
 1

REFERENTIAL INTEGRITY FIXES

Data files within STD*MIS are linked together through system-generated id numbers called
primary and foreign keys. These 10-11 digit id numbers link pieces of data that together form
the picture that is viewed with the application by the user. Unfortunately, and for a variety of
reasons, sometimes these keys become lost, causing pieces of data to be come unlinked from
others. These are known as referential integrity errors. For example, if a user views an
Interview Record and notices that it does not have a diagnosis or case number associated with it,
this is a referential integrity error - the case record has become unlinked from the interview
record. Case.dbf holds the case number and the diagnosis for a specific case and is linked to the
interview record (Ira.dbf and Irb.dbf) by the Irb_id. Correcting these errors can be a very
complicated process and knowledge of STD data and the business processes of STD prevention
can help in resolving some of the issues involved with referential clean-up. Though STD
knowledge can assist in understanding how to fix referential integrity errors, it is more important
to understand how the databases relate to one another. The causes of these errors are varied and
can be difficult to identify; some possible causes of referential integrity errors include corrupted
data, conversion issues, network instability, power outages/surges, computers locking and
freezing in the middle of data entry, existing the application incorrectly, and human error.
Regardless of how they began, it is important to the functioning of the system to take care of
them in a timely manner.

Documents such as the STD*MIS Data Dictionary, Fields List, and schematics (Key
Linkages) are invaluable tools for correcting referential integrity errors. The data dictionary
outlines the database structure for all of the required databases in STD*MIS, including variable
length, type, and description. The Fields List document lists all of the variables alphabetically
and which databases they are located in. This is a very important document in helping to repair
referential integrity problems. The schematic shows the pictorial linkage between the database
files. If your site does not have these tools, please consult with your program area’s STD*MIS
support person. Contact information for STD*MIS support staff and their assigned project areas
are available on the STD*MIS website at http://www.cdc.gov/nchstp/dstd/STD-MIS-
Contacts.htm .

Anyone attempting to correct referential integrity errors should exercise extreme caution when
working with the database files. Changes done at this level are potentially damaging and are
usually permanent. It is strongly recommended that a copy of the actual database should be used
to seek out solutions to problems. Solutions should be documented and then implemented in the
copy of the database. After the solutions have been verified in the copy by running the
referential integrity report again, they can be implemented on the live database. This approach
will not only reduce the chance of severe damage being done to the live database, but will also
decrease the amount of time the live application must be down. Since referential integrity error
correction requires exclusive access to the databases (i.e. no one else can be in the system), the
less time spent implementing solutions, the less time data entry and/or clinic operations are
suspended. Regardless, project areas must ensure their system is backed up on a routine basis
and that back ups are locatable, and useable.

http://www.cdc.gov/nchstp/dstd/STD-MIS-Contacts.htm
http://www.cdc.gov/nchstp/dstd/STD-MIS-Contacts.htm

 2

RUNNING THE REFERENTIAL INTEGRITY REPORT

The referential integrity report can be accessed through AMaintenance, System Checks, Database
QA reports, Referential Integrity Check.@ Access to the report (and all other Maintenance
functions) requires an administrative-level user id and password. This report requires exclusive
access to the databases and must be run while no other users are logged into the application. The
report will take from a few minutes to an hour or more to run, depending on the size of the
individual dbf’s. After the data files have been loaded, the user will be prompted to press any
key to continue. A list of data files to select will appear. The user may select a single file,
multiple files or all of the files. To select all of the files, the user must hold down the <Ctrl> key
and press the letter <T> key. A check mark will appear beside the files selected to be reviewed.
To select an individual file, use the up and down arrow keys to move to the desired file; when
the correct file is highlighted, press the <Space Bar>. To remove an individual file from
selection, use the arrow keys to move to the file, highlight it and press the <Space Bar> again.
The check mark is removed and the file is removed from the review. Once the user has selected
the desired file(s) for review, press the <Enter> key to start the check process. The length of
time it takes the report to check the files will depend upon the size of the databases. The more
data stored the longer the report will take. Once completed, the errors will be displayed. The user
will need to choose AP@ to print the report, either to the printer, a text file or both, once the
program has completed running.

Note: Users should periodically delete seekkeys.dbf from the application folder before running
the Referential Integrity Check again.

DOCUMENTING CHANGES IN THE DATABASE FILES

When making changes in the database files it is important to keep documentation on those
changes. Using a simple grid to document steps taken to rectify referential errors can help guide
the user through the clean-up process. With documentation an historical overview of the changes
made within the files can be tracked despite changes in personnel and over greater periods of
time. This documentation will also aide the data person=s memory as to what changes were made,
when, and why. A sample of a grid follows below with a complete copy of the grid attached to
this document. User=s may modify this grid or use it as a template to create their own.

For Case.dbf: error Morb_id not in Morbrept:

Errors

Dbf: Case Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Fr(b)_id

>Fr.Event_id

>Morb.morbid

Morb_id
xxxxxxxxxx
not in
Morbrept

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

Replace
morb_id w/
xxxxxxxxxx
in Case

> - to file.field name xxxxxxxxxx - variable value

 3

When implementing the same resolution for a large number of problems, it may not be necessary
to document individual solutions. In the error box, the data manager may wish to document the
starting point through the ending point of the records that will be resolved using the same
solution. An example is in the case of removing corrupted data. If the corrupted data covers
records 25 though 52, the user can simply state: Errors - records 25 - 52; with Solutions -
deletion of corrupted records. A problem may take more than one line to resolve. Record
numbers from various files should also be documented as well. This documentation may be kept
electronically since it is a simple grid and may be manipulated to the user=s benefit. It is also
recommended that if any short hand is used, a key should be placed on each page where the short
hand is used. This will allow others who may come behind you to understand what was done
during data correction.

CORRECTING REFERENTIAL ERRORS

Resolving referential integrity errors often takes time and a bit of determination. Occasionally,
implementing solutions may create additional errors which must then be resolved before there
can be a reduction in the total number of errors. At times it may seem like a never ending battle,
but eventually it will pay off. The following suggestions are by no means the only methods to
resolve the problems listed in most cases, nor is this an all encompassing list of solutions. When
possible, compare variables, such as dates, and other data to make sure the solution chosen is the
best for the problem. Program areas may find systemic or area-specific problems and may need
to call their STD*MIS support person for help in resolving them. The user may need to
experiment and find methods that may be more suitable to their individual program area. Once
any problem is resolved the file that has been changed must be reindexed before the solution can
be viewed in the application. There are two ways to reindex files: 1) open a DOS prompt;
navigate to your STD*MIS folder (example: C:\std\stdmis34b); type in <STDMIS A> and press
<ENTER>; this will automatically launch reindexing, and will reindex the entire system; 2) go to
AMaintenance, Reindex System, Data Files;@ use the <Space bar> to select individual files, or
select all files by holding down the <Ctrl> key and pressing the letter <T> key. Once again, it is
advised that a copy of the system should be used to test fixes before enacting them on the live
system.

The person fixing these errors should be aware of local programmatic policy with regard to
deletion of data from the system. Sometimes deletion of record(s) is the only solution available
to resolve issues. Solutions below begin with the assumption that records are linked at the time
of data entry. If records are not linked, it may be necessary to recreate the missing key record. If
linked records are marked for deletion, then the user must determine if the record that contains
the error should also be marked for deletion or if they should empty the variable field. Also,
Patient_ids and Address_ids are not presented as methods for possible resolution for referential
integrity problems, though they are found in most databases. Patient and address ids may be used
at the data manager=s discretion.

Foxpro Database Utility (FDBU) is bundled with STD*MIS. Fixes suggested below are
presented using this database maintenance software. Solutions to referential integrity errors can
be completed with other software; however, data managers should be completely aware of the

 4

side effects that may be caused by trying to apply those solutions directly. Some applications
will alter the data structure; if the data is then transferred back into STD*MIS, it may create
much larger problems and possibly complete loss of data. So while it may be easier to solve a
problem in another data management application, the actual solution may have to be
implemented through FDBU or another approved tool. Please approach any resolution of
database errors with caution.

