Metals Transport in the Sacramento River, California, 1996–1997

Volume 2: Interpretation of Metal Loads

Charles N. Alpers, Ronald C. Antweiler, Howard E. Taylor, Peter D. Dileanis, *and* Joseph L. Domagalski

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 00-4002

In cooperation with

Sacramento Regional County Sanitation District California State Water Resources Control Board U.S. Environmental Protection Agency U.S. Department of Commerce, National Marine Fisheries Service

Sacramento, California 2000

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Charles G. Groat, Director

The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division Placer Hall 6000 J Street Sacramento, California 95819-6129 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286

FOREWORD

The U.S. Geological Survey (USGS) is committed to serve the Nation with accurate and timely scientific information that helps enhance and protect the overall quality of life, and facilitates effective management of water, biological, energy, and mineral resources. (http://www.usgs.gov/). Information on the quality of the Nation's water resources is of critical interest to the USGS because it is so integrally linked to the long-term availability of water that is clean and safe for drinking and recreation and that is suitable for industry, irrigation, and habitat for fish and wildlife. Escalating population growth and increasing demands for the multiple water uses make water availability, now measured in terms of quantity and quality, even more critical to the long-term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program to support national, regional, and local information needs and decisions related to water-quality management and policy. (http:// water.usgs.gov/nawqa). Shaped by and coordinated with ongoing efforts of other Federal, State, and local agencies, the NAWQA Program is designed to answer: What is the condition of our Nation's streams and ground water? How are the conditions changing over time? How do natural features and human activities affect the quality of streams and ground water, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. NAWQA results can contribute to informed decisions that result in practical and effective water-resource management and strategies that protect and restore water quality.

Since 1991, the NAWQA Program has implemented interdisciplinary assessments in more than 50 of the Nation's most important river basins and aquifers, referred to as Study Units. (http://water.usgs.gov/nawqa/ nawqamap.html). Collectively, these Study Units account for more than 60 percent of the overall water use and population served by public water supply, and are representative of the Nation's major hydrologic landscapes, priority ecological resources, and agricultural, urban, and natural sources of contamination.

Each assessment is guided by a nationally consistent study design and methods of sampling and analysis. The

assessments thereby build local knowledge about waterquality issues and trends in a particular stream or aquifer while providing an understanding of how and why water quality varies regionally and nationally. The consistent, multi-scale approach helps to determine if certain types of water-quality issues are isolated or pervasive, and allows direct comparisons of how human activities and natural processes affect water quality and ecological health in the Nation's diverse geographic and environmental settings. Comprehensive assessments on pesticides, nutrients, volatile organic compounds, trace metals, and aquatic ecology are developed at the national scale through comparative analysis of the Study-Unit findings. (http://water.usgs.gov/ nawqa/natsyn.html).

The USGS places high value on the communication and dissemination of credible, timely, and relevant science so that the most recent and available knowledge about water resources can be applied in management and policy decisions. We hope this NAWQA publication will provide you the needed insights and information to meet your needs, and thereby foster increased awareness and involvement in the protection and restoration of our Nation's waters.

The NAWQA Program recognizes that a national assessment by a single program cannot address all waterresource issues of interest. External coordination at all levels is critical for a fully integrated understanding of watersheds and for cost-effective management, regulation, and conservation of our Nation's water resources. The Program, therefore, depends extensively on the advice, cooperation, and information from other Federal, State, interstate, Tribal, and local agencies, non-government organizations, industry, academia, and other stakeholder groups. The assistance and suggestions of all are greatly appreciated.

Robert M. Hersch

Robert M. Hirsch Associate Director for Water

CONTENTS

Executive Summary	1			
Abstract	2			
Introduction				
Previous Work and Related Ongoing Studies				
Purpose and Scope	8			
Acknowledgments				
Computation of Metal Loads	8			
Discharge	9			
Dissolved Loads	9			
Colloidal Loads	9			
Transport Plots	12			
Total Recoverable Loads	15			
Colloid Speciation Data	28			
Uncertainties in Metal Loads	28			
Discussion of Spatial and Temporal Variations in Metal Loads	29			
Temporal Variations in Dissolved and Colloidal Loads	42			
Cadmium, Copper, and Zinc	44			
Lead, Aluminum, and Iron	46			
Discussion of Transport and Fate of Metals from Various Sources	48			
Copper-Zinc-Lead Mines in the Shasta Region	48			
Mines Draining into Shasta Lake and Its Tributaries	48			
Mines Draining into Keswick Reservoir and Its Tributaries	49			
Mass Balance and Metal Transport in Keswick Reservoir	50			
Mass Balance in the Spring Creek Arm of Keswick Reservoir	50			
Overall Mass Balance in Keswick Reservoir	51			
Metal Sources Downstream of Keswick Dam	51			
Tributaries Between Keswick Dam and Colusa	51			
Tributaries Between Colusa and Freeport	52			
Agricultural Drainage	52			
Urban Runoff	53			
Summary and Conclusions	53			
References Cited	55			
Appendix 1. Tables of Data Comparing Metal Loads in Dissolved Form, Colloidal Form, and Whole Water	57			
Appendix 2. Tables of Data Comparing Metal Loads Relative to Loads at Freeport and in the Yolo Bypass	73			
Appendix 3. Tables of Data Comparing Metal Loads Used in Mass Balance Calculations for the				
Spring Creek Arm of Keswick Reservoir	81			
Appendix 4. Tables of Data Comparing Metal Loads Used in Mass Balance Calculations				
for Keswick Reservoir	89			
Appendix 5. Plots of Metal Loads in Dissolved and Colloidal Forms for Miscellaneous Trace Metals in Water	97			
Appendix 6. Hydrographs Showing Daily Mean Discharge and Time of Sampling				

