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INTRODUCTION 
 

 Long-term (15 months), high-resolution measurements of currents, water levels, 
temperature, salinity and turbidity were made off West Maui, Hawaii, in 2001-2003 to 
better understand coastal dynamics in coral reef habitats.  Measurements were made 
through the emplacement of a series of bottom-mounted instruments deployed in water 
depths less than 10 m.  The studies were conducted in support of the U.S. Geological 
Survey (USGS) Coastal and Marine Geology Program’s Coral Reef Project.  The 
purpose of these measurements was to collect hydrographic data to learn how currents 
and water column properties such as water temperature, salinity and turbidity in the 
vicinity of nearshore coral reef systems vary over the course of a year.  These 
measurements support the ongoing process studies being conducted under the Coral 
Reef Project; the ultimate goal is to better understand the transport mechanisms of 
sediment, larvae, pollutants and other particles in coral reef settings.  This report, the 
first in a series of three, describes data acquisition, processing and analysis.  
Subsequent reports will provide data and results on the spatial structure of currents, 
temperature, salinity and suspended sediment along West Maui (PART II), and flow and 
coral larvae and sediment dynamics during the 2003 summer spawning season (PART 
III) 
 
Project Objectives: 

The objective of these deployments was to understand how currents, waves, 
tides, temperature, salinity and turbidity vary temporally along West Maui over the 
course of a year.  These data were collected to support the ongoing studies being 
conducted off northwest Maui as part of the USGS’s multi-disciplinary Coral Reef 
Project that focuses on the geologic processes that affect coral reef systems.  To meet 
these objectives, flow and water column properties off West Maui were investigated.  
These data will provide insight into the impact of terrestrial sediment, nutrient or 
contaminant delivery and coral larval transport on nearshore coral reefs.  The 
REEFPROBE instrument package was deployed over a period spanning 15 months and 
encompassed two winter seasons (2001-2002 and 2002-2003) and the intervening 
spring, summer and fall (2002).  Towards the end of the experiment, another smaller 
instrument packages (MiniPROBE) was deployed inshore of the long-term station to 
look at the cross-shore variability in flow, tides, waves and suspended sediment flux.  
Data collected during these deployments provided a long-term baseline for short-term 
but more spatially-extensive measurements in the future (see PART II and PART III of 
this report). 
 
Study Area: 

These measurements were made offshore Kahana, Northwest Maui, Hawaii, 
USA, between the Hawaiian Islands of Maui and Molokai (FIGURE 1).  All of the 
measurements were on the inner shelf in water depths less than 11 m (FIGURE 2).  The 
long-term station was at the 10 m isobath in a sediment-filled paleo-stream channel 
incised during a previous sea-level lowstand.  The paleo-stream channel was more than 
20 m wide and had a maximum vertical relief of 2 m.  The second, shallower station was 
deployed inshore of the long-term station along the 2 m isobath in a large sand patch 
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FIGURE 1.  Map of the study area location in the main Hawaiian Island chain.  Red box in inset shows the location of FIGURE 2.
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lying 2 m below the surrounding reef, at a total depth of 4 m.  The seafloor sediment at 
both instrument locations is a well-sorted carbonate sand.  All vessel operations, 
including mobilization and demobilization, were based out of Lahaina Harbor, West 
Maui, Hawaii. 
 
 

OPERATIONS 
 

 This section provides information about the personnel, equipment and vessel 
used during the deployments.  See TABLE 1 for a list of personnel involved in the 
experiment and TABLES 2 and 3 for complete listings of deployment information. 
 
Scientific Party: 

The scientific party for these deployments included at a minimum of three 
scientists from the USGS Coral Reef Project.  During instrument deployment and 
recovery operations there was one vessel captain in addition to these scientists on 
board. 
 
