
Planetary Data System

Object Access Library
User's Guide

OAL Version 1.2

December 1997

Randy Davis and Steve Monk

Laboratory for Atmospheric and Space Physics

University of Colorado

ii

Table of Contents

Part I — User's Guide

CHAPTER 1. OAL OVERVIEW 1

1.1 Contents of this Manual 1

1.2 Background 1

1.3 Software Organization 3
1.3.1 What is a PDS Data Object? 3
1.3.2 OA Library Architecture 4

1.4 Glossary 5

1.5 Reference Documents 7

CHAPTER 2. USING OAL 8

2.1 The Source Files You Need 8

2.2 Compiling OAL 8

2.3 Customizing the Error Reporting Routine 9

2.4 Customizing the Memory Management Routines 1 0

2.5 Optional Libraries and Utilities 1 0
2.5.1 Unzip 10

CHAPTER 3. OBJECT LAYER 1 1

3.1 Overview 1 1
3.1.1 Reading PDS Data Objects from a File 11
3.1.2 Manipulating PDS Objects in Memory 12
3.1.3 Writing PDS Objects to a File 12

3.2 Object Layer Data Structures 1 3

3.3 OA Routines for Reading and Converting Label Files 1 4
3.3.1 OaParseLabelFile 14
3.3.2 OaConvertLabel 14

3.4 OA Routines for All Objects 1 5
3.4.1 OaReadObject 15
3.4.2 OaCopyObject 16
3.4.3 OaDeleteObject 16
3.4.4 OaExportObject 16
3.4.5 OaConvertObject 17
3.4.6 OaConvertObjecttoOneType 18

iii

3.5 OA Routines for Writing Objects to a File 2 0
3.5.1 OaOpenOutputFile 20
3.5.2 OaWriteObject 21
3.5.3 OaCloseOutputFile 22
3.5.4 OaCreateAttachedLabel 22

3.6 OA Routines for Image Objects 2 4
3.6.1 OaReadImage 27
3.6.2 OaOpenImage 27
3.6.3 OaReadPartialImage 28
3.6.4 OaReadImagePixels 28
3.6.5 OaCloseImage 29
3.6.6 OaImportImage 29
3.6.7 OaGetPartialImage 30
3.6.8 OaConvertImagetoArray 30
3.6.9 OaReadSpectrumFromImage 31

3.7 OA Routines for Table Objects 3 2
3.7.1 OaReadTable 32
3.7.2 OaReadSubTable 32
3.7.3 OaGetSubTable 33
3.7.4 OaJoinTables 34
3.7.5 OaDeleteRow 34
3.7.6 OaDeleteColumn 35
3.7.7 OaTransposeTable 35
3.7.8 OaAddLineTerminatorstoTable 35
3.7.9 OaAddContainerAroundTable 36
3.7.10 OaUnravelContainer 36
3.7.11 OaImportColumn 36

3.8 OA Routines for Qube Objects 3 8
3.8.1 OaReadImageFromQube 38
3.8.2 OaReadSpectrumFromQube 38

CHAPTER 4. UTILITY ROUTINES 3 9

4.1 Memory Management Routines 3 9
4.1.1 OaMalloc 39
4.1.2 OaRealloc 39
4.1.3 OaFree 39

4.2 Error Reporting Routines 4 0
4.2.1 Error Reporting Mechanism 40
4.2.2 OaReportError 41
4.2.3 OaRouteErrorMessages 41

4.3 Keyword Value Conversion Routines 4 2
4.3.1 OaKwdValuetoLong 42
4.3.2 OaLongtoKwdValue 42
4.3.3 OaKwdValuetoStr 43
4.3.4 OaStrtoKwdValue 43
4.3.5 OaSequencetoLongArray 44
4.3.6 OaSequencetoStrArray 45

4.4 Object Access Helper Routines 4 6
4.4.1 OaGetObjectClass 46
4.4.2 OaObjectClasstoStr 46

iv

4.4.3 OaGetObjectInterchangeFormat 46
4.4.4 OaStrtoPDSDataType 47
4.4.5 OaPDSDataTypetoStr 47
4.4.6 OaGetImageKeywords 48
4.4.7 OaGetTableKeywords 49
4.4.8 OaGetQubeKeywords 50
4.4.9 OaGetFileKeywords 51
4.4.10 OaCopyTree 52
4.4.11 ODL Tree Navigation Macros 52

CHAPTER 5. IDL INTERFACE 5 3

5.1 Overview 5 3

5.2 IDL Interface Routines 5 5
5.2.1 OaIDLReadObject 55
5.2.2 OaIDLGetObjectData 56
5.2.3 OaIDLVariabletoOaObject 57
5.2.4 OaIDLGetOaObjectStruct 57
5.2.5 OaIDLGetODLTreeNodeStruct 58
5.2.6 OaIDLGetProfile 59
5.2.7 OaIDLSetProfile 59

CHAPTER 6. FORTRAN INTERFACE 6 0

Part II — Advanced User's Guide

CHAPTER 7. STREAM LAYER 6 1

7.1 Stream Layer Data Structures 6 2

7.2 Stream Layer Routines 6 3
7.2.1 OalOpenStream 63
7.2.2 OalReadStream 64
7.2.3 OalWriteStream 65
7.2.4 OalSeek 66
7.2.5 OalCloseStream 66
7.2.6 OalNewStreamDescriptor 66

CHAPTER 8. STRUCTURE LAYER 6 7

8.1 Structure Layer Data Structures 6 9
8.1.1 Stream Decomposition Tree Node 69
8.1.2 Host Profile 72

8.2 Structure Layer Routines 7 3
8.2.1 OalCreateSDT 73
8.2.2 OalCompressSDT 74
8.2.3 OalInitializeSDT 74
8.2.4 OalProcessSDT 75
8.2.5 OalSDTtoODLTree 75
8.2.6 OalFreeSDT 76

5

8.2.7 OalReportBinrepErrors 76
8.2.8 OalResetBinrepErrors 76
8.2.9 Low-Level Structure Layer Routines 77

CHAPTER 9. DEVELOPING NEW OBJECT ACCESS ROUTINES 7 9

9.1 Understanding Object Access Routines 7 9

9.2 Techniques For Creating the SDT 8 1

9.3 Requirements for New Object Access Routines 8 1

APPENDIX A. ERROR CODES 8 5

A.1 Bad Input Arguments 8 5

A.2 Inconsistent Input Object 8 5

A.2 Illegal Operation 8 6

A.3 Bad Input ODL Tree, Keywords or Class for Operation 8 6

A.4 Inconsistency Between File and File Keywords 8 7

A.5 Syntax Errors in ODL Keyword Values 8 7

A.6 Low-level I/O Errors 8 8

A.7 Run-time Errors 8 8

A.8 Memory Errors 8 8

A.9 Internal Errors 8 8

A.10 Warnings 8 8

A.11 Informational 8 9

APPENDIX B. HOW OAL DEALS WITH SPARES 9 0

APPENDIX C. TRANSFERRING PDS FILES BETWEEN COMPUTERS 9 1

APPENDIX D. EXAMPLE CODE 9 2

D.1 C Example 9 2

D.2 IDL Example 9 5

D.3 Fortran Example 9 7

1

Part I — User's Guide

Chapter 1. OAL Overview

1.1 Contents of this Manual
This document is the User's Guide for the Object Access (OA) Library. The OA Library
is a set of software routines for accessing data that meet the standards of the NASA
Planetary Data System (PDS).

This document is divided into two parts:

• User's Guide. This is the User's Guide for scientists and other end-users who
write applications using the OA library. Most users will find this information and
the descriptions of object layer routines sufficient for their needs, and not need
to go into the Advanced User's Guide.