FIGURES

1. Location map of Sacramento River watershed, California	5
2. Location map of West Shasta mining district, Shasta County, California	6
3A. Diagram showing magnitude of mean discharge in the Sacramento River, California, relative to	
major tributaries and diversions during the July 11–18, 1996 sampling period	10
3B. Diagram showing magnitude of mean discharge in the Sacramento River, California, relative to	
major tributaries and diversions during the September 18–26, 1996sampling period	11
3C. Diagram showing magnitude of mean discharge in the Sacramento River, California, relative to	
major tributaries and diversions during the November 12–22, 1996 sampling period	12
3D. Diagram showing magnitude of mean discharge in the Sacramento River, California, relative to	
major tributaries and diversions during the December 11–18, 1996 sampling period	13
3E. Diagrams showing magnitude of mean discharge in the Sacramento River, California, relative to	
major tributaries and diversions during the January 2–8, 1997 sampling period	14
3F. Diagrams showing magnitude of mean discharge in the Sacramento River, California, relative to	
major tributaries and diversions during the May 28–June 6, 1997 sampling period	15
4. Plot of dissolved and colloidal aluminum loads, July 1996 to May–June 1997, Sacramento River,	
California	16
5. Plot of dissolved and colloidal cadmium loads, July 1996 to Mav–June 1997, Sacramento River,	
California	17
6. Plot of dissolved and colloidal copper loads, July 1996 to May–June 1997, Sacramento River,	
California	18
7. Plot of dissolved and colloidal iron loads. July 1996 to May–June 1997. Sacramento River.	
California	19
8. Plot of dissolved and colloidal lead loads, July 1996 to Mav–June 1997, Sacramento River,	
California	20
9. Plot of dissolved and colloidal zinc loads, July 1996 to Mav–June 1997, Sacramento River, California	21
10. Plots of dissolved and colloidal aluminum loads, colloid concentration, aluminum concentration in colloids,	
and discharge, Sacramento River, California for A. July 1996, B. September 1996, C. November 1996,	
D. December 1996, E. January 1997, and F. May–June 1997	22
11. Plots of dissolved and colloidal cadmium loads, colloid concentration, cadmium concentration in colloids,	
and discharge, Sacramento River, California for A. July 1996, B. September 1996, C. November 1996,	
D. December 1996, E. January 1997, and F. May–June 1997	23
12. Plots of dissolved and colloidal copper loads, colloid concentration, copper concentration in colloids,	
and discharge, Sacramento River, California for A. July 1996, B. September 1996, C. November 1996,	
D. December 1996, E. January 1997, and F. May–June 1997	24
13. Plots of dissolved and colloidal iron loads, colloid concentration, iron concentration in colloids, and	
discharge, Sacramento River, California for A. July 1996, B. September 1996, C. November 1996,	
D. December 1996, E. January 1997, and F. May–June 1997	25
14. Plots of dissolved and colloidal lead loads, colloid concentration, lead concentrations in colloids, and	
discharge, Sacramento River, California for A. July 1996, B. September 1996, C. November 1996,	
D. December 1996, E. January 1997, and F. May–June 1997	26
15. Plots of dissolved and colloidal zinc loads, colloid concentration, zinc concentrations in colloids, and	
discharge, Sacramento River, California for A. July 1996, B. September 1996, C. November 1996,	
D. December 1996, E. January 1997, and F. May–June 1997	27