Equipment and Data Review: 

Two primary instruments were used to acquire flow data during these 
deployments (TABLE 2).  The first instrument was a RD Instruments 600 kHz 
Workhorse Monitor upward-looking Acoustic Doppler Current Profiler (ADCP), which 
was used to collect vertical profiles of current velocity and acoustic backscatter data.  
The second primary instrument employed was a downward-looking Sontek 5 MHz ADV-
Ocean acoustic Doppler current velocimeter.  The ADV-Ocean made near-bed (~0.2 m 
above the bed) measurements of current velocity in three orthogonal directions (east-
west, north-south, up-down), acoustic backscatter and measured the distance from the 
sensor to the bed.  The Sontek Hydra logger collected and stored data from the ADV 
and four external sensors: a Paroscientific Digiquartz pressure sensor, Seabird SBE-
37SI Microcat conductivity-temperature sensor (~0.5 m above the bed) and two D&A 
Instruments OBS-3 optical backscatter sensors (one ~0.2 m above the bed, the other 
~1.0 m above the bed).  These external sensors collected single-point measurements 
on waves and tides, water temperature and salinity, and optical backscatter, 
respectively.  The smaller MiniPROBE package (FIGURE 3a) included a RD 
Instruments 600 kHz Workhorse Monitor upward-looking Acoustic Doppler Current 
Profiler (ADCP) similar to the one on the deeper REEFPROBE tripod (FIGURE 3b) and 
two other sensors: a self-contained NIWA Dobie-A strain gauge pressure sensor and an 
Aquatec/Seapoint 200-TY self-contained optical backscatter sensor (SCOBS) 
approximately 0.5 m above the bed.  These sensors collected single-point 
measurements on waves and tides, and optical backscatter, respectively. 

The instrument packages were typically deployed for 90-100 day periods, as 
constrained by the power consumption.  Sensors connected to the Sontek Hydra logger 
on the REEFPROBE tripod were measured using three sampling schemes.  For 
deployments 1, 2, 4 and 5, data was collected from all instruments each hour for 512 
sec at 2 Hz to allow calculation of mean flows, oscillatory flows, wave heights, salinity, 
temperature, turbidity (sediment concentration) and sediment flux.  For deployment 3, 
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FIGURE 3.  Photographs of instrument packages and the deployment vessel.  (a) View of the MiniPROBE instrument package on the 
seafloor along the 2 m isobath in a 2 m deep sediment-filled depression.  (b) View of the REEFPROBE instrument package on the seafloor 
along the 10 m isobath in a sediment-filled paleo-stream channel.  (c) View of the R/V Alyce C.
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data was collected from all instruments each hour for 1024 sec at 2 Hz to allow 
detection of longer period variations.  During all deployments, a third experimental 
scheme sampled all instruments, except the CTD, every 9 hours for 512 sec at 10 Hz to 
allow examination of higher-frequency behavior.  The upward looking ADCPs mounted 
on the REEFPROBE tripod and the MiniPROBE sampled for 40 sec every 4 min to 
allow calculation of mean flows and higher frequency motions like internal tidal bores 
and non-linear internal waves, while the SCOBS recorded an 8 sample burst every 4 
min.  The Dobie pressure sensor recorded a 512 sec burst at 2 Hz every hour to provide 
wave and tide information.  The instrument package deployment and recovery log is 
presented in TABLE 3.  The instrument specifics and sampling schemes are listed in 
APPENDIX 1, APPENDIX 2 and APPENDIX 3 for the ADCP profiler, Hydra system, and 
other sensors, respectively.  

Navigation equipment consisted of a hand-held WAAS-equipped global 
positioning system (GPS) unit.  This system made it possible to very accurately deploy 
the instruments in the same location and to recover them without the need for a surface 
float to mark the instruments’ locations. 
 
Research Platform: 
 The instrument deployments and recoveries were conducted using a leased 
vessel, the 28-ft-long R/V Alyce C., owned and operated by Alyce C. Sport Fishing 
(FIGURE 3c).  The R/V Alyce C., which was designed as a sport-fishing boat, was 
modified for scientific studies.  The port beam and starboard quarterdeck were adapted 
for instrument deployment and recovery.  The port beam was allocated for instrument 
package deployment and recovery operations, which included the use of an electric 
winch and an overhead davit. 
 