Locating a record in FDBU

There are two ways to reach FDBU. One way is through the DOS prompt and the other is
through Windows. In DOS, type FDBU in the STD*MIS path; for example:
<C:\stdmis34\fdbu>, then press <enter>. In Windows Explorer, in the STD*MIS folder, locate
and double click on AFDBU.exe.@ Either method will launch the application. A blue window will
appear, with commands (“F” keys) listed across the top, and headings for “Files”, “Indexes” and
“Fields” down the center. In the grey box appearing under “Files”, type in the name of the file
that contains the referential integrity error and press <enter>. If typing the name of the dbf does
not work, press the <F2> key and with ADatabase@ highlighted, press Aenter@. This will bring up a
menu of the .dbf files in STD*MIS. Type in the first letter of the file name desired. Use the
arrow key to scroll down to the file needed. Once the file desired is highlighted, press <enter>
twice. The name of the chosen file will appear under “Files”, and the variables in the file will be
listed under “Fields”. To view the contents of the file press the <F5> (Browse) key and <enter>.
This will open the .dbf file (in turquoise) across the bottom of the window. With the file open,
press the <F7> (Move) key. This menu is where search functions are found. If you have the
record number, the AGoto@ function can be used. Simply type in the record number and press
<enter> twice. To search on a variable, such as event_id or fr_id, the “Locate” function must be
used. With ALocate@ highlighted, press <enter>. In the grey pop-up box type in the name of the
variable you wish to search on, then an equal sign, and value of the variable in single quote
marks. Example: patient_id = >0110000025'. Press <enter> twice once the statement is
complete. Keep in mind that some variable values can be in a file more than once, such as
patient_id, event_id, and address_id. To repeat the search with the same variable and value,
simply press AF7" and <enter>, <enter> repeatedly, until either you locate the desired record or
the message AFile not found@ appears in red, underneath the “F1” (Help) command. The “locate”
function begins its search from the current location in the file, so it is always a good idea to
return to record one before beginning a new search. To return to record one, press <ctrl> and
<page up> at the same time.

More complicated searches can be completed using AF7,@ Alocate.@ Compound statements can be
used to help narrow a search. The following example is in Reactor.dbf; the error is Reactor_id
not found in Test.dbf. Since both Test and Reactor files have Event_id and Receive_dt as
variables, an option to trying to find the missing record may be to search on both variables at the
same time. The locate statement would be as follows:

Expression event_id = >xxxxxxxxxx= .and. receive_dt = ctod(>xx/xx/xx=)

Where xxx’s = numeric values

 5

Operating signs are set off by the use of periods before and after they are written (hence A.and.@).
 Dates are actually stored differently than they appear so the CTOD phrase is used to convert
them into date format as written above with months, days, and years substituted for the Xs.
Documentation:

Errors

Dbf: Reactor Date: XX/XX/XXXX Completed by: H. D.

Clown

Solutions

Receive_dt

>Test - search

Reactor_id
xxxxxxxxxx
not in Test

xx/xx/xxxx

Reac_id &
Rec_dt

Place
Reac_id
xxxxxxxxxx
in Test

> - to file.field name xxxxxxxxxx - variable value

This is part of the reason why fixes focusing on Patient_id and Address_id are not fully explored
in this document. Both these variables are found in many databases. By using a combination of
Patient_id or Address_id and a variable unique to the file that is missing data, many different
compound searches can be created and used. Using the same example as directly above, a search
could be completed on Patient_id and Receive_dt as well. However, the danger in using
Patient_id and Address_id as search tools is that they can appear more than once in a file. So the
user should review what is found and make a determination as to which record should be used in
any fixes. This is why it is best to pair either of these variables with a unique one, though
depending on the file, these variables may repeat as well.

Marking records for deletion and deleting variable values

Marking records for deletion and deleting variable values may be a part of referential error
resolution. In fact they may be the only solution available for some problems. However, the user
should be very sure that this is the proper course of action before proceeding. Before deleting
records, make sure that all other options have been examined. Once it is decided that deletion is
the right thing to do, accomplishing the task is very easy. To delete a record, make sure it is
highlighted, anywhere within the record is fine, and press the <delete> key. The word
ADELETED@ will appear on the top line of the turquoise box, above the third variable name.
(Record deletion in STD*MIS is logical deletion, rather then physical. The record is still
physically present, but is marked for deletion.) Any time a deleted record is highlighted this
message will appear. To undelete the record, follow the same steps and the message will
disappear. Deleting the content of a specific variable is almost as easy. In the desired record use
the arrow keys until the unwanted variable field is highlighted, then press <enter>. This will
activate the field: the highlight becomes white, the data becomes black, and a blinking cursor
will appear in the field. Pressing the <delete> key until all of the information is gone will clear
the field. Press <enter> again to close the field. If the cursor does not appear after pressing
<enter> to activate the field, then the user may have accidentally deleted the entire record.
Deletion of records or variable values will not be evident in the application until the affected
files are reindexed.

 6

In choosing between deleting a record or a value in a specific variable within a given record, the
user must consider whether or not the record itself is valid. Determining whether a record is
valid or not requires locating and evaluating any linked records. If all other linked records (use
the Fields List to find what links are available to a given .dbf) are deleted, then the record being
investigated probably needs to be deleted as well. However, if a link is found to the record being
reviewed, it is most likely a valid record and it is the key in error that needs to be deleted or
replaced. This determination can be made only after properly investigating linkages to other
relevant data files.

Finding and Fixing Missing Address Records using EpiInfo 6 Analysis

In the referential error: Address_id not in Address, a valid address_id for the patient may be
substituted for the missing Address_id. Following is a step-by-step procedure for finding all of
the valid Address_ids for a specific patient in the system. EpiInfo Analysis is bundled within
STD*MIS and can be accessed through “Utilities, Access EpiInfo Programs, Analysis”. The user
may want to use the address_id with the closest As_of date, or, if this date is not available, the
closest Add_dw to the date of the record with the missing Address_id. Do not make this decision
lightly, as it will affect where morbidity will be assigned for any related case reports.

In Analysis type:
READ ADDRESS.DBF <ENTER>
SELECT PATIENT_ID = AXXXXXXXXXX@ <ENTER>
LIST ADDRESS_ID PATIENT_ID AS_OF STREET_1 CITY ADD_DW <ENTER>

To locate valid address_id’s for additional patients, the user will need to first type in SELECT
<ENTER> to clear the previous patient_id number. The user may then start with the next
Patient_id at line 2 (select Patient_id = Axxxxxxxxxx@) for each additional address_id not in
address problem. Repeat lines 2 - 4 as many times as needed. To save time and effort, the up
arrow may be used to access the lines already written, making sure to substitute the new
Patient_id after each Aselect@ statement clears out the old. To print the outcome of the statements
after line 1, press the AF5" key before typing in the “select patient_id” statement. This will route
the outcome to a printer. Pressing the AF5" key again will route the outcome back to the screen.
Alternatively, the user may route the outcome to a text file on their hard drive by typing in:
ROUTE X:\XXXXX\XXXX.txt
Example: C:\stdreports\refint.txt.
Type <Route screen> after completing the searches to return the output to the screen.

Finding and Fixing Missing Address Records using FDBU

FDBU may also be used to locate valid address_id’s for a specific patient. Load Address.dbf (F2),
but do not browse it. Instead, chose F8 (Set). Use the down arrow key to highlight “Filter” and press
<enter>. In the grey box, type in Patient_id=’xxxxxxxxxx’, then press <enter> twice. Next browse
the database (F5). Only address records associated with the patient_id the user entered in the filter
box will be displayed. If the address database is very large, it may take a few minutes to display all

 7

the associated addresses. To remove the filter, press <escape> to close the browse, and choose F8
and “Filter” again. Delete the statement in the condition window to view the entire .dbf again, or
replace the patient_id number with another one to view addresses associates with another patient. Be
sure to end your session by deleting the last statement in the condition box.

SOLUTIONS

Note: Frb_id and Irb_id have two things in common: they both are 11 characters long (all other
system-generated id numbers are 10 characters long) and both are derived by adding the 11th
character to the end of another variable. Frb_id is the Fr_id plus the 11th character and Irb_id is
the Ix_id plus the 11th character. The 11th character is always either the number A1" or A2”: “1” is
used if it is a single infection; “2” is used in the case of a dual-infection. So if Frb_id is
01234567891, then Fr_id is 0123456789. Likewise, the reverse is true: if Ix_id is 0123456789,
then Irb_id is either 01234567891 or 01234567892. Always start with A1" first since it represents
the first infection in the situation of a co-infection with either the interview or field record. This
shortcut may save time in trying to find linked records, allowing the user to skip a step in the
process of data cleaning.

AKA
This file contains alternate names that patients may be known as.

Problem: Patient_id not in Patient.dbf
The user may wish to browse the Patient.dbf to make sure that the record has not been marked
for deletion. Since Patient_id is the only linking variable in this DBF, if it is not located in
patient.dbf the record is usually not salvageable. The resolution is to mark the AKA record for
deletion.

CASE
All patient records, named or not, that have morbidity, field records, or interview records have a
related case file or files. If there is more than one system id other than Case_no within a record
(i.e. morb_id, irb_id or frb_id), be sure to check all of the potential related files before deciding
to mark a Case record for deletion. Although the link that has the error may need to be deleted
itself, the case record may still be a valid record because of its link to other files.

Problem: Morb_id not in Morbrept.dbf
The case record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. If all other linked records are marked for deletion, then this record may need to be
marked for deletion as well. If the linked Morbidity records are marked for deletion, then the
Morb_id in case may need be removed if there are valid field or interview records associated
with the case record. Users should be aware that adding or deleting in Morbrept affects the case
counts that are reported to CDC and used in morbidity reports. With this in mind, the user should
be aware of local program policies regarding morbidity and have the authority to make such
changes. If the user does not have such authority, it is strongly recommended that they inform
proper parties of the effects of such proposed changes to morbidity before effecting any changes
to morbidity files.