• Advanced User's Guide. For readers who plan to write their own Object Access
routines, this part contains a detailed description of the inner workings of the OA
library, including all stream layer and structure layer routines.

1.2 Background
The Planetary Data System acquires, archives and distributes much of the data that
NASA collects about objects in our solar system (other than the Earth) and about the
interplanetary medium. Soon after the development of a prototype PDS began in
1982, it became clear that there were virtually no standards for the data produced by
planetary missions and planetary scientists. This meant that the future PDS would
have to accept, store, and deliver datasets in many different formats.

The developers of the prototype PDS responded to this challenge in several ways.
First, a simple keyword/value language was devised that would permit a dataset or file
to be labeled with information identifying its format and content. This language
eventually evolved into the Object Description Language (ODL). Today, PDS labels
written in ODL are attached to virtually every piece of data that flows into or out of the
PDS. A PDS label in ODL can be read by both humans and computers. For example,
a scientist can read a PDS label to learn about a file she receives, and at the same
time the software she uses for data analysis can parse the label and use the
information in the label to identify, locate and retrieve data from the file.

The planetary community's second response to the data format challenge was to
develop a Planetary Science Data Dictionary (PSDD) and to formally define the
standard types of data objects that are manipulated by planetary scientists (like
images, spectra and data tables). The PSDD holds both the definitions of standard
PDS data objects and the definitions of elementary terms used to describe planetary
data (for example, the terms latitude and longitude). Each object definition specifies a

2

set of elementary terms that represent the attributes of the object type. An attribute
describes or qualifies an aspect of the format or content of the object. Some attributes
are mandatory — a value must be assigned for every object instance — and some
optional.

Application programs that process and analyze planetary data often require access to
a combination of standard data objects, information from PDS labels, and information
from the PSDD. Here are some examples:

• When a scientist provides a file, volume or dataset to the PDS, the data must
have associated PDS labels. Information from the PSDD is used to ensure that
the labels submitted with data are valid, consistent and complete.

• When the PDS produces a file, volume or dataset for scientists, information
from the PSDD can be used to create the PDS labels that accompany the data.
Values for an object's attributes (at a minimum the mandatory attributes) are
filled in to describe each specific object instance. The attributes and their
assigned values are then encoded in ODL to form the PDS label.

While PDS labels and the PSDD make it possible for software to identify, locate and
retrieve data objects within a data stream or file, there has been an unfortunate lack of
general-purpose software for accessing and manipulating PDS data. There are no
standards or guidelines for software that manipulate PDS data objects, so routines for
handling one type of PDS data object may work very differently from the software for
other types of objects. Some PDS data objects — notably images and tables — have
quite a bit of access and manipulation software available, while other types of objects
have very little. The software that is available often works with only a subset of the
possible objects that can be generated from an object type. For example, some of the
routines and programs that handle PDS images ignore the attributes that specify
whether or not the image data is band or line interleaved, which means that the
software cannot handle multi-band images. Additionally, much of the current software
can only handle data objects that are formatted for certain machines — for example,
with numeric data that is represented in VAX integer and floating point formats — and
with data objects encoded into files in certain ways (for example, data coded as fixed-
length records but not variable length records).

The OA Library effort attempts to solve some of the problems listed above. This effort
provides some standards and guidelines to follow when developing software for
accessing PDS data objects. It provides routines for reading and writing PDS data
objects from a variety of file formats and is able to translate data into the proper
representations for a user's computer. It also provides routines for accessing the most
important types of PDS data objects. The OA Library provides the basic capabilities
that will make it easier for scientists to develop their own software for accessing PDS
data.

3

1.3 Software Organization
The OA Library consists of three layers of software. The first layer, called the stream
layer, provides functions needed to read in and write out a PDS data object — or part
of an object — from or to a file. (The term data object is fully defined and discussed in
Section 1.3.1 below). The second layer, called the structure layer, deals with data
representation issues (for example, the need to convert numeric data from one format
to another when moving across computer platforms). The third layer, called the object
layer, provides routines for end users (predominately planetary scientists) of PDS data
objects. These three layers are discussed in greater detail in Section 1.3.2 below.

The OA Library serves as a starter set of software for reading, manipulating and writing
PDS data objects. We expect that users of the OA Library will augment the OA Library
by developing their own object access (OA) routines. These user-supplied routines will
augment the OA Library's object layer and will provide new operations on PDS data
objects. At the same time, we want to encourage uniformity in OA software so that the
OA Library and user-supplied routines will be of greatest use to the entire planetary
science community. Therefore this document provides a general set of guidelines and
requirements for software that accesses PDS data objects. These are given in Part III.
While it will not be possible to force users to follow these guidelines, we believe that by
following the guidelines users will be able to develop software for manipulating PDS
data objects faster and better (because they will have the OA Library and other
existing OA routines to build upon) and they will be able to make their software useful
to a wider audience.

1.3.1 What is a PDS Data Object?

A data object is simply a chunk of data of a recognizable type. This may be something
as simple as a single integer number or as complex as a multi-spectral image. A PDS
data object is a data object that is of a type defined in the Planetary Science Data
Dictionary and for which an appropriate PDS label exists (or can be created) to
provide the values of the attributes of the data object.

Our use of the word object deserve some discussion. PDS data standards are object
based but not object oriented. By object-based, we mean that the PDS has defined a
set of data types suitable for describing a wide variety of the data objects that scientists
know and manipulate routinely — like images, tables, spectra, and so on. For each of
these types of data, a set of attributes is defined in the PSDD that describe the data in
a way that both a scientist and a computer program can understand. To this degree,
PDS data objects are similar to the types of data defined in an object-oriented data
system. But from an object-oriented perspective, PDS standards lack a few essential
ingredients:

 • Inheritance — a mechanism for explicitly relating one type of object to all other
types of objects;

• Methods — a mechanism for associating software with specific types of data
objects.

4

In developing the OA Library, it is not our intention to attempt to move the PDS
standards from an object-based to a fully object-oriented implementation. We do
intend to develop the OA Library in such a way that it can be used in traditional (non-
object oriented) computing environments and — with some extensions as noted
above — in object-oriented environments as well.

A PDS data object consists of two parts:

• Object attributes — A PDS label (or portion of a label) that contains an object
description with the values of the attributes for the data object. This information
can be in an external format (that is, in ODL within a file) or in an internal format
(that is, in some memory-resident representation that provides software with
access to the label information). The standard memory-resident representation
of a PDS label is an ODL Tree. An ODL tree is a linked data structure that
contains the same information as the corresponding PDS label, but in a format
that is easier for computers to access and manipulate. The PDS has produced a
library of routines to read a PDS label from a file and create the corresponding
ODL tree, to manipulate the tree, and to convert an ODL tree into a PDS label
and write that label to a file. This library is called L3 (Label Library Lite), and is
included in the OA Library distribution.

• Object data — A sequence of bytes that form the primary data value of the
object. The format of the data are given by the associated PDS label. This part
of a PDS data object may be null; that is, it is possible for a PDS data object to
consist of nothing but the object attribute values defined within a PDS label.
However, the opposite is not true: a piece of data without a PDS label is not
considered a PDS data object. (It may, however, be turned into a PDS data
object by generating the appropriate PDS label information for the data).

1.3.2 OA Library Architecture

The OA Library consists of three layers of software:

• Stream Layer — This layer provides software for dealing with data as a stream
of contiguous bytes within a file. The stream layer is able to extract a data
stream from fixed or variable length records and from non-record oriented files,
and do so on a variety of host computers. The stream layer is stand-alone so it
can be used independently of the rest of the OA library, if desired.