Deployment/Recovery Operations: 
 The instruments were deployed by attaching a removable bridle to the instrument 
package with a connecting line through the davit and down to the winch.  The 
instruments were lowered to within a few meters of the seafloor, where the scuba divers 
would attach a lift bag and detach the lifting line.  The divers would then move the 
instrument package into place.  After determining the package’s location, the divers 
emplaced sand anchors into the seafloor and attached them to the instrument package 
using cables and turnbuckles.  Seafloor surficial sediment samples were collected, and 
the heights of the sensors above the seafloor were measured and recorded.  Recovery 
operations employed the same techniques.  
 
 

DATA ACQUISITION AND QUALITY 
 

 Data were acquired 429 days during the 15 month period between 12/05/2001 
and 02/27/2003; this was more than 96% data coverage over the entire experiment.  
The instruments were out of the water for only 19 days during these 15 months for data 
recovery and instrument refurbishment. 
 More than 99% of the data were recovered from the ADCP profiler on the 
REEFPROBE and MiniPROBE tripods.  Data quality was generally very high.  The 



ADCP data near the surface displayed slightly lower correlation due to bubble 
interference with the transducers.  This loss of data from the bins closest to the surface 
is common to most upward-looking ADCPs and was expected.  The raw ADCP data 
were archived and copies of the data were post-processed to remove all “ghost” data 
from above the surface and all data when the beam correlation dropped below 70% 
were discarded for visualization and analysis.  Post-processed data were saved and 
copies were desampled to hourly intervals to better visualize longer-term variability; 
these desampled copies of the data were also saved and archived. 
 More than 90% of the Sontek ADV-Ocean and external sensor data on the 
REEPROBE appeared to be of high quality.  This assessment was made by examining 
plots of mean and standard deviation values of the hourly data and inspection of 
selected time series while in the field.  Data problems were primarily with OBS sensors.  
OBS sensors, although coated with a transparent antifouling coating on the optical 
sensors, tended to biofoul towards the end of the deployments, rendering portions of the 
data unusable.  Inspection of 2 Hz OBS data revealed “cross-talk” between sensors.  
This was a low-amplitude, periodic signal due to electrical interference that was be 
removed during processing.  There was only one failure of all sensors during the 
experiment.  Approximately 1.5 months into the first deployment, the lowest OBS sensor 
was sheared, causing it to fail.  All data was contaminated for a period of about 1 week 
while the sensor was not completely failed.  After the lowest OBS completely failed, 
data quality for all remaining sensors was high. 

We computed turbidity values in National Turbidity Units (NTU) for the SCOBS, 
OBS and ADCP sensors using Formazin calibration solution and regression statistics.  
We first made a set of turbidity standards (typically 0, 10, 50, 100 and 200 NTU) by 
diluting 4000 NTU Formazin solution into calibration tubs.  We then calibrated the OBS 
sensors by placing them in the standards, logging their output voltages over 30 sec and 
computing an average voltage for each NTU standard.  The resulting regression 
equations were then used to compute NTU values from the recorded OBS voltages 
(FIGURE 4a).  These new calculated NTU values were then correlated to co-located 
ADCP acoustic backscatter data that had already been processed for beam spreading 
and attenuation using the methodology proposed by Deines (1999).  The resulting 
regression equation was then used to compute NTU values from the corrected acoustic 
backscatter data throughout the water column (FIGURE 4b). 
 
 

RESULTS AND DISCUSSION 
 

This section reviews the data collected by both systems during the deployments 
and addresses the significance of the findings to better understanding the local 
oceanographic conditions in the study area. 
 