 8

Frb_id - Since this variable is the same as Fr_id (described above), use the Fr_id in Fr.dbf
to find the Event_id. Go to Morbrept.dbf and search for the Fr.event_id. If the records are
properly linked then this should find the Morbrept record that belongs to the Case record. The
user can decide which record to change, Morbrept or case, to match the other. An example of
this solution is listed above in the Documentation section.

Irb_id - The same method described above for Frb_id can be used using Irb_id and Ix_id

to resolve this problem. An alternative method, in case the event_id can not be found in
Morb_rept is to use the Ix_id (since it is the same as the Irb_id, as described above) to find the
Patient_id. The Patient_id can be used to search Morbrept.dbf. Keep in mind that a patient may
have more than one morbidity records, but comparison with the dates associated with the two
records, Case and Morbrept, usually points to which record is the best choice for a match. The
user can decide which record to change, Morbrept or Case, to match the other. Example:

Errors

Dbf: Case Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

ix_id

>Ira.pat_id

>Irb.pat_id*

evaluation

choose

Morb_id
xxxxxxxxxx
not in Irb

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

various recs

closest rec.

Replace Irbid
w/
xxxxxxxxxx
in Case

> - to file.field name xxxxxxxxxx - variable value *may be multiple records

Problem: Irb_id not in Irb.dbf
The case record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. If all other linked records are marked for deletion, then this record may need to be
marked for deletion as well. If all linked Ir records are marked for deletion, then the Irb_id in
case should be removed.

Morb_id - Locate the morb_id of the Case record in Morbrept.dbf. From Morbrept
record get the Event_id. Go to Ira.dbf and search for the Morbrept.event_id. From the Ira record
get the Ix_id. Go to Irb.dbf and search for the Ira.ix_id. From Irb get the correct Irb_id and place
it in the Case record. Example:

Errors

Dbf: Case Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

morb_id

>Morb.eventid

>Ira.Ix_id

>Irb.Ix_id

>Irb.irb_id

Irb_id
xxxxxxxxxx
not in Irb

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxx
x

xxxxxxxxxx
x

Replace Irbid
w/
xxxxxxxxxx
in Case

> - to file.field name xxxxxxxxxx - variable value

Morb_id is also found in Std126 (congenital cases).

Frb_id - From Frb_id determine Fr_id (Frb_id minus the 11th character.) Find the Fr_id
of the Case record in Fr.dbf. From the Fr.dbf record get the Event_id. Go to Ira.dbf and search
for the Fr.event_id. From the Ira record get the Ix_id. Go to Irb.dbf and search for the Ira.ix_id.

 9

From Irb get the correct Irb_id and place it in the Case record. Example:

Errors

Dbf: Case Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Fr(b)_id

>Fr.event_id

>Ira.Ix_id

>Irb.Ix_id

>Irb.irb_id

Irb_id
xxxxxxxxxx
not in Irb

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxx
x

xxxxxxxxxx
x

Replace Irbid
w/
xxxxxxxxxx
in Case

> - to file.field name xxxxxxxxxx - variable value

Problem: Frb_id not in Frb.dbf

The case record has 3 other variables that, if present, can possibly be used to find the solution to
this problem. If all other linked records are marked for deletion, then this record may need to be
marked for deletion as well. If all other linked Fr records are marked for deletion, then the
Frb_id in case should be removed.

Case_no - Go to Referral.dbf and search for the Case_no from the Case record with a
Ref_basis = AT1" or AT2.@ The Frb_id is also in this file. Place the Frb_id in the Case record.
Example:

Expression case_no = >xxxxxxxxxx= .and. ref_basis==T1'

Errors

Dbf: Case Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Case_no

>ref.basis = T1

>ref.Frb_id

Frb_id
xxxxxxxxxx
not in Frb

xxxxxxxxxx

xxxxxxxxxxx

Replace
Frbid w/
xxxxxxxxxx
in Case

> - to file.field name xxxxxxxxxx - variable value

Morb_id - Go to Morbrept.dbf and search for the Morb_id of the Case record. From
Morbrept record get the Event_id. Go to Fr.dbf and search for the Morbrept.event_id. Go to
Referral.dbf and search for the Fr.Fr_id. From Referral, get the correct the Frb_id and place it in
the Case record. Alternatively, if the Fr_id is not located in Referral.dbf, the user can create an
Frb_id by adding a one (1) or a two (2), in the case of a dual infection on the field record, to the
end of the Fr_id. Search Frb.dbf for the created Frb_id(s) to verify its existence. Place the Frb_id
in the Case record. Example:

Errors

Dbf: Case Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

morb_id

>Morb.eventid

>Fr.fr_id

>Frb.frb_id

Frb_id
xxxxxxxxxx
not in Frb

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxx
xx

Replace
Frbid w/
xxxxxxxxxx
in Case

> - to file.field name xxxxxxxxxx - variable value

Irb_id - Since this variable is the same as Ix_id (described above), use the Ix_id in Ira.dbf
to find the Event_id. Go to Frb.dbf and search for the Ira.event_id. Example:

 10

Errors

Dbf: Case Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Ix (irb)_id

>Ira.event_id

>Frb.frb_id

Frb_id
xxxxxxxxxxx
not in Frb

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxxx

Replace
Frbid w/
xxxxxxxxxx
in Case

> - to file.field name xxxxxxxxxx - variable value

FR
Since these problems deal with Field Records, a hard copy, if available, of the corresponding
record may help in the resolution of these types of errors. At the very least, hard copies can
provide a check on certain validations, such as name of patient, referral basis, and patient home
address. Users may want to double check these records before implementing solutions.

Problem: Fr_id not in Referral.dbf
The FR record has 2 other variables (counting Frb_id though not in this DBF) that, if present,
can possibly be used to find the solution to this problem. If all other linked records are marked
for deletion, then this record may need to be marked for deletion as well.

Frb_id - Since Frb_id is Fr_id without the last character, then placing an additional
character onto Fr_id, numbers A1" or A2" (always start with A1" first), will give the Frb_id. Using
this created Frb_id, conduct a search in Referral. If this does not lead to a Referral record, the
data manager may want to try to search on the created Frb_id in Case.dbf. If a record is found in
Case, use the case number to perform a search in Referral. Since the Case_no can be repeated in
Referral, the user will need to make a determination between the records found. Do not assume
that a found record is the correct choice without doing some research. An example of the second
procedure follows:

Errors

Dbf: Fr Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Frb_id

>Case.case_no

>Ref.fr_id

2nd
Ref.fr_id

3rd Ref.fr_id

Fr_id
xxxxxxxxxx
not in Ref

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxx
x

xxxxxxxxxx

Replace
Fr_id w/
xxxxxxxxxx
in Fr

> - to file.field name xxxxxxxxxx - variable value

Event_id - Go to Morbrept and search for the Event_id of the Fr record. If found, search
the Morb_id in Case. Use the found Case_no to search Referral. Since the Case_no can be
repeated in Referral, the user will need to make a determination between the records found. Do
not assume that a found record is the correct choice without doing some research. This method
will not work with partner and cluster records. A compound search statement may help with this
issue.

 11

Expression case_no = >xxxxxxxxxx= .and. ref_basis==T1'

Errors

Dbf: Fr Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Event_id

>morb.morbid

>Case.caseno

>Ref.fr_id

2nd ref.fr_id

Fr_id
xxxxxxxxxx
not in Ref

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxx
x

xxxxxxxxxx

Replace
Fr_id w/
xxxxxxxxxx
in Fr

> - to file.field name xxxxxxxxxx - variable value

Problem: Patient_id not in Patient.dbf
The Fr record has 3 other variables that, if present, can possibly be used to find the solution to
this problem. Since Patient_id is stored in many databases, the user should examine all linked
files to determine if a different Patient_id is used anywhere else in the system. The Event_id,
Key Linkages document, and the Fields List document will inform the user of all of the related
databases that may be searched. If all other linked records are marked for deletion, then this
record may need to be marked for deletion as well. Depending on the number of these types of
problems, the easiest solution to this problem may be to recreate the patient record in Patient.dbf,
if that information is known.

Frb_id or Fr_id - This method will not work for partner or cluster records. Search for the
Frb_id or Fr_id in Referral. If there is a Case_no associated with the Referral record, search Case
on the Case_no. Use either the Morb_id to search Morbrept or the Irb_id (if present) to search
Irb. Each of these databases also has a Patient_id to compare with the Patient_id in Fr.

Event_id - This method may be time consuming but is the best way to insure that linked

files do not store a different, and possibly correct, Patient_id. The user must choose a linked
database found using either the Fields List document or the Key Linkages document to search
for the Event_id of the specific record. Check only those databases that also have Patient_id
stored as a field. If this error is found in multiple databases, the best solution may be to recreate
the patient record in patient.