• Structure Layer — This layer provides software for dealing with data as a
sequence of atomic data types (for example, integer numbers or ASCII
characters). The atomic data types for the PDS are described in the PDS
Standards Reference Document (Chapter 3 and Appendix C), and in the PSDD.
As an example, consider a simple binary data table where each row of the table
consists of a series of fields, each of which is a single atomic value. The
structure layer provides software for dealing with the fact that the
representations of these atomic data types differ across computer platforms.
Referring back to our example, the structure layer is able to convert the table
fields from VAX format to Sun format, etc. The possible representations of the

5

base data types are defined by the values of the element DATA_TYPE, in the
PDS Standards Reference. Another issue that is dealt with at the structure layer
is alignment of data. Again looking at our table example, some computers allow
data fields to be byte aligned, but some machines may require certain fields to
be aligned on word or even multi-word boundaries. The structure layer provides
the mechanisms for assuring that data are aligned properly within a computer's
memory.

• Object Layer — The object layer provides object access (OA) routines for
reading, manipulating and writing PDS data objects. This is the layer scientists
and other end-users use in their applications. The routines in the object layer
carry out well-defined operations on PDS data objects. In this regard, OA
routines are similar to the methods defined for an object in an object-oriented
data system. A tutorial on implementing new OA routines is given in part II of
this manual, the Advanced User's Guide.

• L3 — The Label Library Lite (L3) is utilized by all layers of the OA Library. L3
provides routines for parsing PDS labels and accessing label information in
memory. L3 routines are also used to write label information from an ODL tree
in memory to a label file. User interfaces utilize L3 to navigate in ODL trees,
and to find nodes to pass to OA routines. The OA routine OaParseLabelFile
should be used to read a PDS label into memory; it utilizes L3 and the OA
stream layer, and works for all file record formats.

1.4 Glossary
This section provides a glossary for key terms used in this document.

Attribute — A data element — taken from the Planetary Science Data Dictionary —
that describes some aspect of a PDS data object's form or content. Examples are the
attributes LINES and LINE_SAMPLES, which respectively specify the number of lines
and the numbers of pixels per line of an image. In the context of ODL trees, keyword
often refers to the attribute’s name and value, and keyword value refers only to its
value.

Data Object — A chunk of data of a recognizable type. This may be something as
simple as a single integer number or as complex as a multi-spectral image.

Object Access (OA) Routine — A routine that performs a single well-defined
operation upon a PDS data object. These are the routines that are used by scientists
and other end-users to operate upon PDS data. The OA Library provides a starter set
of OA routines, but developers can build upon the OA Library's stream and structure
layers to create their own OA routines. The Advanced User's Guide, Chapter 9 of this
document provides information on implementing new OA routines.

Object Data — The primary data that is associated with a PDS data object. For
example, for an image the object data is the set of lines and samples that form the

6

image. Not all types of PDS objects have object data: some consist only of a set of
attributes, such as the HISTORY or CATALOG objects.

Object Descriptor — A data structure that is passed to and from OA routines that
represents a specific PDS data object. It contains a pointer to the object data, if any,
and another to the ODL tree with the attributes for the object.

Object Description Language (ODL) — The language in which PDS labels are
written. The ODL syntax and semantics are specified in Chapter 12 of the PDS
Standards Reference.

Object Layer — The collection of Object Access (OA) routines that are provided as
part of the OA Library.

ODL Tree — A data structure that contains the information from a PDS label, but in a
form that computer programs can readily manipulate. ODL trees are created when
PDS labels are read into memory using the routine OaParseLabelFile, which uses
stream layer and the PDS Label Lite Library. Every PDS data object that has been
read into memory using an OA routine will have an ODL tree that provides the values
for all of the attributes of the object. When an OA routine writes out a PDS data object
to a file, the ODL tree for the object is appended to the ODL tree for the file, which is in
turn converted to a PDS label and written out to describe the file contents.

PDS Data Object — A data object that is of a type defined in the Planetary Science
Data Dictionary and for which an appropriate PDS label exists (or can be created) to
provide the values of the attributes of the data object.

PDS Label — A description of all of the PDS data objects within a file. PDS labels
are written in ODL. The conventions for encoding PDS labels are given in Section 5 of
the PDS Standard Reference.

Planetary Science Data Dictionary (PSDD) — The data dictionary that defines
all PDS data objects and all of the elements that can be used as attributes for a PDS
data object. It is defined in the Planetary Science Data Dictionary document.

Stream Decomposition Tree (SDT) — An augmented ODL tree that contains
information that is used by structure layer routines to transfer and translate data.

Stream Descriptor — A data structure used by stream layer routines to keep track
of access to a file.

Stream Layer — The set of routines provided as part of the OA Library for reading
and writing data from or to files. It is used to read in or write out the object data
associated with a PDS data object, and it can handle all the file and record formats
described in the PDS Standards Reference.

Structure Layer — The set of routines provided as part of the OA Library for
translating data from the format used by one supported platform (like a VAX) to another
supported platform (like a Sun workstation).

7

1.5 Reference Documents
R. Davis and S. Monk; Object Access User’s Guide; OAL Version 1.1; December 1996.

R. Davis and S. Monk; Object Access User’s Guide; OAL Version 1.0; 14 February
1996.

R. Davis and S. Monk; Object Access Library Concept, Requirements and Design
document; Beta Release Version; 15 March 1995.

R. Davis and S. Monk; Object Access Library Concept, Requirements and Design
document; Pre-Alpha Release Version; 10 August 1994.

R. Davis and S. Monk; Object Access Library Concept and Requirements Document;
Draft, 31 January 1994.

S. Hughes and D. Bernath; Label Library Light (L3) User’s Guide; January 15, 1995.
Supplied in the OA Library distribution.

PDS; Planetary Data System Standards Reference; Version 3.1, 3 Aug 1994.
Available at: http://pds.jpl.nasa.gov/stdref/stdref.htm

PDS; Planetary Science Data Dictionary; Revision C, 20 Nov 1992.

ISO; ISO 9660 Standard on Volume and File Structure for CD-ROM for Information
Interchange; First edition, 15 April 1988.

8

Chapter 2. Using OAL

This chapter provides information on compiling the OA library, the include files you
need, and on customizing certain OA routines to fit your user interface and memory
management scheme.

2.1 The Source Files You Need
The OA library distribution includes all the OA and Label Library Lite (L3) source code,
include files and a Makefile for UNIX platforms. When developing an application in C,
the only include file (.h file) you need to include in your code is oal.h; this has all the
typedefs, structure definitions, enumerated types and function prototypes you need to
develop your application.

2.2 Compiling OAL
The OA library code requires the user to explicitly define a platform (machine) specific
symbol (macro) at compile time - the code does not rely on symbols predefined by
certain compilers. This should be done via a compiler switch or prefix file, rather than
adding it to all the source code files. The symbol is used in the stream layer and L3 to
compile different code for dealing with platform-specific issues such as file path
formats and record formats, and in the structure layer to select a profile matching the
platform's native binary data types. For example, defining VAX or ALPHA_VMS
compiles VMS-specific I/O code in the stream layer, and selects the data types profile
containing VMS numeric data types. Similarily, defining ULTRIX, ALPHA_OSF or
IBM_PC selects the profile containing the LSB integers and byte-reversed IEEE floats
native to these platforms. The data types profile is a data structure which tells the
structure layer which native binary data types to convert foreign binary data types or
ASCII data to.

The define values for the supported platforms and compilers are listed below, along
with compiler flags which must be set .