Tides 
 The tides off Kahana are of the mixed, semi-diurnal type with two uneven high 
tides and two uneven low tides per day; thus the tides change just over every 6 hours.  
The mean daily tidal range is roughly 0.6 m, while the minimum and maximum daily tidal 
ranges are 0.4 m and 1.0 m, respectively. 
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Currents 
 Most of the daily variability in current speed and direction at the study site are 
due to the tides.  As the tide rises (floods), currents off Kahana flow to the northeast 
roughly parallel to shore; conversely, as the tides fall (ebb), the currents flow to the 
southwest roughly parallel to shore.  This pattern is set by the location of the tidal node 
(amphidrome) to the west of the Hawaiian Island chain and the counter-clockwise 
sweep of the tidal bulge around the amphidromic point.  Mean tidal current speeds ± 
one standard deviation 5 m above the bed are 0.17 ± 0.10 m/sec at the site along the 
10 m isobath and 0.05 ± 0.06 m/sec at the site along the 2 m isobath (FIGURE 5).  The 
magnitude of the tidal currents is driven by the lunar tidal cycle, with the highest tidal 
current speeds occurring during the spring tides (new and full moons) and the weakest 
during the neap tides (quarter moons).  Overall, the tidal currents are faster and more 
consistent in the alongshore direction at the 10 m site than inshore along the 2 m 
isobath.  During the winter when the deep-water wave heights are large, the currents, 
which are flow primarily alongshore (shore-parallel), taken on a more offshore 
component.  This is especially true at the inshore site along the 2 m isobath where 
mean currents are almost always directed offshore when the significant wave height at 
the site exceeds 0.6 m.  This is likely caused by wave- and wave-breaking induced 
onshore transport of the surface waters, which causes water to pile up at the shoreline 
and, in turn, drives offshore-directed return flow through most of the water column down 
to near the bed. 
 While waves cause the majority of flow modification at the shallow site, the 
dominant factor driving flow other than the tides at the deeper 10 m site are the winds or 
wind-induced sea-surface-height variations.  When the Trade winds blow at 5-15 m/sec 
to the southwest as they typically do during most of the year, especially during the 
spring and summer, they force water in the Pailolo Channel between Maui and Molokai 
to the southwest.  Under normal Trade wind conditions, there was very little net 
alongshore flow at the site, with a very slight offshore component of net flow.  When the 
Trade winds decrease in strength or are replaced by winds out of the south or west, as 
often occurs during the fall and winter months, we observed net flow to the northeast at 
the site along the 10 m isobath (FIGURE 6).  This suggests that either (a) net flow in the 
Pailolo Channel along the 10 m isobath of West Maui is to the north, possibly driven by 
larger-scale oceanic flow, or (b) that there is some type of large-scale relaxation that 
occurs when the Trade winds decrease in strength, with the water that has been piled-
up by Trade winds in the channels between Maui, Molokai, Lanai and Kahoolawe (the 
Maui Nui group) being relaxed and flowing back out through the Pailolo Channel.  
These return flows may be due to the passage of an island-trapped wave (ITW), as 
suggested by Flament and Lumpkin (1996) and Merrifield et al. (2002).  The currents’ 
energy spectra during the 2002-2003 winter, while dominated by the semi-diurnal and 
diurnal tidal components, do show increased energy in the 55-65 hour ITW band 
(FIGURE 7).  Flament and Lumpkin (1996) observed a similar peak in the ITW band 
from current meters deployed in 235 m of water roughly 5 km northwest of the study 
area, suggesting that the flow observed along the 10 m isobath are likely due to the 
passage of ITWs.  We do not have enough information at this time to indicate which 
process or combination of processes is responsible for the observed northeasterly flow. 
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Water Column Properties 

The water column properties that were collected included variations in 
temperature (ºC), salinity (PSU), optical backscatter (NTU) and acoustic backscatter 
(dB). 
 