16A. Distribution and speciation of colloidal cadmium loads during December 1996, Sacramento River,	
California, and selected tributaries	30
16B. Distribution and speciation of colloidal copper loads during December 1996, Sacramento River,	
California, and selected tributaries	31
16C. Distribution and speciation of colloidal lead loads during December 1996, Sacramento River,	
California, and selected tributaries	32
16D. Distribution and speciation of colloidal zinc loads during December 1996, Sacramento River,	
California, and selected tributaries	33
17A. Distribution and speciation of colloidal cadmium loads during January 1997, Sacramento River,	
California, and selected tributaries	34
17B. Distribution and speciation of colloidal copper loads during January 1997, Sacramento River,	
California, and selected tributaries	35
17C. Distribution and speciation of colloidal lead loads during January 1997, Sacramento River,	
California, and selected tributaries	36
17D. Distribution and speciation of colloidal zinc loads during January 1997, Sacramento River,	
California, and selected tributaries	37
18A. Distribution and speciation of colloidal cadmium loads during May-June 1997, Sacramento River,	
California, and selected tributaries	38
18B. Distribution and speciation of colloidal copper loads during May-June 1997, Sacramento River,	
California, and selected tributaries	39
18C. Distribution and speciation of colloidal lead loads during May-June 1997, Sacramento River,	
California, and selected tributaries	40
18D. Distribution and speciation of colloidal zinc loads during May-June 1997, Sacramento River,	
California, and selected tributaries	41
19. Plots of suspended sediment concentration (A) and load (B) versus stream flow at Freeport,	
California, July 1995 through June 1997	43
20. Graph showing elevation of streambed in relation to distance from river mouth, Keswick Dam	
to Freeport, Sacramento River, California	45
21. Probability box illustrations showing distribution of (A) Zn/Cd and (B) Zn/Cu data in dissolved and	
colloidal samples taken July 1996 through June 1997, Sacramento River, California	47
Appendix 5. Plots of metal loads in dissolved and colloidal forms for miscellaneous trace metals in water	
A5-1. Plot of dissolved and colloidal chromium loads, July 1996 to May–June 1997, Sacramento River,	
California	98
A5-2. Plot of dissolved and colloidal cobalt loads, July 1996 to May–June 1997, Sacramento River, California	99
A5-3. Plot of dissolved and colloidal nickel loads, July 1996 to May–June 1997, Sacramento River, California	100
A5-4. Plot of dissolved and colloidal yttrium loads, July 1996 to May–June 1997, Sacramento River, California	101
Appendix 6. Hydrographs showing daily mean discharge and time of sampling	
A6-1. Hydrographs showing daily mean discharge and time of sampling, November 1996, Sacramento River,	
California for A. Below Keswick Dam, B. Bend Bridge, C. Colusa, D. Yolo Bypass,	
<i>E</i> . Verona, and <i>F</i> . Freeport	104
A6-2. Hydrographs showing daily mean discharge and time of sampling, December 1996, Sacramento River,	
California for A. Below Keswick Dam, B. Bend Bridge, C. Colusa, D. Yolo Bypass,	
<i>E</i> . Verona, and <i>F</i> . Freeport	105

A6-3. Hydrographs showing daily mean discharge and time of sampling, January 1997, Sacramento River,	
California for A. Below Keswick Dam, B. Bend Bridge, C. Colusa, D. Yolo Bypass,	
E. Verona, and F. Freeport	106