Problem: Address_id not in Address
The Fr record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. Only one solution will be presented for address fixes and it can be applied to any
database that presents this problem. Depending on the number of these types of problems, the
easiest solution to this problem may be to recreate the Address record in Address.dbf.

Patient_id - This problem may be best resolved by using EpiInfo 6 Analysis to read
Address.dbf and select the Patient_id of the record with the errant Address_id. Then a listing
should be made of all of that patient=s address_ids with As_of dates and/or date writs (add_dw).
The date closest to the particular file should be used to replace the bad Address_id. The search
can also be done in FDBU, setting the filter as described on page 6.

Problem: Short_id not in Shortfr.dbf
Short_id is only found in three database files: Fr, Shortfr, and Stdsys. The Stdsys file will not
aide in the resolution of this type of error. In fact, if searching Shortfr.dbf does not yield that the

 12

record has been marked for deletion, there are only two options: delete this record in Fr or
recreate the record in Shortfr. If the hard copy of the interview record on which this record is
related is available, the preferable option is to recreate the record.

FRA
Since these problems deal with Field Records, a hard copy, if available, of the corresponding
record may help in the resolution of these types of errors. At the very least, hard copies can
provide a check on certain validations, such as name of patient, referral basis, and patient home
address. Users may want to double check these records before implementing solutions.

Problem: Fr_id not in Fr.dbf
The user may want to first confirm that this is a valid record. If the hard copy of the field record
is available, this may help resolve this error. The user will want to check Frb to see if the record
has been marked for deletion. Go to Referral.dbf as well to search for the Frb_id. If the Fr_id is
the same as the Fr_id in Fra.dbf, then there should have been a corresponding Error found by the
program in this file. If they are different, then the user may want to search for the new Fr_id in
Fra, to see if there was a similar Fra record created with a different Fr_id at another point in
time. If this is so, then the user may want to delete the record that was in error. If the record is
valid, the hard copy of the Fr will make it much easier to recreate the record. If all other linked
records are marked for deletion, then this record may need to be marked for deletion as well.

FRB
Since these problems deal with Field Records, a hard copy, if available, of the corresponding
record may help in the resolution of these types of errors. At the very least, hard copies can
provide a check on certain validations, such as name of patient, referral basis, and patient home
address. Users may want to double check these records before implementing solutions.

Problem: Frb_id not in Referral.dbf
Since Frb_id is essentially the same as Fr_id, there are two variables that can be used to help
resolve this type of error. If all other linked records are marked for deletion, then this record may
need to be marked for deletion as well.

Fr_id - Search for Fr_id in Referral.dbf. Place the correct Frb_id in the Referral record.
Another possible method to resolve this problem using Fr_id: if the Fr was created from a
reactor, use the Event_id from Fr and search for the Event_id in Reactor. Example:

Errors

Dbf: Fr Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Fr(b)_id

>Fr.event_id

>Reac.reacid

Frb_id
xxxxxxxxxx
not in Ref

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

Replace Frb_id
w/ xxxxxxxxxx
in Frb

> - to file.field name xxxxxxxxxx - variable value

Frb_id - Go to case and search for Frb_id. Use the case_no to search in Referral. Keep in
mind that Case_no can be repeated several times in Referral. Compare Ref_dw and Ref_tw to

 13

Frb_tw and Frb_tw to decide which is best for record for use.

IRA
Since these problems deal with Interview Records, a hard copy, if available, of the
corresponding record may assist in the resolution of these types of errors. At the very least, hard
copies can provide a check on certain validations, such as name of patient and patient home
address. Users may want to double check these records before implementing solutions.

Problem: Ix_id not in Irb.dbf
The Ira record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. However, a hard copy of the interview record may be helpful if it is determined
that a record needs to be recreated. Within the Patient Registry, under Interview Record, perform
a search on the Control Number of the interview record. This should yield all of the information
needed to locate the hard copy of the record. If no other linked records are found, the Ira record
may need to be marked for deletion.

Event_id - Go to Morbrept and search for the Event_id. Using the Morb_id, search in
Case. If an Irb_id is found, search Irb.dbf for it. Example:

Errors

Dbf: IRA Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

event_id

>Morb.morb_id

>Case.irb_i
d

>Irb.ix_id

Ix_id
xxxxxxxxxx
not in Irb

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxx
x

Replace Ix_id
w/ xxxxxxxxxx
in Ira

> - to file.field name xxxxxxxxxx - variable value

Irb_id - Since Irb_id is Ix_id with the addition of an extra character on the end, add either
a A1" or A2" (always start with A1" first) to create the Irb_id and search Irb for the Irb_id. If
found, compare the Ix_id with the missing Ix_id. If The Irb record is marked for deletion, it may
need to be undeleted, or the Ira record may need to be marked for deletion as well.

Problem: Patient_id not in Patient.dbf
The Ira record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. Since Patient_id is stored in many databases, the user should examine all linked
files to determine if a different Patient_id is used anywhere else in the system. The Event_id,
Key Linkages document, and the Fields List document will inform the user of all of the related
databases that may be searched. If all other linked records are marked for deletion, then this
record may need to be deleted as well. Depending on the number of these types of problems, the
easiest solution to this problem may be to recreate the patient record in Patient.dbf.

Event_id - This method may be time consuming but is the best way to insure that linked
files do not store a different, and possibly correct, Patient_id. The user must choose a linked
database found using either the Field List document or the Key Linkages document to search for
the event_id of the specific record. Check only those databases that also have Patient_id stored

 14

as a field. If this error is found in multiple databases, the best solution may be to recreate the
patient record in Patient.

Ix_id - The user may want to search Irb.dbf with the Ix_id to make sure that both have

the same Patient_id. If they are the same, then Irb should have this same error (Patient_id not in
Patient). Search Case.dbf on the Irb_id. If there is a Morb_id in Case, use it to search Morbrept.
Compare Event_ids between Ira and Morbrept, as well as Patient_ids. If there is a difference in
Patient_ids between the two, document the Morbrept.patient_id. Check the new patient_id in
Patient.dbf to insure that it is a valid record as well.

Problem: Address_id not in Address.dbf
The Ira record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. Only one solution will be presented for address fixes and it can be applied to any
database that presents this problem. Depending on the number of these types of problems, the
easiest solution to this problem may be to recreate the Address record in Address.dbf.

Patient_id - This problem may be resolved by using Epi-info Analysis to Read
Address.dbf and select the Patient_id of the record with the errant address_id. Then a listing
should be made of all of that patient=s address_ids with As_of dates and/or date writs (add_dw).
The date closest to the particular file should be used to replace the bad address_id. The search
can also be done in FDBU, setting the filter as described on page 6.

IRB
Since these problems deal with Interview Records, a hard copy, if available, of the
corresponding record may help in the resolution of these types of errors. At the very least, hard
copies can provide a check on certain validations, such as name of patient and patient home
address. Users may want to double check these records before implementing solutions. Also, if
Ix_id is not in Ira.dbf and Irb_id is not in Case.dbf, the record with these problems probably
should be marked for deletion, since all of its linking records are missing.

Problem: Ix_id not in Ira.dbf
The Irb record has 1 variable that can possibly be used to find the solution to this problem. Go to
Case.dbf and search for Irb_id. If present, use Morb_id to find the corresponding Morbrept.dbf
record. Search Ira for the Morbrept.event_id. If Morb_id is not present but Frb_id is, use Fr_id
(Frb_id minus the last character), to search Fr.dbf.

Problem: Irb_id not in Case.dbf
The Irb record has 1 variable that can possibly be used to find the solution to this problem. Go to
Ira.dbf and search for Ix_id. Use Ira.event_id to search Fr or Morbrept. If found in Morbrept,
search case for the Morb_id; Irb_id may need to be placed in the found record. If found in Fr,
add the number A1" (or A2" as applicable) to the end of Fr_id to make Frb_id. Use Frb_id to
search Case. If found, Irb_id may need to be placed in the record. Example using Morb_id:

 15

Errors

Dbf: Fr Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Ix_id

>Ira.event_id

>Morb.morbid

>Case.caseno

Irb_id
xxxxxxxxxx
not in Case

xxxxxxx
xxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

Place Irb_id
xxxxxxxxxx in
Case

> - to file.field name xxxxxxxxxx - variable value

MORBREPT
In dealing with these types of records it is important to understand the full implications of
deleting or adding records to this file. The name of the file is exactly what it implies, the
morbidity report file. Case.dbf actually stores the types of disease and diagnosis being reported,
but Morbrept.dbf is the file that makes each case a report. Adding or undeleting records actually
adds to the number of cases that are reported to CDC and are shown in disease reports. Marking
records for deletion reduces the number of cases reported. The user should be familiar with local
program practices in regard to this issue. If the user does not have authority to affect case counts,
the user should consult program management before implementing any changes. This does not
mean that the user should not pursue the solution to problems, just that the user should be aware
of the effects of changes and communicates the changes to proper personnel, if needed, before
implementing the changes. Once again it should be pointed out that resolutions of referential
errors should first be implemented on a copy of the database and not the production, or ‘live’,
version. Once the user is satisfied with the solutions they should be implemented on the live data
only after the data is backed up.