1) VAX/VMS
VAX C compiler; /define=VAX

2) Sun Sparc/SunOS and Solaris
cc, /usr/5bin/cc; -DSUN4 -D_NO_PROTO
gcc, CC (Sparc Works C++ compiler); -DSUN4

3) Silicon Graphics/Irix
gcc and cc; -DSGI

4) Dec 3100/Ultrix
cc; -DULTRIX -Dstd1

9

5) Dec Alpha/OSF-1
cc; -DALPHA_OSF

6) Dec Alpha/OpenVMS
OpenVMS C compiler; /define=ALPHA_VMS

7) Macintosh II
Symantec ThinkC Version 6.0
Project/Set Project Type/Far DATA, Far CODE
Edit/Options/ThinkC/Compiler Settings/ 4-byte ints, 8-byte doubles
Edit/Options/ThinkC/Prefix:

#include <MacHeaders>
#define MAC

Add ANSI and unix libraries to the project, and recompile with same switches.

8) Macintosh PowerPC
Metrowerks CodeWarrier

 Include the standard libraries for a PowerPC application:
 MWC_RuntimeLib
 Mathlib
 InterfaceLib
 ANSI C.PPC.Lib
 SIOUX.PPC.Lib (for console I/O used by OAL test procedures)
 Edit a file, e.g. "prefix.h", and add these lines:
 #include <MacHeaders>
 #define MAC
 then add "prefix.h" to the project with Edit/Preferences/C Language/Prefix File.

9) IBM-PC/Dos
Borland C++ Version 4.5
command line compiler: bcc -DIBM_PC=1 -DMS_DOS=1 -mh -f
command line linker: tlink /Tde C0H.OBJ MATHH.LIB EMU.LIB CH.LIB

 For Windows 32-bit applications, define only IBM_PC.

2.3 Customizing the Error Reporting Routine
The OA Library does all its error reporting by setting the global variable oa_errno, then
passing to the functionOaReportError a string containing an error message. As
supplied in the release, OaReportError prints the string to the standard error output.
You can replace the fprintf statement in OaReportError (located in rprt_err.c) by code
your user interface uses to alert the user of an error. You can also filter the messages
which are presented to the user by selecting only those oa_errno's you wish the user
to see. For example, most users (except label verifiers) don't care about the warning
message "Implicit SPARE detected" with oa_errno = 900, so you could modify
OaReportError to not print the error string when oa_errno has this value. You can also
screen messages by category, for example, all informational messages, which have
oa_errno's in the range 950 - 999. The OA library's error reporting mechanism is

10

described in detail in “Error Reporting Mechanism” on page 40, and a list of oa_errno
error code values is in Appendix A.

2.4 Customizing the Memory Management Routines
The OA Library and L3 do all dynamic memory allocation using the routines OaMalloc,
OaRealloc and OaFree (located in oamalloc.c). As supplied in the release, OaMalloc
calls malloc() (or farmalloc() on an IBM-PC running DOS), OaRealloc uses realloc()
and OaFree uses free(). If needed, you can modify the code inside of OaMalloc,
OaRealloc and OaFree to call your own memory allocation routines.

2.5 Optional Libraries and Utilities

2.5.1 Unzip

In the future, PDS archives may contain compressed data files using Zip compression.
On most platforms, OAL will automatically unzip such files, provided that the Unzip
executable is present and accessible (in the path of the environment your OAL
application runs in). Alternatively, the user can do the unzip manually before calling
an OA routine which accesses the file. Either way, the user should install Unzip, as
described in the Unzip documentation in order to access zipped files. Unzip (and Zip)
documentation and executables for all platforms supported by OAL are available from
ftp.cdrom.com in pub/infozip, and from various mirror sites. InfoZip’s home page is
http://www.cdrom.com/pub/infozip/

11

Chapter 3. Object Layer

3.1 Overview
Object Layer routines (from here on referred to as Object Access or OA routines) can
be broken down into three broad categories: (1) routines that read PDS data objects
from a file; (2) routines that manipulate PDS data objects in memory; and (3) routines
that write PDS data objects.

3.1.1 Reading PDS Data Objects from a File

• Read the Label into an ODL Tree:
OA routines that read objects from files take as their principal input an ODL tree
describing the contents of the entire file. This means that the PDS label for the
file must first have been read into memory using OaParseLabelFile, and
converted to the latest PDS standards by OaConvertLabel, prior to calling the
OA read routine.

• Locate the Desired ODL Tree Node:
The actual input to the OA read routine is a pointer to the specific node in the
file's ODL tree that describes the object to be read. L3 routines may be used to
navigate in the ODL tree to find the desired node. If the node that is pointed to
does not have the object class expected by the OA routine, then it issues an
error message and returns a null pointer.

• Read in the Object:
The OA routine OaReadObject can be used to read any object into memory.
Some objects, particularly Images and Tables, are occasionally so large that it
is not practical to have the entire object in memory at one time. The OA Library
provides OA routines for reading a selected portion of an Image, Table or Qube.

Some types of objects — like Catalog, Directory and Volume objects — consist
only of the attributes found in the ODL tree. OA routines for reading these kinds
of objects can call OaParseLabelFile, then simply copy out the pertinent part of
the file's ODL tree.

Most OA routines for reading from files rely upon the OA Library's stream layer
to fetch the object's data and on the structure layer to translate the object data
into the proper binary format for the host computer. This means that the details
of file format and data format within a file are usually transparent to the OA
routine, having been handled before the data even gets to the OA routine.

12

3.1.2 Manipulating PDS Objects in Memory

• Extracting Subobjects:
Routines are provided to extract and combine parts of objects. For Tables,
routines are provided to add and delete rows or columns, and to deal with
nested objects like Containers. For example, the OA routineOaGetSubTable
can be used to extract a column of a Table; it returns a new Table object with a
single column. Each routine returns a new object, consisting of object data and
an ODL tree with the attributes of the new object.

• Converting Object Data:
Routines are provided convert an object’s data to ASCII or to different binary
types. The OA routine OaConvertObject can be used to convert an object’s data
to ASCII or to any other combination of profile settings. The OA routine
OaConvertObjecttoOneType converts all the data atoms in an object to the
specified type, so that it can be accessed as a C array. The object’s ODL tree is
always updated with the new attributes of the converted data.

• Exporting Object Data:
The OA routine OaExportObject strips an object of it’s ODL tree and object
descriptor, and returns a pointer to the object data.

3.1.3 Writing PDS Objects to a File

Users can call routines provided in the OA Library to write most types of PDS
data objects from memory to a file. The OA routine OaOpenOutputFile opens an
output file with the specified attributes. Subsequent calls to the routine
OaWriteObject write an object’s data to the file. As each object’s data is written
to the file, the object’s ODL tree is copied and appended to the output file's ODL
tree, and a pointer keyword for the object is added to the root node of the output
file’s ODL tree. After all the objects have been written, a call to
OaCloseOutputFile closes the data file and writes out the ODL tree as a
detached PDS label. If desired, the data file and label file can then be
combined into an attached label file by a call to OaCreateAttachedLabel.

13

3.2 Object Layer Data Structures
Most object layer routines return a pointer value of type OA_OBJECT. This is a pointer
to a data structure called an object descriptor that contains pointers to an object's data
and to the ODL tree specifying the object's attributes. It also provides for a pointer to a
stream descriptor, which is used when reading in or writing out PDS data objects to or
from file. Users should not change any of these fields.

typedef struct OA_Object {
 ODLTREE odltree;
 PTR data_ptr;
 long size;
 struct OaStreamStruct *stream_id;
 int is_in_memory;
 void *appl1;
 struct oa_profile profile;
} *OA_OBJECT;

odltree A pointer to an ODL tree which contains the attributes
for a data object.

data_ptr Pointer to the object's data. This pointer has the value
NULL if there is no data for the object (i.e., the object
consists only of attributes that are provided through the
object's ODL tree) or if the object's data is not in
memory. PTR is a typedef equivalent to char * on most
platforms, and char huge * on the IBM PC.

size Size of the object's data, in bytes. This is set to zero if
the object data is not in memory or if there is no object
data.

stream_id Pointer to a stream descriptor for the data stream
through which the object's data is accessed. If the
object has no data associated with it, or if the data is in
memory and not in a file, then this value is NULL.

is_in_memory Flag indicating whether the object's data is in memory
or in a file.

appl1 Used by OaOpenImage and OaReadImagePixels to
point to an oa_image_handle structure.

profile The profile which was used when the object data was
created or last modified, used internally by OAL.