TABLES

Appendix 1. Tables of Data Comparing Metal Loads in Dissolved Form, Colloidal Form, and Whole Water			
A1-1. Aluminum loads derived from concentrations in dissolved, colloid, and whole water samples	58		
A1-2. Cadmium loads derived from concentrations in dissolved, colloid, and whole water samples	60		
A1-3. Copper loads derived from concentrations in dissolved, colloid, and whole water samples			
A1-4. Iron loads derived from concentrations in dissolved, colloid, and whole water samples			
A1-5. Lead loads derived from concentrations in dissolved, colloid, and whole water samples			
A1-6. Mercury loads derived from concentrations in dissolved, colloid, and whole water samples	68		
A1-7. Zinc loads derived from concentrations in dissolved, colloid, and whole water samples	70		
Appendix 2. Tables of Data Comparing Metal Loads Relative to Loads at Freeport and in the Yolo Bypass			
A2-1. Aluminum loads divided by sum of loads at Freeport and in Yolo Bypass, derived from			
concentrations in dissolved, colloid, and whole water samples	74		
A2-2. Cadmium loads divided by sum of loads at Freeport and in Yolo Bypass, derived from			
concentrations in dissolved, colloid, and whole water samples	75		
A2-3. Copper loads divided by sum of loads at Freeport and in Yolo Bypass, derived from			
concentrations in dissolved, colloid, and whole water samples	76		
A2-4. Iron loads divided by sum of loads at Freeport and in Yolo Bypass, derived from			
concentrations in dissolved, colloid, and whole water samples	77		
A2-5. Lead loads divided by sum of loads at Freeport and in Yolo Bypass, derived from			
concentrations in dissolved, colloid, and whole water samples	78		
A2-6. Mercury loads divided by sum of loads at Freeport and in Yolo Bypass, derived from			
concentrations in dissolved, colloid, and whole water samples	79		
A2-7. Zinc loads divided by sum of loads at Freeport and in Yolo Bypass, derived from			
concentrations in dissolved, colloid, and whole water samples	80		
Appendix 3. Tables of Data Comparing Metal Loads Used in Mass Balance Calculations for the Spring Creek arm			
of Keswick Reservoir			
A3-1. Aluminum loads derived from concentrations in dissolved, colloid, and whole water samples			
used in mass balance calculations for the Spring Creek arm of Keswick Reservoir	82		
A3-2. Cadmium loads derived from concentrations in dissolved, colloid, and whole water samples			
used in mass balance calculations for the Spring Creek arm of Keswick Reservoir	83		
A3-3. Copper loads derived from concentrations in dissolved, colloid, and whole water samples used			
in mass balance calculations for the Spring Creek arm of Keswick Reservoir	84		
A3-4. Iron loads derived from concentrations in dissolved, colloid, and whole water samples used			
in mass balance calculations for the Spring Creek arm of Keswick Reservoir	85		
A3-5. Lead loads derived from concentrations in dissolved, colloid, and whole water samples used			
in mass balance calculations for the Spring Creek arm of Keswick Reservoir	86		
A3-6. Mercury loads derived from concentrations in dissolved, colloid, and whole water samples			
used in mass balance calculations for the Spring Creek arm of Keswick Reservoir	87		
A3-7. Zinc loads derived from concentrations in dissolved, colloid, and whole water samples used			
in mass balance calculations for the Spring Creek arm of Keswick Reservoir	88		

Appendix 4. Tables of Data Comparing Metal Loads Used in Mass Balance Calculations for Keswick Reservoir	
A4-1. Aluminum loads derived from concentrations in dissolved, colloid, and whole water samples used in	
mass balance calculations for Keswick Reservoir	90
A4-2. Cadmium loads derived from concentrations in dissolved, colloid, and whole water samples used in	
mass balance calculations forKeswick Reservoir	91
A4-3. Copper loads derived from concentrations in dissolved, colloid, and whole water samples used in	
mass balance calculations for Keswick Reservoir	92
A4-4. Iron loads derived from concentrations in dissolved, colloid, and whole water samples used in	
mass balance calculations for Keswick Reservoir	93
A4-5. Lead loads derived from concentrations in dissolved, colloid, and whole water samples used in	
mass balance calculations for Keswick Reservoir	94
A4-6. Mercury loads derived from concentrations in dissolved, colloid, and whole water samples used in	
mass balance calculations for Keswick Reservoir	95
A4-7. Zinc loads derived from concentrations in dissolved, colloid, and whole water samples used in	
mass balance calculations for Keswick Reservoir	96

CONVERSION FACTORS, VERTICAL DATUM, ACRONYMS and ABBREVIATIONS, and CHEMICAL ELEMENTS

Conversion Factors		
Multiply	Ву	To obtain
acre-foot (acre-ft)	1,233	kiloliter
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
cubic foot per second (ft ³ /s)	28.32	liter per second
cubic yard (yd ³)	0.7646	cubic meter
foot (ft)	0.3048	meter
mile (mi)	1.609	kilometer
pound	0.4536	kilogram
square mile (mi ²)	2.590	square kilometer
short ton	0.9072	megagram (metric ton)

Temperature is given in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by the following equation:

°F=1.8(°C)+32.

Vertical Datum

Sea level: In this paper, "sea level" refers to the National Geodetic Vertical Datum of 1929—a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Acronyms and Abbreviations

(Additional information given in parentheses)

μg, microgram μg/L, microgram per liter μm, micrometer

kg/d, kilogram per day km, kilometer L, liter m³/s, cubic meter per second mL, milliliter mm, millimeter ng, nanogram ng/L, nanogram per liter nm, nanometer

Br., Bridge CMP, Coordinated Monitoring Program CVP, Central Valley Project EPA, U.S. Environmental Protection Agency MOU, Memorandum of Understanding NAWQA, National Water-Quality Assessment (Program)

x Contents

NMWL, Nominal Molecular Weight Limit NWQL, National Water Quality Laboratory ROD, Record of Decision SCDD, Spring Creek Debris Dam SCPP, Spring Creek Power Plant SRM, standard reference material USGS, U.S. Geological Survey

Elements and Compounds

Elements

Al, aluminum Cd, cadmium Co, cobalt Cr, chromium Cu, copper Fe, iron Hg, mercury Ni, nickel Pb, lead Y, yttrium Zn, zinc

Compounds

HCl, hydrochloric acid HF, hydrofluoric acid HNO₃, nitric acid