Temperature: 

Water temperatures were on average slightly cooler and less variable at the 
deeper 10 m site than along the 2 m isobath at the shallow instrument site (FIGURE 8).  
Over the period of study, the water temperatures roughly 0.5 m above the bed at the 
site along the 10 m isobath ranged between 22.54 °C and 27.33 °C, with a mean 
temperature ± one standard deviation of 25.25 ± 0.41 °C.  During the last deployment 
(#5), the water temperatures at the site along the 2 m isobath ranged between 23.16 °C 
and 26.50 °C, with a mean temperature ± one standard deviation of 24.72 ± 0.61 °C.  At 
both sites the water typically warmed 0.2-0.4 °C during the day due to insolation.  Over 
time scales longer than tidal periods (>24 hours), we observed long-term cooling due to 
flow from offshore to the north moving onshore to the south; conversely, long-period 
warming occurred during net flow to the northeast.  These long-period decreases in 
water temperature may be due to the excursion of deeper, cooler water from the north 
outside of the Maui Nui group (Maui, Molokai, Lanai and Kahoolawe) into the Pailolo 
Channel.  At tidal periods (12-24 hours), water temperatures typically increased when 
the tidal elevation fell.  This may be in part caused by water warmed in the shallows 
closer to the shoreline being advected obliquely offshore out past the deeper instrument 
package along the 10 m isobath. 

Another very interesting feature was often observed in the high-frequency (every 
4 min) temperature records recorded by the ADCP at the 10 m site.  During spring and 
summer when the Trade winds blew consistently, roughly once per day very rapid 
(typically <16-32 min) warming or cooling was observed at the deeper site (FIGURE 9).  
The water temperature typically changed by more than 0.5 °C and frequently by more 
than 1.0 °C.  These rapid changes in water temperature occurred during all but the 
spring phases (new and full moon) of the lunar tidal cycle and during all phases (low, 
rising, high and falling) of the diurnal tidal cycle.  Almost all of these features were 
proceeded by relatively high cross-shore shear in the water column (typically >0.07 
m/sec difference over 4 m of the water column).  At the time of the rapid change in 
water temperature, the flow in the water column would rapidly switch direction, with 
onshore near-surface flow changing to offshore near-surface flow and near-bed offshore 
flow changing to onshore near-bed flow, or visa versa.  A rapid warming typically 
occurred when near-surface waters moved onshore and near-bed waters moved 
offshore while rapid cooling typically occurred when near-surface waters moved 
offshore and near-bed waters moved onshore.  These features are very similar to 
internal bores observed off the West Coast of the United States (e.g. Storlazzi et al., 
2003).  There is a lack of strong stratification during the times when the bores were 
observed off Kahana (Storlazzi et al., 2003), which is dissimilar to observations of bores 
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FIGURE 8.  Hourly mean water temperatures in the study area over four three-month deployments.  Blue data are from the instrument package along the 10 m isobath while the red data 
are from the shallower instrument package along the 2 m isobath.  During the periods when the Trade winds blow consistently, there is high diurnal variablity at the long-term deeper (10 m) 
station.  When the Trade winds become more variable or weaken in the fall and winter, however, there is much less diurnal variability.  During sustained periods of flow to the southwest 
(SEE FIGURE 4), the water column typically cools while the water column warms during sustained flow to the northeast.
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FIGURE 9.  Two examples of possible internal tidal bores driving a rapid temperature change at the deeper instrument package along the 10 m 
isobath.  (a,c) Cross-shore current velocities, with positive flow onshore.  (b,d) Temperature roughly 1.2 m above the bed.  Top: Internal bore causing a 
sharp decrease in water temperature followed by a rapid increase in water temperature, causing no little net change.  Bottom: Internal bore causing a 
rapid increase in water temperature.  Note the velocity shear (difference between near-surface and near-bed current speed and direction) proceeding 
and during these events that led to the rapid changes in temperature as different water masses were advected by the instrument package.
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made elsewhere.  Similar internal bores have been shown to episodically transport 
deep, subthermocline nutrients from offshore up on to the coral reefs in the Florida Keys 
(Leichter et al., 2003).  Without concurrent, co-located nutrient sampling, however, we 
cannot determine if these internal bores are delivering nutrients to the reefs along 
Northwest Maui and contributing to the algal blooms discussed by Dollar and Andrews 
(1997) and the West Maui Watershed Management Project (1996). 
 