The root node of an object descriptor's ODL tree is always a "top-level" object class,
such as a Table, Image, Array or History object; it is never a stand-alone Column, Bit
Column or Bit Element node: these are only found as sub-objects under a Table or
Array. For example, an object descriptor with a single Column worth of data is thought
of as a Table with one Column, not as a stand-alone Column, and its ODL tree
consists of a Table node with a single Column node below it.

14

3.3 OA Routines for Reading and Converting Label Files
OaParseLabelFile utilizes the OA stream layer and L3 to read a label from a file into
memory. Since it can handle variable-length record files, it's use is preferable to the
L3 routine OdlParseLabelFile, which cannot. Once in memory, the label (ODL tree)
should be converted to the latest version of ODL by calling OaConvertLabel. The OA
library depends on all ODL trees following the PDS Version 3 standards.

3.3.1 OaParseLabelFile

This routine is like L3's OdlParseLabelFile, except that it uses the stream layer to read
the file, which makes it possible to read labels from variable-length record files.

ODLTREE OaParseLabelFile (char *filespec,
 char *errfilespec,
 MASK expand,
 unsigned short nomsgs)

filespec in A character string representing a file name or path.

errfilespec in A character string representing a file name or path to
write error messages to during parsing.

expand in A bit mask which specifies what to expand, if anything.
Options are ODL_EXPAND_STRUCTURES and/or
ODL_EXPAND_CATALOG.

nomsgs in TRUE means parser error messages should be written
to errfilespec.

In order to facilitate expansion of ^STRUCTURE pointers in labels, provide a full path
name in filespec if possible. The statements,

ODLTREE odltree;
odltree = OaParseLabelFile("/mydisk/labels/X.LBL", "PARSER_ERRORS.TXT",
 ODL_EXPAND_STRUCTURES, TRUE);

reads label file X.LBL into an ODL tree in memory, expands any ^STRUCTURE
pointers, and if there were any parser error messages, appends them to the file
PARSER_ERRORS.TXT.

3.3.2 OaConvertLabel

This routine converts an ODL tree to comply with the latest version of PDS standards,
currently Version 3. Users must call this routine after reading in a label with
OaParseLabelFile, as structure layer routines depend on it having been called.

ODLTREE OaConvertLabel (ODLTREE root_node)

root_node in Pointer to the root node of an ODL tree read from a file.

15

The ODL tree may be modified by this routine. A pointer to the modified ODL tree’s
root node is returned as the function value. Upon successful conversion, the routine
inserts the PDS_VERSION_ID keyword into the root node and sets it's value to the
latest version of PDS, i.e. PDS3.

3.4 OA Routines for All Objects
The following OA routines can handle more than one type (class) of object. With the
exception of OaReadObject, these routines implement functions that are performed in
the same way for all supported object types. For example, the operations of copying or
deleting objects don't require any object type-specific information.

3.4.1 OaReadObject

This OA routine provides the simplest way to read different types of objects. To do so it
determines the type of object by inspecting the ODL tree node pointed to by the input
parameter, and then calls the appropriate type-specific routine for reading the object
from file. (The type-specific read routines which exist for every object type are not all
described in this document.)

OA_OBJECT OaReadObject (ODLTREE object_node)

object_node in A pointer to the node of an ODL tree that describes the
object to be read. The object may be any of the
supported types listed below.

The routine reads the object indicated by the input parameter from a file into memory,
by default converting the object into the proper binary format for the current platform. It
returns a pointer to an object descriptor that contains a pointer to the object data and a
pointer to the ODL tree with the object's attribute information. The input ODL tree is
unchanged.

This routine currently handles the following types of PDS data objects:

• Array

• Collection

• Histogram

• History (this object is all ODL tree, no object data)

• Image (if multi-band, only the first band is read)

• Table, Series, Spectrum, Palette, Gazetteer

As OA routines to read more types of objects become available, the routine will be
expanded to include them. The code fragment,

ODLTREE odltree, image_node;
OA_OBJECT image_object;

odltree = OaParseLabelFile("/mydisk/labels/X.LBL", "PARSER_ERRORS.TXT",

16

 ODL_EXPAND_STRUCTURES, TRUE);
image_node = OdlFindObjDesc(odltree, "*IMAGE", "*", 0L,
 ODL_RECURSIVE_DOWN);
image_object = OaReadObject(image_node);

reads in a label, finds the first image object, and reads the image into memory.

3.4.2 OaCopyObject

This OA routine makes a copy of all the attributes and data associated with an object.

OA_OBJECT OaCopyObject (OA_OBJECT object)

object in A pointer to an object descriptor for the PDS data
object to be copied.

The routine returns a pointer to the object descriptor of the copied object.

This routine handles all objects, including those which have only attributes and no
object data; in this case the pointer to the object data in the output object descriptor is
set to NULL (the same as in the input object).

3.4.3 OaDeleteObject

This routine deletes an object, including the object's in-memory data, if any, the ODL
tree associated with the object, and finally the object descriptor.

int OaDeleteObject (OA_OBJECT object)

object in/out A pointer to the object descriptor for the object to be
deleted.

 The routine always returns a status value of zero as its function value. After this call is
made, the input OA_OBJECT pointer should no longer be accessed.

3.4.4 OaExportObject

This OA routine strips off the object descriptor and ODL tree associated with the input
object and returns a pointer to the object's data.

PTR OaExportObject (OA_OBJECT object)

object in A pointer to the object descriptor for the object to be
exported.

The routine returns a pointer to the object data. PTR is a typedef equivalent to char *
on most platforms and char huge * on the IBM PC. The return value is NULL if an error
occurs, or if an attempt is made to export an object for which there is no data (for
example, a Catalog type object for which there are only attributes encoded in the
object's ODL tree). The code fragment,

17

ODLTREE image_node;
OA_OBJECT image_object1, image_object2;
long lines, pixels;
unsigned short *image;

image_object1 = OaReadObject(image_node);
OaKwdValuetoLong("LINES", image_node, &lines);
OaKwdValuetoLong("LINE_SAMPLES", image_node, &pixels);
image_object2 = OaConvertObjecttoOneType(image_object1,
 "unsigned short",0,0);
OaDeleteObject(image_object1);
image = (unsigned short *) OaExportObject(image_object2);

reads in an image, gets the number of lines and pixels, and converts the object's data
to unsigned shorts. The return value of OaExportObject is then casted to an unsigned
short, and can now be accessed through the image variable; lines and pixels give the
size of the data.

3.4.5 OaConvertObject

This OA routine copies an object and converts the object's data to a different
interchange format, alignment type or binary data types, using the current Oa_profile
settings. This routine is intended for converting an object from binary to ASCII or ASCII
to binary, or for converting data to a different platform's data types. Another OA
routine, OaConvertObjecttoOneType, can be used to convert uniform data to a single
type, in order to access it through a C array or pointer. The input object data may
consist of various different data types (as in a Table with multiple columns), and these
will be converted, as specified in the data types profile, to other data types. The caller
should set Oa_profile to specify the desired target platform or ASCII/binary prior to
calling this function, and restore it to its original values after the call.

OA_OBJECT OaConvertObject (OA_OBJECT object)

object in A pointer to the object descriptor for the object to be
converted.