Problem: Morb_id not in Case.dbf
The Morbrept record has 1 variable that can possibly be used to find the solution to this problem.

Event_id - Use Event_id to search either Ira.dbf or Fr.dbf. If Ira_id is found, create Irb_id
from Ix_id, described earlier, or search Irb.dbf with Ix_id to find Irb_id. Go to Case.dbf and
search for the Irb_id. Morb_id may need to be placed within the record found. If Fr_id is found,
add the number A1" (or A2", as needed) to create Frb_id. Search Case.dbf for the Frb_Id. Morb_id
may need to be placed in this record. If either of these solutions does not work, Event_id should
also be used to search other files such as Test.dbf to see if morbidity is linked. If there are no
other links to this file within the system, it is probable that this record needs to be marked for
deletion. Example using Event_id to FR.dbf:

Errors

Dbf: Fr Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Event_id

>Fr.fr_id

>Fr.fr(b)_id

>Case.case_no

Morb_id
xxxxxxxxxx
not in Case

xxxxxxx
xxx

xxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxx

Place Morb_id
xxxxxxxxxx in
Case

> - to file.field name xxxxxxxxxx - variable value

 16

Problem: Patient_id not in Patient.dbf
The Morbrept record has 2 other variables that, if present, can possibly be used to find the
solution to this problem.

Morb_id - Go to Case and search for the Morb_id. If present, use Frb_id minus the last
character to form Fr_id and search Fr.dbf; compare Patient_ids if a record is found. Else, if
present, use Irb_id minus the last character to form Ix_id and search Ira.dbf; compare Patient_ids
if a record is found. If the Patient_id that is found under either of these situations is the same as
the Patient_id in Morbrept, then these files will also have the same referential integrity error.
The patient record may need to be recreated in Patient.dbf. If the Patient_ids found are
dissimilar, the user may want to make sure that the new Patient_id is a valid patient record
before placing it in the Morbidity record with the error.

Event_id - This method may be time consuming but is the best way to insure that linked

files do not store a different, and possibly correct, Patient_id. Possible databases links may be
found in Test, Fr, and Ira. The user must choose a linked database found using either the Fields
List document or the Key Linkages document to search for the event_id of the specific record.
Check only those databases that also have Patient_id stored as a field. If this error is found in
multiple databases, the best solution may be to recreate the patient record in patient.

Problem: Address_id not in Address.dbf
The Morbrept record has 2 other variables that, if present, can possibly be used to find the
solution to this problem. Only one solution will be presented for address fixes and it can be
applied to any database that presents this problem. Depending on the number of these types of
problems, the easiest solution to this problem may be to recreate the Address record in
Address.dbf.

Patient_id - This problem may be resolved by using Epi-info Analysis to Read
Address.dbf and select the Patient_id of the record with the errant Address_id. Then a listing
should be made of all of that patient=s address_ids with As_of dates and/or date writs (add_dw).
The date closest to the particular file should be used to replace the bad Address_id. The search
can also be done in FDBU, setting the filter as described on page 6.

OOJLOG
The Out Of Jurisdiction LOG contains information on the tracking of events that have originated
from or have been sent to areas outside of the local jurisdiction.

Problem: Patient_id not in Patient.dbf
The Oojlog record has 1 variable that can possibly be used to find the solution to this problem.

Event_id - Using the Key Linkages and/or Fields List documents, find the other
databases this record may be potentially linked with. Fr and Test databases are probably the most
common links to Oojlog. Check the linked records on Event_id to see if they have a different
Patient_id associated with them. Most likely, however, they will have the same Patient_id and
the same referential integrity errors will be listed, if checked. If this record is valid with other

 17

linked events, then recreation of the Patient record may be the best solution to this problem. The
User may need to contact the initiating agency, located in the errant record, to find out the
particulars of the individual patient to accurately recreate the Patient record.

Problem: Address_id not in Address.dbf
The Oojlog record has 2 other variables that, if present, can possibly be used to find the solution
to this problem. Only one solution will be presented for address fixes and it can be applied to any
database that presents this problem. Depending on the number of these types of problems, the
easiest solution to this problem may be to recreate the Address record in Address.dbf.

Patient_id - This problem may be resolved by using Epi-info Analysis to Read
Address.dbf and select the Patient_id of the record with the errant Address_id. Then a listing
should be made of all of that patient=s address_ids with As_of dates and/or date writs (add_dw).
The date closest to the particular file should be used to replace the bad Address_id. The search
can also be done in FDBU, setting the filter as described on page 6.

P_LINK
This database deals with the cross referencing or AJump@ option within STD*MIS. Unlike most
of the other files, this database only relates to one other DBF, Patient.dbf. The variable Rel_id is
the Patient_id of the related patient record. These relationships are paired so each relation
actually has two lines of data in the data file. For example, Patient #1 is cross-referenced with
patient #2; then on one line of data, #1 has the Patient_id and #2 has the Rel_id. On the second
line of data, Patient #2 has the Patient_id and #1 has the Rel_id. This creates the link between the
two patient records. However, since this DBF relates only to patient, there are few options to
resolve these types of referential errors.

Problem: Patient_id not in Patient.dbf
If the individual record does not have both errors (Patient_id not in Patient and Rel_id not in
patient), then the user can search Patient.dbf for the Rel_id, using the variable name APatient_id.@
 Once this person is found, some research may be in order to find the corresponding name of the
linked record. This may mean checking with field or surveillance staff, or seeing if the related
name is in the AKA file. Once the name is found, search STD*MIS for the system id to see if the
patient record still exists. If it does, document the correct Patient_id and use it to replace the
problem id in P-link.

Problem: Rel_id not in Patient.dbf
If the individual record does not have both errors (Patient_id not in Patient and Rel_id not in
patient), then the user can search Patient for the Patient_id. Once this person is found, some
research may be in order to find the corresponding name of the linked record. This may mean
with field or surveillance staff, or seeing if the related name is in the AKA file. Once the name is
found, search STD*MIS for the system id to see if the patient record still exists. If it does,
document the correct Patient_id and use it to replace the problem id (Rel_id) in P-link.

NOTE: If the record is has the problem that both Patient_id and Rel_id are missing from patient,
then there is no way to recreate the link. The record, and its corresponding double, should be

 18

marked for deletion.

REACTOR
This database contains the information gathered for surveillance tracking.

Problem: Patient_id not in Patient.dbf
The Reactor record has 2 other variables that, if present, can possibly be used to find the solution
to this problem.

Reactor_id - Go to Test.dbf and search for the Reactor_id. If found, compare the
Patient_ids. Another method may be to go to Referral.dbf and search for the Reactor_id. Using
the Fr_id in the record found in Referral, search Fr.dbf. Compare Patient_ids between Fr and
Reactor. If the Patient_ids are different in either scenario, use the newly found Patient_id. The
user may want to verify that the found Patient_id is in the Patient file.

Event_id - This method may be time consuming but is the best way to insure that linked

files do not store a different, and possibly correct, Patient_id. The user must choose a linked
database, found using either the Fields List document or the Key Linkages document, to search
for the Event_id of the specific record. Check only those databases that also have Patient_id
stored as a field. Possible databases links may be found in Test.dbf and Fr.dbf. If this error is
found in multiple databases, the best solution may be to recreate the patient record in patient.

Problem: Reactor_id not in Test.dbf

The Reactor record has 1 other variable that, if present, can possibly be used to find the solution
to this problem.

Event_id - Both Test and Reactor files have Event_id and Receive_dt as variables; an
option to trying to find the missing record may be to search on both variables at the same time in
Test. The locate statement would be as follows:

Expression event_id = >xxxxxxxxxx= .and. receive_dt = ctod(>xx/xx/xx=)

Errors

Dbf: Reactor Date: XX/XX/XXXX Completed by: H. D.

Clown

Solutions

Receive_dt

>Test - search

Reactor_id
xxxxxxxxxx
not in Test

xx/xx/xxxx

Reac_id &
Rec_dt

Place
Reac_id
xxxxxxxxxx
in Test

> - to file.field name xxxxxxxxxx - variable value

REFERRAL
This database links field records, test results, OOJ, and case data to one another. The referral
basis is also stored within this file. Since this database touches so many different files, the user
should be careful in deciding whether to mark a record for deletion or delete/correct a specific
variable as needed. The user should check all related records (Case, Fr, Frb, Oojlog, and
Reactor) before marking any of these for deletion. Also, there may be second generation linkages

 19

that, once a record in this file is deleted, may cause referential integrity problems in other
databases. For example, Reactor_id is also in Test and Survclos.