Salinity: 

Over the period of study, the water salinities roughly 0.5 m above the bed at the 
site along the 10 m isobath ranged between 32.18 PSU and 35.19 PSU, with a mean 
salinity ± one standard deviation of 34.73 ± 0.12 PSU.  Higher-salinity water typically 
moved onshore with the rising tide.  Infrequent low-salinity pulses were observed and 
correlated with offshore flow; these may have been the signal of freshwater discharge 
from onshore drainages or fresh groundwater diffusing out of the shallower portions of 
the reef and being advected out past the instrument site along the 10 m isobath.  
Becasue we did not have a salinity sensor at the shallower 2 m site, however, we 
cannot test this hypothesis. 
 
Turbidity: 
  Turbidity was generally both more intense and more variable closer to the bed at 
the deeper 10 m site and inshore along the 2 m isobath at the shallow instrument site 
than higher above the bed at the 10 m site.  Over the period of study, the burst-
averaged turbidity roughly 0.2 m above the bed at the site along the 10 m isobath 
ranged between 0.0 NTU and 163.9 NTU, with a mean turbidity ± one standard 
deviation of 2.8 ± 4.1 NTU.  Approximately 1.0 m above the bed at the 10 m instrument 
site, the turbidity ranged between 0.0 NTU and 73.2 NTU, with a mean turbidity ± one 
standard deviation of 1.0 ± 1.3 NTU.  At the shallower instrument location, the turbidity 
at the site along the 2 m isobath ranged between 0.0 NTU and 138.6 NTU, with a mean 
turbidity ± one standard deviation of 3.6 ± 3.7 NTU.  While most of the variability in 
turbidity was due to the tides (FIGURE 7), the highest turbidity values were related to 
large wave events, high rainfall events, or both.  It is not clear whether the high turbidity 
during large wave events was caused by the waves resuspending the surrounding 
predominantly calcareous sand-sized seafloor sediment at the site or silt- and/or clay-
sized sediment inshore of the sites, which would be advected seaward and imaged by 
the optical backscatter sensors (FIGURE 10).   
 
Water and Turbidity Fluxes: 
 Net flow roughly 0.2 m above the bed at the deeper site along the 10 m isobath 
was to the northeast over the period of study, with little net flow during the spring and 
summer and the majority of the net flow occurring during Trade wind relaxations in the 
fall and winter (FIGURE 5).  Over the much shorter period of record (just one winter 
season), flow along the 2 m isobath at the shallower site was primarily offshore in the 
response to large wave events.  Due to phasing with the tides (higher turbidity during 
falling tides, likely being advected out from the shallower portions of the reef) turbidity 
fluxes at the deeper 10 m site were primarily to the southwest, however, roughly 180 
degrees from the net water flux to the northeast.  Net turbidity fluxes at the shallower 
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FIGURE 10.  Wave-driven resuspension of sediment at the shallower instrument site along the 2 m isobath and its offshore transport. (a) Tidal height.  (b) Significant wave height.  (c) Cross-shore 
current velocities roughly 2 m above the bed, with positive flow onshore.  (d) Turbidity roughly 2 m above the bed, calculated from the ADCP.  (e) Cross-shore turbidity flux roughly 2 m above the bed, 
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site were primarily offshore, but these data were only recorded during the winter months 
and thus the offshore direction of net flux might be very different if a whole year of data 
had been collected. 

As stated earlier, the seafloor sediment at both instrument sites was a relatively 
well-sorted carbonate sand.  Sediment traps, with their openings placed roughly 0.8 m 
above the bed, were attached to the instrument packages during the last deployment 
(11/2002-02/2003) at both locations.  While the coarse-grained sediment collected in 
both traps was relatively clean carbonate sand (>74% carbonate), suggesting that it 
came from the surrounding seafloor, the fine-grained component in both traps was 
primarily (>64%) terrigenous in origin and contained numerous (>4%) organic particles.  
These results suggest that while the energetics (primarily surface waves) of the 
environment are too great to allow for the deposition of fine-grained silts and clays on 
the bed, large quantities of fine-grained terrigenous sediment do move through the 
study area.  Fine-grained terrestrial sediment is generally not present at depths less 
than 10 m because of the high wave energy. 
 