The routine returns a pointer to the new OA_Object structure, which contains an ODL
tree describing the converted data, and a pointer to the converted data. If there was an
error, a NULL pointer is returned. The input object is unchanged.

The following types of PDS data objects are supported by this routine:

• Array

• Collection

• Histogram

• Image

• Table, Series, Spectrum, Palette, Gazetteer

The code fragment,

18

OA_OBJECT binary_table, ASCII_table;
int saved_interchange_format;

saved_interchange_format = Oa_profile.dst_format_for_binary_src;
Oa_profile.dst_format_for_binary_src = OA_ASCII_INTERCHANGE_FORMAT
ASCII_table = OaConvertObject(binary_table);
OaDeleteObject(binary_table);
Oa_profile.dst_format_for_binary_src = saved_interchange_format;

converts every column in a table to ASCII values, deletes the old binary table, and
restores global variable Oa_profile to its original values.

3.4.6 OaConvertObjecttoOneType

This OA routine converts all the object data of an in-memory OA_OBJECT from one
numeric data type to another numeric type. The input object data must contain values
of only one data type, e.g. an Image or a Table with a single column.

OA_OBJECT OaConvertObjecttoOneType (OA_OBJECT object,
 char *data_type
 int bytes,
 int rescale)

object in A pointer to the object descriptor for the object to be
converted.

data_type in Pointer to a string containing the name of the C type or
PDS data type into which the object data is to be
translated. If a PDS data type, this can be any of the
standard values allowed for the DATA_TYPE keyword
for numeric types. If a C type, allowed values are:
"char", "unsigned char", "short", "unsigned short", "int",
"unsigned int", "long", "unsigned long", "float", "double".

bytes in The number of bytes in the specified data_type.
Ignored if data_type is a C type.

rescale in A value of TRUE (non-zero) means the
SCALING_FACTOR and OFFSET keyword values will
be applied to the data, if these keywords are present in
the oa_object's ODL tree. The computation done is:
new_data = (SCALING_FACTOR * data) + OFFSET

The routine returns a pointer to the new OA_Object structure, which contains an ODL
tree describing the converted data, and a pointer to the converted data. If there was a
fatal error, a NULL pointer is returned. The input object is unchanged. An error
message is issued with oa_errno=904 if there were any integer truncations, attempts
to convert a negative integer to an unsigned integer, or loss-of-precision errors in
floating point numbers. This code fragment reads the first column of a Table and
converts it to be accessed as a C double array.

19

OA_OBJECT column_obj1, column_obj2;
ODLTREE table_node, column_node;
long rows;
double *dbl_arr;

column_node = LeftmostChild(table_node);
OaKwdValuetoLong("ROWS", table_node, &rows);
column_obj1 = OaReadSubTable(table_node, 1, rows, &column_node, 1);
column_obj2 = OaConvertObjecttoOneType(column_obj1, "double",0,0);
OaDeleteObject(column_obj1);
dbl_arr = (double *) OaExportObject(column_obj2);

20

3.5 OA Routines for Writing Objects to a File
The OA routines described in this section can be used to create files that contain one
or more PDS data objects, write the associated label file, and create attached label
files. The first step is to call OaOpenOutputFile, which creates the data file with the
specified record attributes, and returns an object descriptor that is used by subsequent
routines to identify the file. The second step is to write a PDS data object to the file
using the routine OaWriteObject. This routine writes the object data to the file, and
updates the file object’s ODL tree. More objects can be added to the file by additional
calls to OaWriteObject. Single objects too big to store in memory at one time can be
written by multiple calls to OaWriteObject. When the file is completed, a call to
OaCloseOutputFile closes the data file and writes out the file object's ODL tree to a
detached PDS. If desired, the label file and data file can be combined with a call to
OaCreateAttachedLabel.

3.5.1 OaOpenOutputFile

This routine opens an output file with the specified file characteristics.

OA_OBJECT OaOpenOutputFile (char *data_filename,
 int record_type,
 long record_bytes)

data_filename in Pointer to a string containing the name for the output
file.

record_type in Indicator for the type of records in the output file. The
allowed values are defined by the enumeration type
oa_record_type_enum .

record_bytes in The record length for the output file. If record_type =
OA_FIXED_LENGTH, then record_bytes must be an
even number.

This routine creates an object descriptor, and attaches an ODL tree containing file
attributes to describe the file. The ODL tree initially consists of a single node
containing file keywords. The routine also attaches a stream structure to the object
descriptor to keep track of the open file.

The routine returns a pointer to the file object's descriptor. The statements,

OA_OBJECT file_object;

file_object = OaOpenOutputFile("MIRANDA.IMG", OA_FIXED_LENGTH, 200);

creates the file MIRANDA.IMG as a 200-byte fixed-length record file, and returns the
file object descriptor in the file_object variable.

21

3.5.2 OaWriteObject

This function writes the input object's data to the data file. The file object's descriptor
must have been previously created by the routine OaOpenOutputFile.

 int OaWriteObject (OA_OBJECT file_object,
 OA_OBJECT object)

file_object in/out An object descriptor for the file to which the object is to
be written.

object in A pointer to an object descriptor for the object to be
written.

This routine updates the ODL tree describing the contents of the output file by
attaching a copy of the input object's ODL tree to the file_object's tree and adding a
pointer to the object's location within the output file. The routine returns a status value
of 0 if successful. The input object is unchanged. For fixed-length record files, if the
object data size is not a multiple of RECORD_BYTES, then pads will be inserted after
the object data to make the last record be RECORD_BYTES in length. The
statements,

int result;
OA_OBJECT file_object, image;

result = OaWriteObject(file_object, image);

writes the object data from the image object to the file, and adds the image object's
ODL tree below the root of file_object's ODL tree.

This routine can also be used to write an object too big to store in memory at one time.
To do this, the first call to OaWriteObject should provide the ODL tree for the full-size
object, and the first chunk of object data. Subsequent calls should provide object data
(whose size in bytes is given by the OA_OBJECT’s size field), with the input object's
ODL tree set to NULL. Care should be taken when writing to a fixed-length record file
that the data size of each chunk of object data is a multiple of RECORD_BYTES,
otherwise pad data will be written at the end of each chunk (see note above on fixed-
length record files). The following code fragment transfers the first 10 bands of a
Qube from an input file to an output file, setting up the output file's ODL tree to describe
a multi-band Image.

OA_OBJECT file_object, image_object;
ODLTREE odltree, qube_node;
int i;

odltree = OaParseLabelFile("QUBE.LBL", "ODL_ERRORS.TXT", 0, 0);
qube_node = OdlFindObjDesc(odltree, "*QUBE", NULL, NULL, 0L, 0);
file_object = OaOpenOutputFile("MULTIBAND.IMG",
 OA_UNDEFINED_RECORD_TYPE, 0);
image_object = OaReadImageFromQube(qube_node, 1);
OaStrtoKwdValue("BAND_STORAGE_TYPE", image_object->odltree,
 "BAND_SEQUENTIAL");

22

OaStrtoKwdValue("BANDS", image_object->odltree, "10");
OaWriteObject(file_object, image_object);
OaDeleteObject(image_object);
for (i=2; i<=10; i++)
{
 image_object = OaReadImageFromQube(qube_node, i);
 OdlFreeTree(image_object->odltree);
 image_object->odltree = NULL;
 OaWriteObject(file_object, image_object);
 OaDeleteObject(image_object);
}
OaCloseOutputFile(file_object, "MULTIBAND.LBL");

3.5.3 OaCloseOutputFile

This OA routine closes an output file and writes a detached PDS label describing the
file contents. The file should be created using OaOpenOutputFile and written to using
OaWriteObject.

int OaCloseOutputFile (OA_OBJECT file_object,
 char *label_filename)

file_object in/out Pointer to the object descriptor for the output file.

label_filename in A character string containing the name of a new file
into which the detached PDS label describing the
output file will be written.