Problem: Fr_id not in Fr.dbf
The Referral record has 1 other variable that can possibly be used to find the solution to this
problem. Refer to the Fields List and Key Linkages documents to see what databases are
linked, but are not a part of the Referral file. If all linked Fr records (Fra, Frb, and/or Shortfr) and
other linked records are marked for deletion, then this record also needs to be marked for
deletion.

Event_id - Search on the variable id in any of the other databases (Case, Oojlog, and
Reactor) that may be present to find an Event_id. Use that Event_id to search Fr. If found
compare Fr_ids. If not found, check all related files as stated above. Example using Case:

Errors

Dbf: Referral Date: XX/XX/XXXX Completed by: H. D.

Clown

Solutions

case_no

>Case.morbi
d

>Morb.eventid

>Fr.fr_id

Fr_id
xxxxxxxxxx
not in Fr.dbf

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxx
x

Place
Reac_id
xxxxxxxxxx
in Test

> - to file.field name xxxxxxxxxx - variable value

Problem: Frb_id not in Frb.dbf
The Referral record has 2 other variables that, if present, can possibly be used to find the
solution to this problem. Refer to the Fields List and Key Linkages documents to see what
databases are linked, but are not a part of the Referral file. If all linked Fr records (Fr and Fra)
are deleted, then this variable may need to be deleted in this file. If linked Fr records are valid,
then the Frb record may need to be recreated. If all linked Fr records and other records linked to
this particular record are marked for deletion, then this record also needs to be marked for
deletion.

Fr_id - Check this id to make sure it matches Frb_id, minus the last character. Though
unlikely, in the event that they do not match, go to Frb and search on the non-matching Fr_id,
adding the number A1" or A2" to create an Frb_id. If a record is found in Frb, then the Frb_id in
Referral needs to be changed to match the valid Fr_id.

Case_no – NOTE: This solution is only valid for reactors (Ref_basis = T1 or T2).

Partner and cluster records (ref_basis = P1, P2, P3, S1, S2, S3, A1, A2, A3) have their Original
Patient’s (OP) case_no in their referral record, so it can not be used to find valid Frb_ids. Go
to Case and search for the Case_no of the errant record. If present, and if the frb_id in the found
Case record is different that the missing frb_id, search Frb with case.frb_id to verify it is a valid
id and record. Use the new Frb_id in Referral. If the Case.frb_id is the same as the problem
record in Referral, check the corresponding records in the FR files (FR, FRA, and FRB) to see if
the components of the FR have been marked for deletion. If the components have been marked

 20

for deletion, then it is likely the field record was meant to be deleted from the system and has
probably been re-entered with different id numbers. If this is the case (verified by checking to
see if there is a duplicate reactor on the patient with a different fr_no), then all components of
this reactor need to be marked for deletion.
 Another way to use Case_no to resolve this error would be to utilize the procedures listed
directly above using the case_no to find event_id in Morbrept or IRA. See diagram preceding
this topic.

Problem: Case_no not in Case.dbf

NOTE: This solution is only valid for reactors (Ref_basis = T1 or T2). Partner and cluster
records (ref_basis = P1, P2, P3, S1, S2, S3, A1, A2, A3) have their Original Patient’s (OP)
case_no in their referral record.
The Referral record has 4 other variables that, if present, can possibly be used to find the
solution to this problem. Refer to the Fields List and Key Linkages documents to see what
databases are linked but are not a part of the Referral file. If no corresponding Case record is
found, or if the case record and its related records are marked for deletion, then this variable may
need to be removed from the Referral record.

Fr_id - Go to Fr and search for the Fr_id of the errant record. Use Fr.event_id to search
either Morbrept or Ira. If using Morbrept, search Case.dbf with Morb.morb_id. If using Ira,
create Irb_id by adding either @1" or A2" to the end of Ira.ix_id. Then search Case with the new
Irb_id. The options of going through Morbrept or Ira may lead to two separate Case records. The
user can choose which record is best suited to replace the Case_no in Referral. Example using
Ira:

Errors

Dbf: Referral Date: XX/XX/XXXX Completed by: H. D.

Clown

Solutions

Fr_id

>Fr.event_id

>Ira.ix_id

Irb_id

>case.case_no

Case_no
xxxxxxxxxx
not in Case

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx
x

xxxxxxxxxx

Place Caseno
 xxxxxxxxxx
in Referral

> - to file.field name xxxxxxxxxx - variable value

Frb_id - Use Frb_id to search Case. If a valid record is found, substitute the new Case_no
for the old in Referral.

Oojlog - Go to Oojlog and search for the Ooj_id of the errant record. Use Ooj.event_id to
search either Morbrept or Ira. If using Morbrept, search Case.dbf with Morb.morb_id. If using
Ira, create Irb_id by adding either @1" or A2" to the end of Ira.ix_id. Then search Case with the
new Irb_id. The options of going through Morbrept or Ira may lead to two separate Case records.
The user can choose which record is best suited to replace the Case_no in Referral.

Reactor_id - Go to Reactor and search on the Reactor_id of the errant record. Use
Reactor.event_id to search either Morbrept or Ira. If using Morbrept, search Case.dbf with
Morb.morb_id. If using Ira, create Irb_id by adding either @1" or A2" to the end of Ira.ix_id, then

 21

search Case with the new Irb_id. The options of going through Morbrept or Ira may lead to two
separate Case records. The user can choose which record is best suited to replace the Case_no in
Referral.

Problem: Reactor_id not in Test.dbf
The Referral record has 4 other variables, if present, that can possibly be used to find the
solution to this problem. Most of these options involve using the Event_id to find a
corresponding record in Test.dbf, with the exception of using the Case_no. If no corresponding
Test record can be found, then this variable may need to be deleted from the Referral record.

Event_id - Search on the variable id in any of the four other databases that may be
present to find an Event_id. Use that Event_id to search Test. If found, use the Event_id and
Receive_dt to search Test. Example:

Expression event_id = >xxxxxxxxxx= .and. receive_dt = ctod(>xx/xx/xx=)

Errors

Dbf: Reactor Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Receive_dt

>Test - search

Reactor_id
xxxxxxxxxx
not in Test

xx/xx/xxxx

Reac_id & Rec_dt

Place Reacid
 xxxxxxxxxx
in Test

> - to file.field name xxxxxxxxxx - variable value

Case_no - Go to Case and search for the Case_no of the errant record. Once found, the
Morb_id, Irb_id, or Frb_id can be used to find an Event_id. Morbrept can be searched directly
using the Morb_id. Using either Frb_id or Irb_id will require creating Fr_id or Ix_id,
respectively, by removing the last character from each variable. Use Fr_id to search Fr.dbf and
Ix_id to search Ira.dbf. Use the found Event_id to search Test.dbf.

Problem: Ooj_id not in Oojlog.dbf
The Referral record has 4 other variables that, if present, can possibly be used to find the
solution to this problem. Most of these options involve using the Event_id to find a
corresponding record in Oojlog.dbf, with the exception of using the Case_no. If unable to find a
corresponding Oojlog record, this variable may need to be deleted from the Referral record.

Event_id - Search on the variable id in any of the four other databases that may be
present to find an Event_id. Use that Event_id to search Oojlog.

Case_no - Go to Case and search for the Case_no of the errant record. Once found, the

Morb_id, Irb_id, or Frb_id can be used to find an Event_id. Morbrept can be searched directly
using the Morb_id. Using either Frb_id or Irb_id will require creating Fr_id or Ix_id,
respectively, by removing the last character from each variable. Use Fr_id to search Fr.dbf and
Ix_id to search Ira.dbf. Use the found Event_id to search Oojlog.dbf.

 22

REMOTE
This database gives an snapshot of uploaded records in the local system.

Problem: Patient_id not in Patient.dbf
Since this database deals with uploaded records, this is one of the more difficult types of fixes to
effect and may need some interaction with remote areas to garner data needed to properly fix the
error(s). Also, unlike other uploaded files, patient records become a part of the local STD*MIS
(i.e. they become native records) while other uploaded events, such as Test, FRs, etc. are stored
in their own databases, separate from the local STD*MIS files. (For a more complete description
of Uploaded Records, see the STD*MIS Uploaded Records document.) The cause of this
problem may be rooted in an uploaded patient record that did not get written into the local
system for some reason, but its related files were written to the local system. Or a patient record
may have been deleted from the system and the remote record did not get deleted. Note: These
fixes are unique to Remote.dbf and should not be used with any other files.

Remote systems - The Site variable in Remote tell the user from which remote area the
record originated. By contacting the remote area and having them perform a record search in
their STD*MIS on the Patient_id, the user can find the name of the patient and other pertinent
information to help resolve this problem. With the correct patient information, perform a record
search with the local STD*MIS. If found, the user can replace the Patient_id in Remote with the
correct Patient_id from the found record. If not found with the system, the user can recreate the
patient record using information gained from the remote area. See the ARecreating Selected
Records@ section on Page 26 for instructions on recreating patient records.