 

CONCLUSIONS 
 

 In all, more than 29,300 hourly observations of currents, waves and water 
column properties were collected per day for 429 days over the course of 15 months 
between November 2001 and February 2003 off Northwest Maui, Hawaii, USA.  Key 
findings from these measurements and analyses include: 
 

(1) Flow at the 10 m REEFPROBE site is primarily controlled by the tides and the 
Trade winds.  Further inshore along the 2 m isobath, flow is more variable, less 
influenced by the tides and appears to be dominated by large surface wave-
induced flows. 

 
(2) During the summer months when the Trade winds consistently blow to the 

southwest, there is little to no net flow along the 10 m isobath. 
 

(3) During the winter months when the Trade winds are less consistent and typically 
weaker, net flow along the 10 m isobath is upcoast to the northeast while net flow 
along the 2 m isobath in downcoast to the southwest, demonstrating a inshore 
wave-driven jet downcoast to the southwest and net mean flow further offshore 
upcoast to the northeast.  These flows may be due to the passage of island-
trapped waves (ITWs). 

 
(4) Tidal currents rise to the northeast and fall to the southwest.  As the tides fall, 

they typically draw warm, turbid water offshore and drive it downcoast to the 
southwest. 

 
(5) Higher turbidity is typically observed during large wave events, strong Trade 

winds, and falling tides. 
 



(6) What are interpreted to be internal bores were observed throughout the year but 
primarily during the spring and summer and caused cross-shore transport in the 
study area. 

  
These data provide us with a much clearer picture of the nature of and controls 

on flow and suspended sediment flux in the study area.  A number of interesting 
phenomena were observed that indicate the complexity of coastal circulation off West 
Maui and may help to better understand the implications of the processes on coral reef 
health. 
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TABLE 1. Experiment personnel  
   

Person Affiliation Responsibilities 
Curt Storlazzi USGS Co-chief scientist, led instrument and scuba diving operations
Bruce Jaffe USGS Co-chief scientist, scuba diver 
Joshua Logan USGS Oversaw navigation, co-led scuba diving operations 
Michael Field USGS Project chief, scuba diver 
Thomas Reiss USGS Dive safety officer, instrument support 
Eric Grossman USGS Scuba diver, instrument support 
Susie Cochran USGS Instrument support 
Rebecca Stamski UCSC Instrument support 
Eric Thompson USGS Instrument support 
Joe Reich   Captain, R/V Alyce C. 
 

 

 

TABLE 2. Instrument package sensors     
        
Instrument Sensors             
REEFPROBE RD Instruments 600 kHz Workhorse Monitor acoustic Doppler current profiler (upward-looking)   
  Sontek Hydra 5 mHz ADV-Ocean acoustic Doppler current meter  (downward-looking)   
  Paroscientific Digiquartz pressure sensor      
  Seabird SBE-37SI Microcat conductivity-temperature sensor     
  D&A Instuments OBS-3 optical backscatter sensor     
  D&A Instuments OBS-3 optical backscatter sensor     
          
MiniPROBE RD Instruments 600 kHz Workhorse Monitor acoustic doppler current profiler (upward-looking)   
  NIWA Dobie-A strain gauge pressure sensor      
  Aqautec/Seapoint 200-TY optical backscatter sensor       
 

 

 

TABLE 3. Instrument package deployment log: 11/2001 - 02/2003  
       
Instrument Island ID Depth (m) Deployment Date Recovery Date Latitude (dd) Longitude (dd) 
REEFPROBE MA 10 12/06/01 02/17/02 20.98252 -156.68112
REEFPROBE MA 10 02/21/02 05/14/02 20.98252 -156.68112
REEFPROBE MA 10 05/17/02 08/13/02 20.98252 -156.68112
REEFPROBE MA 10 08/18/02 11/14/02 20.98252 -156.68112
REEFPROBE MA 10 11/18/02 02/27/03 20.98252 -156.68112
MiniPROBE MA 4 11/18/02 02/27/03 20.98249 -156.67782
 