The statement,

OA_OBJECT file_object;

OaCloseOutputFile(file_object, "MULTIBAND.LBL");

closes the file and writes file_object's ODL tree to the fileMULTIBAND.LBL.

3.5.4 OaCreateAttachedLabel

This OA routine takes a detached label file and the data file referenced in it, and
combines them into one file, an attached label file. The attached label file contains the
label in ASCII, followed by the data, usually binary. Object ^POINTER keywords in the
label portion giving object start offsets are updated accordingly.

int OaCreateAttachedLabel (ODLTREE odltree,
 char *label_filespec,
 char *attached_lbl_filespec)

odltree in An ODL tree containing the label which describes the
data file. Ignored if NULL.

23

label_filespec in A character string giving the path or file name of the
label file. Ignored if NULL. Either odltree or
label_filespec, but not both, must be specified.

attached_lbl_filespec in A character string giving the path or file name of the
attached label file to be created. Must be different from
label_filespec.

The routine returns 0 if successful, otherwise 1 and an error message. The input label
file or odltree, and the data file are unchanged. The attached label file has the same
record type and record length as the data file. The label file or odltree must describe
only one data file, and the routine expects every object ^POINTER keyword value in
the root node to reference the data file's name, i.e. no FILE objects allowed.

24

3.6 OA Routines for Image Objects
The PDS Image object type covers a wide variety of image formats. For example,
images may be compressed or uncompressed; they may possess prefixes and/or
suffixes; and they may contain a single or multiple image planes or bands. This leads
to a problem: when object routines are created to manipulate image objects, how does
a user know: (1) which variations on images the routine can handle and which it
cannot handle; and (2) what variant of image is required for the inputs and returned as
the output of the routines?

To resolve this issue, we have broken the PDS Image object type into a number of
subtypes as shown in Figure 1. Table 1 below provides a definition for each of these
subtypes.

IMAGE

Uncompressed
Image

Compressed
Image

PP
Compressed

Image

HFD
Compressed

Image

RL
Compressed

Image

Simple
Image

Polychrome
Image

Monochrome
Image

Line
Interleaved

Image

Band
Interleaved

Image

Pixel
Interleaved

Image

Figure 1 — Subtypes of Image Objects

25

Every object routine for images takes in one or more of these subtypes and returns an
object of the same or a different subtype. An example is a decompression routine that
takes in an HFD Compressed Image object and returns an Uncompressed Image
object. Another example might be a routine to convert a band interleaved image to
pixel interleaving. This last-mentioned routine would expect a Band Interleaved Image
object as its input: that is, an uncompressed polychrome image, without prefixes or
suffixes (because a Band Interleaved Image object is a subtype of Simple Image) and
with band interleaving. This can easily be verified by checking the proper attributes in
the input image's ODL tree (namely ENCODING_TYPE, LINE_PREFIX_BYTES,
LINE_SUFFIX_BYTES, BANDS and BAND_STORAGE_TYPE). If the input image is of
the proper type, then the conversion can be carried out, leaving a Pixel Interleaved
Image object which has the same attribute values except for BAND_STORAGE_TYPE,
which will be changed to SAMPLE_INTERLEAVED).

Image This is the standard PDS image type, which covers all
images. OA routines should advertise that they can
accept this type for their input only if they are able to
handle all possible variations of PDS images.

Compressed Image Images that are compressed using one of the standard
compression schemes recognized by the PDS.
Compressed images are indicated by having a non-
null value for the attribute ENCODING_TYPE.

HFD Compressed Image Images compressed using the Huffman First Difference
(HFD) technique. Images of this subtype are indicated
by having the value of ENCODING_TYPE equal to
HUFFMAN_FIRST_DIFFERENCE.

PP Compressed Image Images compressed using the previous-pixel scheme.
Images of this subtype are indicated by having a value
of ENCODING_TYPE equal to PREVIOUS_PIXEL.

Clementine Compressed
Image

Images from the Clementine mission compressed
using a Direct Cosine Transform compression scheme.
Images of this subtype are indicated by having a value
of ENCODING_TYPE starting with "CLEM-JPEG".

RL Compressed Image Images compressed using run-length encoding.
Images of this subtype are indicated by having a value
of ENCODING_TYPE equal to RUN_LENGTH.

Uncompressed Image Images that are not compressed. Images of this
subtype are indicated by a null value for the attribute
ENCODING_TYPE. This subtype should be used for
uncompressed images that have prefixes or suffixes;
images that have neither prefixes and suffixes are
better modeled as belonging to the Simple Image type
described below.

26

Simple Image Images that do not have a prefix or suffix. Images of
this subtype are indicated by having null or zero values
for the two attributes LINE_PREFIX_BYTES and
LINE_SUFFIX_BYTES. Simple Image objects may be
monochrome or polychrome, as described below.

Monochrome Image Images that have only a single band. Images of this
subtype are indicated by a null value for the attribute
BANDS. They should also have a null value for the
attribute BAND_STORAGE_TYPE.

Polychrome Image Images that have more than one band. Images of this
subtype are indicated by having a non-zero value for
the attribute BANDS and a non-null value for the
attribute BAND_STORAGE_TYPE.

Band Interleaved Image Images of this subtype are indicated by having the
value of BAND_STORAGE_TYPE equal to
BAND_INTERLEAVED.

Line Interleaved Image Images of this subtype are indicated by having the
value of BAND_STORAGE_TYPE equal to
LINE_INTERLEAVED.

Pixel Interleaved Image Images of this subtype are indicated by having the
value of BAND_STORAGE_TYPE equal to
SAMPLE_INTERLEAVED.

Table 1 — Definitions of Image Object Subtypes

Unless otherwise noted in the individual routine descriptions, all OAL image reading
routines support the following encoding types:

• HUFFMAN_FIRST_DIFFERENCE

• PREVIOUS_PIXEL

• CLEM-JPEG The Clementine decompression software's data structures take
about 300 Kbytes of memory, plus the size of the decompressed image (~111
Kbytes for the typical 288 x 384 image) and may take several minutes to run on
slow processors. Clementine image decompression is supported only by
OaReadImage .

All the OA library's image read routines support multi-band images which are not
compressed and have no line prefix or suffix bytes.

The image read routines return a monochromatic image with no line prefix or suffix
bytes, or a spectrum (multiband images only).

27

3.6.1 OaReadImage

This OA routine reads a PDS image object and returns a monochromatic image that
resides in memory, with no prefix or suffix bytes .

• If the image is stored in a compressed form, it is decompressed.
• If there are a prefix or suffix for the image, they are removed.
• If the image is multi-banded, the band given by the band argument is read in.

Note: OaReadObject calls OaReadImage with band=1 if the input object is an Image
type.

OA_OBJECT OaReadImage (ODLTREE image_node,
 int band)

image_node in A pointer to a node of an ODL tree that describes an
Image object in a file.

band in The band to read in. 1 <= band <= BANDS

If the image is encoded using the HFD method, the routine searches the file's ODL tree
for a sibling of the input image node which describes the encoding histogram. It then
uses this histogram to decompress the image.

The routine creates an ODL tree for the image's attributes and attaches it to the object
descriptor. The input ODL tree is unchanged.

3.6.2 OaOpenImage

This routine sets up an image handle object for subsequent calls to
OaReadPartialImage or OaReadImagePixels, routines used for reading images too
large to be stored in memory at once. It initializes a stream descriptor, opens the file,
and positions the file pointer to the start of the image. It initializes an image handle
structure, and attaches it to the appl1 field of the object descriptor. It then initializes the
object descriptor's ODL tree, which is used internally to describe the partial image
stored in the image handle's buffer.

