

BX2 node has 512 Intel Itanium 2 processors, each clocked at 1.6 GHz and containing 9 MB

on-chip L3 data cache. Approximately 1 TB of global shared-access memory is provided through

the SGI scalable non-uniform memory access flexible (NUMAflex) architecture. The underlying

NUMAlink4 interconnect provides 6.4 GB/s bandwidth. A single Linux operating system runs

on the Altix system, providing an ideal environment for shared-memory programming such as

OpenMP.

The system is equipped with SGI message-passing toolkit (MPT 1.12) that supports MPI

programming. We used the Intel Fortran, C/C++ 9.1 compilers for IA64 that support OpenMP

2.5 as well as the Taskq model. All of our experiments were run under the PBSpro batch system

in a shared environment. In order to reduce variation in timing and improve performance, the

“dplace” placement tool was used to bind processes/threads to physical processors.

For testing the OpenMP Subteam concept as described in Section 3.3, we employed the

OpenUH research compiler [7] that was extended to support the “onthreads” clause. This is

essentially a source-to-source translation process and the generated code is then compiled with

a native compiler. A small runtime library was developed to support basic subteam functions,

such as loop iteration scheduling and synchronization for subteam threads.

4.2 Multi-level Parallelism

In order to compare different multi-level parallel versions of the BT-MZ benchmark, we first

examine the performance impact from varying the number of zone groups on a given number of

CPUs. The left panel of Fig. 3 plots benchmark timing in seconds as a function of the number

of groups at 32 CPUs for the Class B problem size. The notation “Ng×Nt” denotes the number

of zone groups (Ng) formed for the first level parallelism and the number of threads (Nt) for the

second level parallelism within each group. In the hybrid MPI+OpenMP version, Ng is the same

as the number of MPI processes and Nt is the number of OpenMP threads per MPI process. Ng

in the nested OpenMP versions is the number of outer-level threads, and in the subteam version

is the number of subteams.

Overall the subteam version is very close in performance to the MPI+OpenMP hybrid ver-

sion. This indicates that the data layout of the subteam version is very similar to that of the

hybrid version, even though Subteam uses shared data arrays and MPI uses private data arrays.

At single level parallelization, either N×1 or 1×N , the performance of three approaches is very
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Figure 3: Timing comparison of nested OpenMP, Subteam, and MPI+OpenMP versions of BT-

MZ for the Class B problem, on the left for a given number of CPUs and on the right as a

function of CPU counts. The results are from the SGI Altix.

close. Between the two ends, the nested-OpenMP v1 performs consistently 30-80% worse than

the other two versions. By reducing the number of inner-level parallel regions in the second

version (v2), the performance of nested OpenMP improved substantially, although it still lags

behind. The large overhead associated with the inner parallel regions is likely due to the inability

of the OpenMP runtime library to reuse threads efficiently at the second level. Even though the

dplace tool binds the first-level threads properly, it has no control over the second-level threads.

This result is consistent with the previous observation by Ayguade et al. [1]

The best performance is achieved by maximizing the number of zone groups as long as the

workload can be balanced. For Class B, the optimal number of zone groups is 16. Beyond 16

CPUs, multi-level parallelism is needed for additional performance gain. Both subteam and

hybrid versions follow this analysis, but the nested OpenMP tends to prefer a larger number of

threads at the outer level, especially when the total number of CPUs increases.

The scaling results of BT-MZ from the best combinations of zone-groups and threads are

summarized in right panel of Fig. 3. Both the subteam and hybrid versions scale well up to the

measured CPU counts. Up to 16 CPUs, when only the outer-level parallelism is employed, the

nested OpenMP versions performs similarly to the other two versions. Beyond 16 CPUs, nested

OpenMP suffers from large overhead associated with the second-level parallelism and becomes

much worse at larger CPU counts.

To understand better why the nested OpenMP codes suffer from performance degradation

in the multi-level mode, we collected additional performance information from hardware coun-

ters available on the Altix and the results from the 8×4 runs are compared with the hybrid

MPI+OpenMP runs in Fig. 4. The nested OpenMP v1 has the highest stalled cycles and L3

cache misses, which is an indication of thread-data mismatch. Stalled cycle is usually a result

of waiting on resources, in particular memory. Although the nested OpenMP v2 reduced stalled

cycles, but it has large L3 cache misses. Three pure OpenMP codes have somewhat higher TLB

misses; but on the Altix, a TLB miss has less impact on the overall performance. Other counters,

such as L1 and L2 cache misses, have similar values for all four codes and are not included in

the graph.

7



0.0

0.5

1.0

1.5

2.0

2.5
V

al
ue

 R
el

at
iv

e 
to

 H
yb

rid

stalled cycles

L3 hit ra
te

L3 miss ratio

TLB miss

mispredicted branches

cycles with no instrs

wall clock tim
e

Nested OMP v1
Nested OMP v2
Subteam
MPI+OpenMP

Class B
8×4 CPUs

Figure 4: Comparison of hardware performance

counter results obtained on the Altix for the 8×4

runs of the four BT-MZ versions.

5

10

15

20

G
flo

p/
s

dynamic guided static

1

2

4

1

2

4

1

2

4 no
 c

hk
sz

Class B
16 threads

Figure 5: Performance comparison of dif-

ferent schedule kinds for BT-MZ Class B,

16 threads. Numbers in the graph indi-

cate chunk sizes. The last bar is for a

static schedule without chunk size.