Upldlink - If the Patient_id is not found in the remote area, there is another option to

examine. The Patient_id in Remote is the Local_id in Upldlink.dbf. The Remote_id in Upldlink
is the remote site=s Patient_id. The user can search Upldlink using Local_id (Patient_id) and find
the corresponding Remote_id (the remote area=s Patient_id). Then the user can then ask the
remote area to conduct a record search.

Other uploaded records - If the above two methods fail to yield a satisfactory answer to

the referential integrity error, there is a third method to attempt to rectify the problem. Using
Rec_type and Rec_id in Remote, the user can explore the uploaded record databases for a
potentially valid Patient_id. This can be used to conduct a record search at the remote site or may
be found in the Upldlink.dbf. Any found Patient_ids found in the uploaded records are
Patient_ids from remote areas, not the local STD*MIS. Below is a list of Remote Rec_types,
what their Rec_ids correspond to in STD*MIS, and their corresponding upload database:

Rec_type

Type file

Rec_id

Database

CS

Congenital Syphilis

Cs_id

Csupld.dbf

FR

Field Records

Fr_id

Frupld.dbf

IR

Interview Records

Ix_id

Irupld.dbf

 23

TE

Lab Tests

Test_id

Testupld.dbf

MO

Morbidity Files

Morb_id

Morbupld.dbf

VI

Visits to Clinic

Visit_id

Visupld.dbf

Using the table above, the user can search the appropriate upload database for the record
matching record to the Remote record. As Patient_id is a variable in each of these files, the user
has the remote area Patient_id to utilize in helping to resolve the error. The user should repeat
the steps of Remote area and Upldlink above. Since the remote record is a reflection of the
uploaded database record, if the database record is marked for deletion, then the remote record
can be marked for deletion as well.

RX
This file contains treatment records.

Problem: Patient_id not in Patient.dbf
The Rx record has 1 other variable that can possibly be used to find the solution to this problem.

Event_id - This method may be time consuming but is the best way to insure that linked
files do not store a different, and possibly correct, Patient_id. The user must choose a linked
database found using either the Fields List or the Key Linkages document to search for the
event_id of the specific record. Possible databases links may be found in Test, Fr, and Ira. Check
only those databases that also have Patient_id stored as a field. If this error is found in multiple
databases, the best solution may be to recreate the patient record in patient.

STD126
This database contains information pertaining to Congenital Syphilis cases and reporting.

Problem: Patient_id not in Patient.dbf
The Std126 record has 1 other variable that can possibly be used to find the solution to this
problem.

Event_id - use the Event_id to search either Fr, Reactor, or Test to see if there are any
corresponding records in either of these files. If a record is found, compare the Patient_ids. If
these Patient_ids are the same, then the patient record may need to be recreated on this infant. If
there is a valid Mother_id (Patient_id of the mother), there may be additional information
available to help complete this record.

Problem: Mother_id not in Patient.dbf
The Std126 record has 1 other variable that can possibly be used to find the solution to this
problem. This variable, Mother_id, is the Patient_id of the mother. When comparing other
databases to STD126, Mother_id should be compared with patient_id.

Mom_add_id - This variable is the mother’s Address_id, which may or may not be the
same as infant=s address. Search the Address.dbf for the Address_id (Mom_add_id); if a
matching record is found, make sure it is not the infant=s record by comparing Patient_id in

 24

Std126 and Address.dbf. Assuming that the Patient_id from Std126 is a valid id and the
Address.patient_id is different than the infant=s Patient_id, this is most likely the Mother_id. It is
easy enough to check this by searching for the found Patient_id in Patient.dbf. If no valid
Patient_id is found then the patient record may need to be recreated with the new Patient_id also
used as the Mother_id.

Problem: Address_id not in Address.dbf

The Std126 record has 2 other variables that, if present, can possibly be used to find the solution
to this problem. Only one solution will be presented for address fixes and it can be applied to any
database that presents this problem. Depending on the number of these types of problems, the
easiest solution to this problem may be to recreate the Address record in Address.dbf.

Patient_id - This problem may be resolved by using Epi-info Analysis to Read
Address.dbf and select the Patient_id of the record with the errant Address_id. Then a listing
should be made of all of that patient=s address_ids with As_of dates and/or date writs (add_dw).
The date closest to the particular file should be used to replace the bad Address_id. The search
can also be done in FDBU, setting the filter as described on page 6.

Problem: Mom_add_id not in Address.dbf
The name of this variable is misleading and it will only be found in this database. For all
purposes this variable is the same as Address_id. Only one solution will be presented for address
fixes and it can be applied to any database that presents this problem, though here Mother_id is
the variable used since the Patient_id of this record belongs to the infant child. Depending on the
number of these types of problems, the easiest solution to this problem may be to recreate the
Address record in Address.dbf.

Patient_id (Mother_id) - This problem may be resolved by using Epi-info Analysis to
Read Address.dbf and select the Patient_id (Mother_id) of the record with the errant Address_id.
 Then a listing should be made of all of that patient=s Address_ids with As_of dates and/or date
writs (add_dw). The date closest to the particular file should be used to replace the bad
address_id. The search can also be done in FDBU, setting the filter as described on page 6.

Problem: Morb_id not in Morbrept
The Std126 record has 1 other variable that can possibly be used to find the solution to this
problem.

Event_id - Go to Morbrept and search for the Event_id of the errant record. If not found,
this Morbrept record may need to be recreated. If found, but marked for deletion, the search may
need to be continued. The user may want to check the Event_id in Test and Fr to make sure that
the Std126 record is a valid record.

SURVCLOS
This database contains information regarding dispositions of cases assigned to surveillance
follow-up.

Problem: Reactor_id not in Reactor.dbf

 25

The Survclos record has 2 other variables, if present, that can possibly be used to find the
solution to this problem. Using the Fields List document, the user may want to verify that this is
a valid record. If all links are marked for deletion, then this record will also need to be marked
for deletion.

Reactor_id - Go to Referral and search for the Reactor_id. If the record has either a Fr_id
or an Ooj_id, search their respective data bases for a corresponding record. Use the Event_id
from the record to search Reactor. If the Referral record has a Case_no, use it to search Case.
Search Morbrept with the Case.morb_id. Use the Morb.event_id to search Reactor. Example
using Case_no:

Errors

Dbf: Survclos Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

>Ref.case_no

>Case.morb_id

>Morb.eventid

>React.reacid

Reactor_id
xxxxxxxxxx
not in React

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

Place Reacid
 xxxxxxxxxx
in Survclos

> - to file.field name xxxxxxxxxx - variable value

Reactor_id can also be used to search Test.dbf, which may yield adifferent Event_id. Use
Test.event_id to search Reactor.

Morb_id - Go to Morbrept and search for the Survclos.morb_id. Use the Morb.event_id
to search Reactor.dbf.

Problem: Morb_id not in Morbrept.dbf
The Survclos record has 1 other variable that can possibly be used to find the solution to this
problem.

Reactor_id - Go to Referral and search for the Reactor_id. If the record has either a Fr_id
or an Ooj_id, search their respective data bases for a corresponding record. Use the Event_id
from the record to search Morbrept. If the Referral record has a Case_no, use it to search Case.
Search Morbrept with the Case.morb_id . Example using Case_no:

Errors

Dbf: Survclos Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

>Ref.case_no

>Case.morb_id

Morb_id
xxxxxxxxxx
not in
Morbrept

xxxxxxxxxx

xxxxxxxxxx

Place
Morb_id
xxxxxxxxxx
in Morbrept

> - to file.field name xxxxxxxxxx - variable value

Reactor_id can also be used to search Test.dbf, which may yield another Event_id. Use
Test.event_id to search Morbrept.

TEST
This database contains test result information

 26

Problem: Patient_id not in Patient.dbf
The Test record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. If through checking all other linked records, no valid Patient_id is found, the user
may choose to mark this record for deletion, keeping in mind there may be other linked records
to this file, or choose to recreate the patient record.

Event_id - This method may be time consuming but is the best way to insure that linked
files do not store a different, and possibly correct, Patient_id. The user must choose a linked
database found using either the Fields List document or the Key Linkages document to search
for the Event_id of the specific record. Databases with possible links: Fr, Morbrept, Ira, and
Reactor. Check only those databases that also have Patient_id stored as a field. If this error is
found in multiple databases, the best solution may be to recreate the patient record in patient.

Reactor_id - Go to Reactor and search for the Reactor_id of the errant record. If the

Patient_id found here matches the one in Test, use the Reactor_id to search Referral. From
Referral there are a couple of other databases that can be checked for Patient_id comparison.

Problem: Address_id not in Address.dbf
The Test record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. Only one solution will be presented for address fixes and it can be applied to any
database that presents this problem. Depending on the number of these types of problems, the
easiest solution to this problem may be to recreate the Address record in Address.dbf.