 

 



APPENDIX 1 
 

REEFPROBE and MiniPROBE Acoustic Doppler Current Profiler (ADCP) Information 
 
Instrument: 

RD Instruments 600 kHz Workhorse Monitor (REEFPROBE); s/n: 3098 
RD Instruments 600 kHz Workhorse Monitor (MiniPROBE); s/n: 2432 

Transmitting Frequency:  614 kHz 
Depth of Transducer:  10 m/4 m* 
Blanking Distance:   0.25 m 
Height of First Bin above Bed: 1.50 m/0.75 m* 
Bin Size:    1.0 m/0.5 m* 
Number of Bins:   12 
Operating Mode:   High-resolution, broad bandwidth 

 Sampling Frequency:  4 Hz 
 Beam Angle:    20 deg 
 Time per Ping:   00:00:00.30 
 Pings per Ensemble:  1 
 Ensemble Interval:   00:04:00.00 

Sound Speed Calculation:  Set salinity, updating temperature 
via sensor  
 

Deployments: 5/1* 
 

* - First number corresponds to the deeper REEFPROBE tripod, the second 
number corresponds to the shallower MiniPROBE package 

 
Data Processing: 
 The data were averaged over 20-bin (1 hour) ensembles, all of the 

spurious data above the water surface were removed and all of the data in bins 
where the beam correlation dropped below 70% were removed for visualization 
and analysis. 

 
Position Information: 

Garmin GPS-76 GPS; s/n: 80207465; USGS/CRP unit#1 
RDI internal compass/gyroscope, set to –10 deg magnetic offset 

 
 
 
 
 
 
 
 
 
 



APPENDIX 2 
 

Instruments on the REEFPROBE Logged by the Sontek Hydra 
 
Instruments: 

Sontek Hydra ADV-Ocean; s/n: B137H; calibrated 12/1999 
Transmitting Frequency:  5 mHz 
Depth of Transducer:  10 m 
Blanking Distance:   0.18 m 
Initial Height of Measurement 

above Bed:   0.30 m 
Operating Mode:   High-resolution, broad bandwidth 

 Sampling Frequency:  2 Hz and 10 Hz 
 Measurements per Burst:  1024 
 Time Between Bursts:  01:00:00.00 

Sound Speed Calculation:  Set salinity, updating temperature 
via sensor 
 

Paroscientific Pressure Sensor; s/n: T60005; calibrated 11/2001 
 
Seabird Microcat SBE-39SI CT; s/n: 7072-0275; calibrated 11/2001 
 
D&A Instruments OBS-3 (lower); s/n: 1104, 1143,1242, 1428; calibrated before 

and after each deployment; initial height ~ 0.20 m above the bed 
 
D&A Instruments OBS-3 (upper); s/n: 926, 929,1135; calibrated before 

and after each deployment; initial height ~ 1.05 m above the bed 
 
Deployments: 5 
 
 
Position Information: 

Garmin GPS-76 GPS; s/n: 80207465; USGS/CRP unit#1 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



APPENDIX 3 
 

MiniPROBE External Sensor Information 
 
Instruments: 

NIWA Dobie-A Pressure Sensor; s/n: 2000-14; calibrated 05/2001 
Depth of Transducer:  10 m 
Operating Mode:   Time series 

 Sampling Frequency:  2 Hz 
 Measurements per Burst:  1024 
 Time Between Bursts:  01:00:00.00 
 
Aqautec/Seapoint 200-TY OBS; s/n: 371-015; calibrated 08/17/2002 
 Sampling Frequency:  2 Hz 
 Measurements per Burst:  30 

  Time Between Bursts:  00:04:00.00 
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