4.3 Unbalanced Workload

To test the effectiveness of OpenMP runtime schedule kinds and more dynamic approaches on

unbalanced workload, we focus on the single-level OpenMP versions of BT-MZ as described in

Sections 3.4 and 3.5, which exploit parallelism among unbalanced zones. No nested parallelism

is considered here.

4.3.1 Impact of Schedule Kind

The results from 16-thread runs using different runtime schedule kinds and chunk sizes are

shown in Fig. 5. The “dynamic,1” schedule produces the best result for the given problem.

As the chunk size increases, the performance decreases. The “guided” schedule is only slightly

worse. The “static” schedule without chunk size (the last bar in the graph) shows its limita-

tion in dealing with unbalanced workload and is as much as 50% worse than the “dynamic,1”

schedule. The “static,1” (or cyclic) schedule improves the performance but not sufficiently.

4.3.2 Workload Ordering on Performance

As noted in the benchmark description, the zone workload in BT-MZ was designed to be

uneven. Class B contains 64 zones whose sizes, shown in Fig. 6 on the left, range from 3K to 60K

mesh points. The right graph in Fig. 6 shows the performance impact of three different orderings

of zones in size on the “dynamic,1” schedule: natural (original) order, descending order, and

ascending order. For comparison, the graph also includes results from a single-level OpenMP

version that uses the static bin-packing algorithm for load balancing. This version is essentially

the same as the nested OpenMP v1 described in Section 3.2 without the nested parallelism. We

observe that by sorting zones into descending order, the performance can improve by as much

as 45% (18 to 26 Gflop/s on 16 threads). This result supports the observation reported by Van

Zee et al. [12] in their FLAME code using the workqueuing model.
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The impact of different workload orderings on the “guided” schedule (not shown in the

graph) is very similar to that on the “dynamic” schedule. It is worth noting that the dynamic

approach for unbalanced workload is only slightly worse (∼15% beyond 16 threads) than the

static bin-packing approach. However, the programming effort in the former case is considerably

less.

4.3.3 Workqueuing Model

Before going into the workqueuing (or taskq) model, we first examine the performance change

as a result of converting the code from Fortran to C. Due to pointer aliasing, a C code can

suffer from the constraint in compiler optimization for pointers. In order to reduce or even

eliminate pointer aliasing, one can either use the “restrict” modifier or rely on compiler flags.

The Intel compiler provides the option “-fno-alias” for this purpose. Table 1 summarizes

the results of the OpenMP C version of BT-MZ using different compiler aliasing options and

compares with the Fortran version. The no-alias option produces more than twice as much

improvement in performance as the default aliasing option. Combining with the “restrict”

modifier, the C code performs very close to the Fortran counterpart. This combined option was

used in collecting the C results below.

Table 1: Comparison of results from different aliasing options for the Class B, BT-MZ on 16

threads.

Case Time(sec) Gflop/s Compiler option

Default aliasing 49.86 12.059

“restrict” keyword 37.17 16.175 -restrict
C No aliasing 23.49 25.594 -fno-alias

Combination 23.38 25.718 -restrict -fno-alias

Fortran 23.01 26.124
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Figure 7 compares the Intel Taskq version of BT-MZ with the single-level OpenMP versions

(both C and Fortran) using dynamic scheduling for load balancing. It is encouraging to note

that the Taskq version has similar performance to the single-level OpenMP C version using the

“dynamic,1” schedule up to 32 threads. Only at 64 threads the dynamic-schedule version out-

performs the Taskq version by about 20%. As illustrated by the two panels in the figure, sorting

workload into descending order improves overall performance for Taskq as well. Comparing to

the Fortran version, the performance of Taskq gets worse at larger thread counts, primarily due

to the difference between Fortran and C.

2

4

8

16

32

64

G
flo

p/
s

1 2 4 8 16 32 64

Number of Threads

Descending Order
Fortran: dyn,1
C: dynamic,1
C: taskq

BT-MZ
Class B

1 2 4 8 16 32 64

Number of Threads

Natural Order
Fortran: dyn,1
C: dynamic,1
C: taskq

BT-MZ
Class B

Figure 7: Performance comparison of the Taskq version with the single-level OpenMP versions

(in both C and Fortran) using the “dynamic,1” schedule.

5 Conclusion

We have presented performance evaluation of four different OpenMP approaches in dealing with

multi-level parallelism and unbalanced workload, and compared with a hybrid MPI+OpenMP

method. The nested OpenMP approach suffered from performance degradation as a result of

large overhead and lack of thread reuse when invoking the inner level parallelism on the SGI

Altix. By minimizing the number of inner level parallel regions we improved nested OpenMP

performance dramatically. Another potential way to reduce overhead associated with nested

parallel regions is by proper support of thread affinity with thread reuse as proposed by others [1,

13].

The approach based on the Subteam extension to OpenMP overcame some of the limitations

with nested OpenMP and showed promise in achieving performance close to that of the hybrid

MPI+OpenMP method. Our study also points out the importance of extending the Subteam

proposal to include API for subteam creation and management.

It is very encouraging that the more dynamic approach provided by the workqueuing model

showed great potential in dealing with unbalanced workload. This model can benefit from using

a weight factor in scheduling tasks.

For future work, we would like to conduct our experiments on more platforms, in particular

10



to study the support of nested parallelism from different compilers and runtime systems. A

natural extension is to investigate the performance characteristics of nested parallelism under

the workqueuing model. It is also important to extend our experience from a single benchmark

application to more realistic applications.
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