Patient_id - This problem may be resolved by using Epi-info Analysis to Read
Address.dbf and select the Patient_id of the record with the errant Address_id. Then a listing
should be made of all of that patient=s address_ids with As_of dates and/or date writs (add_dw).
The date closest to the particular file should be used to replace the bad Address_id. The search
can also be done in FDBU, setting the filter as described on page 6.

Problem: Reactor_id not in Reactor.dbf
The Test record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. Using the Key Linkages document, the user may want to verify that this field
should have data in it for this particular record. If all links are marked for deletion, then this field
should be deleted from the Test record.

Event_id - Go to Reactor and search for Test.event_id. If found compare the information
and make determination whether to make use of it or not. If Test.event_id not found in Reactor,
use this Event_id to search Fr, Morbrept, or Oojlog. If any of these are found, use their
corresponding key ids, Fr_id, Morb_id, or Ooj_id respectively, to search Referral. If a record is
found in Referral, compare the Reactor_id if one is present. Example:

Errors

Dbf: Test Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

Event_id

>Fr.Fr_id

>Ref.reactor_id

Reactor_id
xxxxxxxxxx

Place Reacid
 xxxxxxxxxx

 27

not in React xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx in Test
> - to file.field name xxxxxxxxxx - variable value

Reactor_id - Go to Referral and search for the Reactor_id. If present, use Morb_id to
search Survclos. Example:

Errors

Dbf: Test Date: XX/XX/XXXX Completed by: H. D. Clown

Solutions

morb_id

>Survclos.Reacid

Reactor_id
xxxxxxxxxx
not in React

xxxxxxxxxx

xxxxxxxxxx

Place Reacid
 xxxxxxxxxx
in Test

> - to file.field name xxxxxxxxxx - variable value

VISIT
This database contains information pertaining to public health clinic visits made by patients.

Problem: Patient_id not in Patient.dbf
The Visit record has 1 other variable that can possibly be used to find the solution to this
problem.

Event_id - This method may be time consuming but is the best way to insure that linked
files do not store a different, and possibly correct, Patient_id. The user must choose a linked
database found using either the Fields List document or the Key Linkages document to search
for the Event_id of the specific record. Possible databases with links: Fr, Morbrept, Reactor, and
Test. Check only those databases that also have Patient_id stored as a field. If this error is found
in multiple databases, the best solution may be to recreate the patient record in patient.

Problem: Address_id not in Address.dbf

The Visit record has 2 other variables that, if present, can possibly be used to find the solution to
this problem. Only one solution will be presented for address fixes and it can be applied to any
database that presents this problem. Depending on the number of these types of problems, the
easiest solution to this problem may be to recreate the Address record in Address.dbf.

Patient_id - This problem may be resolved by using Epi-info Analysis to Read
Address.dbf and select the Patient_id of the record with the errant Address_id. Then a listing
should be made of all of that patient=s address_ids with As_of dates and/or date writs (add_dw).
The date closest to the particular file should be used to replace the bad Address_id. The search
can also be done in FDBU, setting the filter as described on page 6.

RECREATING SELECTED RECORDS
This section will cover the recreation of a few selected record types that the majority of
referential integrity problems are associated with. Recreating a record should be done only after
evaluating an error and deciding that the best course of action is to create a valid record for the
missing criteria. Situations that may warrant record recreation include:

• the errant record or its linked records are valid and the recreation of another record is the

 28

proper avenue to resolve the problem;
• the user is unsure of the validity of the record, but is hesitant to mark a record for

deletion without further evidence that the record is invalid. (Examples: morbidity with a
bad Patient_id or a Test record with a bad Address_id.)

Prior to recreating records in STD*MIS, the user should acquire as much information possible
pertaining to the record that is being recreated. The recreated record may be as complete as a
record done through routine data entry, or fairly incomplete housing only the minimum required
data. Whenever possible, use complete, accurate data to recreate records. In some instances the
user will have to use their best judgement. The Key ID is usually the variable that is Amissing@ in
the seekkeys report and is the reason why the record is being recreated. Substitute the missing
variable information where appropriate in the recreated record.

In FDBU open (<F2>) the database that the record is going to be recreated in, press <F5> to
browse the record, and then press <CTRL> and the <Page Down> key to go to the bottom of the
database. Next press the down arrow once. This will place the cursor in a blank record after the
last complete record. In the upper right hand corner of the open file, the word A<new>@ will
appear. Below are the individual database breakdowns for recreating records:

NOTE: Where noted that a particular value can be used do not put the quote marks into the data
field.

MM - MONTHS HH - HOURS
DD - DAYS MM - MINUTES
YYYY - YEARS SS - SECONDS
Dates are divided by A/@s and time is divided by A:@s.

If the AUNKNOWN” values are not a part of the reference databases they must be added to the
appropriate reference files.

ADDRESS Records

Variable
Name

Mandatory
Yes/No

Data/Definition/Format/Values

Address_id

Y

Key Id, retrieve from errant file. Use the Amissing@ value.

Patient_id

Y

Retrieve from errant file.

As_of

N

Can be blank. Date patient last known to live at this address.

Street_1

N

Can be blank. Actual street address of patient.

City

Y

Can input AUNKNOWN@ if actual city is unknown.

County

Y

Can input AUNKNOWN@ if actual county is unknown.

 29

District Y Can input A98” or “99@ if actual District is unknown.

State

Y

Can input AUN@ if actual State is unknown.

Zip

Y

Can input A99999@ if actual Zip Code is unknown.

Census_tr

N

Can be blank.

Home_phone

N

Can be blank. If entered, place area code first with dashes
separating.

Prov_fl

Y

Defaults to AF@ (false). If this was the provider=s address
instead of the patient=s, AT@ (true) would be placed here.

Add_dw

Y

Date the Address record was created. MM/DD/YYYY

Add_tw

Y

Time the Address record was created. HH:MM:SS

FRB Records

Variable
Name

Mandatory
Yes/No

Data/Definition/Format/Values

Frb_id

Y

Key Id, retrieve from errant file. Use the Amissing@ value.

Dispo

N

Can be blank.*

Dispo_dt

N

Can be blank.*

Worker

Y

Can input A999@ if actual Worker is unknown.

Source_spr

N

Can be blank.

Post_cnsl

N

Can be blank.

Frb_dw

Y

Date the Frb record was created. MM/DD/YYYY

Frb_tw

Y

Time the Frb record was created. HH:MM:SS

*If the Field Record is to be closed, then a disposition and date are needed, else the record is
open and can be closed as any other Fr would be closed within the system.

MORBREPT Records

Variable Name

Mandatory
Yes/No

Data/Definition/Format/Values

Morb_id

Y

Key Id, retrieve from errant file. Use the Amissing@ value.

Patient_id

Y

Retrieve from linked file(s).

 30

Address_id Y Retrieve from linked file(s).

Event_id

Y

Retrieve from linked file(s).

Origin

Y

Where did Morbidity originate.
Codes C - Congenital Record
 F - Field Record
 I - Interview Record
 L - Lab (Test) Record
 M - Morbidity Report Record
 V - Clinic Visit Record

MMWR_week

Y

See Attached MMWR document.

MMWR_year

Y

See Attached MMWR document.

Rept_dt

Y

Date morbidity reported. MM/DD/YY

Pregnant

Y

AY@ for yes, AN@ for no, AU@ for unknown

Morb_age

Y

Age at time of morbidity report. A999" if unknown.

Named

Y

Named report. AT@ if named, AF@ if non-named.

Morb_entry

Y

Person entering Morbidity record. Three - Four characters.

Morb_dw

Y

Date the Morbidity record was created. MM/DD/YYYY

Morb_tw

Y

Time the Morbidity record was created. HH:MM:SS

PATIENT Records

Variable Name

Mandatory
Yes/No

Data/definition/Format/Values

Patient_id

Y

Key Id, retrieve from errant file. Use the Amissing@ value.

Last_name

N

Can be blank.*

First_name

N

Can be blank.*

M_initial

N

Can be blank.

DOB

N

Can be blank.

SSN

N

Can be blank.

Sex

Y

A1" - Male, A2" - Female, A9" - Unknown.

 31

Race Y A1" - American Indian
A2" - Asian/Pacific Islander
A3" - Black/African American
A4" - White
A8" - Other
A9" - Unknown

Race_type

N

Can be blank.

Ethnicity

Y

A1" - Hispanic, A2" - Non-Hispanic, A9" - Unknown.

Med_rec_no

N

Can be blank.

Hars_id

N

Can be blank.

Archive

Y

Defaults to AF@.

Temp_dob

N

Can be blank.

Named

Y

Named report. AT@ if named, AF@ if non-named.

Pat_entry

Y

Person entering Morbidity record. Three - Four characters.

Pat_dw

Y

Date the Pateint record was created. MM/DD/YYYY

Pat_tw

Y

Time the Patient record was created. HH:MM:SS

* If Named=’T’, then one of these variables must contain data.

ATTACHMENTS

SAMPLE DOCUMENTATION SHEET
MMWR DOCUMENT

Errors Dbf: Date: Completed by: Solutions

> - to file.field name