OA_OBJECT OaOpenImage (ODLTREE image_node,
 int band)

image_node in A pointer to a node of an ODL tree that describes an
Image object in a file.

band in The band of a multi-band image to read. Ignored for
monochromatic images.

The routine returns a pointer to an object descriptor, which can be passed into
OaReadPartialImage and OaReadImagePixels.

28

The routine supports the following encoding types: HUFFMAN_FIRST_DIFFERENCE
and PREVIOUS_PIXEL. The routine also supports multi-band images which are
uncompressed and have no line prefix or suffix bytes.

3.6.3 OaReadPartialImage

This routine reads a portion of an Image object from a file into memory. The result is a
monochromatic image with no line prefix or suffix bytes.

OA_OBJECT OaReadPartialImage (OA_OBJECT image_handle_object,
 long start_line,
 long stop_line,
 long start_sample,
 long stop_sample)

image_handle_object
in/out

Pointer to an object descriptor returned by
OaOpenImage.

start_line in The first line of the image to be included in the output
image, in the range 1..LINES.

stop_line in The last line of the input image to be included, in the
range start_line..LINES.

start_sample in The first sample of each line of the input image to be
included in the output image, in the range
1..LINE_SAMPLES.

stop_sample in The last sample of each line of the input image to be
included in the output image, in the range
start_sample..LINE_SAMPLES.

The processing performed by this routine is similar to the processing described for
OaReadImage above. The routine can be called repeatedly to get different portions of
a single monochromatic image (or different portions of a single band of a multi-band
image); the input file remains open, and the image handle keeps track of the position
in the file and the state of decompression, when applicable. This is useful when the
image is too large to fit into memory all at once. The first call to OaReadPartialImage
must be preceeded by a call to OaOpenImage, and the last call to
OaReadPartialImage should be followed by a call to OaCloseImage. The value
returned is a pointer to an object descriptor for a monochromatic image with no line
prefix or suffix bytes.

3.6.4 OaReadImagePixels

This is a low-level object layer routine which is normally not called by users.
OaReadPartialImage, described above, is built on top of OaReadImagePixels and is
the preferred routine to use. OaReadImagePixels returns pixels (samples) from an
image starting at the specified line/sample location. The samples are decompressed,
when applicable, and converted to native binary format according to oa_profile. The
file is left open. On exit, the image handle's ODL tree describes the number of pixels
read and where they came from in the image, and its data_ptr points to the pixels. The

29

caller should not modify or delete the image handle object - this is done by a call to
OaCloseImage.

int OaReadImagePixels (OA_OBJECT image_handle_object,
 long start_line,
 long start_sample)

image_handle_object
in/out

Pointer to an object descriptor returned by
OaOpenImage.

start_line in The line at which to start returning samples, in the
range 1..LINES.

start_sample in The sample number at which to start returning
samples, in the range 1..LINE_SAMPLES.

The routine returns the number of pixels read. This is variable, depending on the start
location, the line length and the compression type. The first call to OaReadImagePixels
must be preceeded by a call to OaOpenImage, and the last call to OaReadImagePixels
should be followed by a call to OaCloseImage.

3.6.5 OaCloseImage

This routine closes the data file opened by OaOpenImage and frees all components of
the image handle object. This should be called after the last call
toOaReadPartialImage or OaReadImagePixels.

int OaCloseImage (OA_OBJECT image_handle_object)

image_handle_object
in/out

Pointer to an object descriptor returned by
OaOpenImage.

The routine always returns zero.

3.6.6 OaImportImage

This routine takes a pointer to image data in memory, creates an ODL node of class
Image, adds keywords corresponding to the input arguments, then packages the ODL
tree and data pointer into an object descriptor.

OA_OBJECT OaImportImage (PTR data_ptr,
 long lines,
 long line_samples,
 char *sample_type,
 int sample_bits)

data_ptr in Pointer to memory containing the image to be
imported. PTR is a typedef equivalent to char * on
most platforms and char huge * on the IBM PC.

lines in Number of lines in the image.

30

line_samples in Number of samples per line.

sample_type in PDS data type of each image sample.

sample_bits in Length of each sample, in bits.

The resulting ODL tree for the Image object has only the four required attributes
corresponding to the input arguments. The user can add additional attributes using L3
routines, if desired.

3.6.7 OaGetPartialImage

This routine is similar to OaReadPartialImage described above, but the input image
must already be in memory. This routine can be called without calling OaOpenImage
and OaCloseImage, since no file is involved.

OA_OBJECT OaGetPartialImage (OA_OBJECT simple_image,
 long start_line,
 long stop_line,
 long start_sample,
 long stop_sample)

simple_image in A pointer to an object descriptor for the source image
object, a monochromatic image with no line prefix or
suffix bytes.

start_line in The first line of the image to be included in the output
image, in range 1..LINES.

stop_line in The last line of the source image to be included, in the
range start_line..LINES.

start_sample in The first sample of each line of the source image to be
included in the output image, in the range
1..LINE_SAMPLES.

stop_sample in The last sample of each line of the source image to be
included in the output image, in the range
start_sample..LINE_SAMPLES.

3.6.8 OaConvertImagetoArray

This routine converts an Image object into an Array object.

OA_OBJECT OaConvertImagetoArray (OA_OBJECT simple_image)

simple_image in Pointer to the object descriptor for the image to be
converted.

The routine does not modify the object data in any way. An ODL tree is created for the
Array object and the attributes for the Image object are translated into the
corresponding attributes of an Array object and placed into the ODL tree. An object

31

descriptor is then returned for the Array object. The input ODL tree must describe a
monochromatic image with no prefix or suffix bytes.

3.6.9 OaReadSpectrumFromImage

This OA routine reads a spectrum from a multiband image file at the given line/sample
location, and returns a Spectrum object in memory. It creates an ODL tree for the
Spectrum object's attributes and attaches the ODL tree and the object data to an
object descriptor that is returned as the function value. The resulting OA_OBJECT is a
SPECTRUM-class object.

OA_OBJECT OaReadSpectrumFromImage (ODLTREE image_node,
 int line,
 int sample)

image_node in A pointer to a node of an ODL tree describing an
Image type object, with multiple bands.

line in The line number of the spectrum.

sample in The sample number of the spectrum.

The routine supports multi-band images which are uncompressed and have no line
prefix or suffix bytes.

32

3.7 OA Routines for Table Objects
Like Image objects, Table objects have some options that can complicate their
representation in memory as well as their interpretation. To simplify the handling of
tables in memory, we define a new subtype called Simple Table which is a Table
object without any prefix or suffix. The two read routines for tables described below
always return a Simple Table object.

All the routines for Table objects also work on Series, Spectrum, Palette and Gazetteer
objects, except for routines specific to column-major Tables.

3.7.1 OaReadTable

This OA routine reads a Table type object from a file into memory, translating the data
into the format specified by the host profile. It creates an ODL tree for the object's
attributes and attaches the ODL tree and the object data to an object descriptor that is
then returned as the function value. Note: OaReadTable is called byOaReadObject if
the input object is a Table type.

OA_OBJECT OaReadTable (ODLTREE table_node)

table_node in A pointer to a node of an ODL tree describing a Table
type object.

If the table has any prefix or suffix, they are stripped off. The routine returns a pointer to
the Simple Table object's descriptor. The input ODL tree is unchanged.

This routine can not handle column-major tables that contain Container objects, nor
can it handle column-major tables that have row-prefix bytes or row-suffix bytes.

3.7.2 OaReadSubTable

This OA routine reads a portion of a Table type object from a file into memory,
translating the data into the format specified by the host profile. It creates an ODL tree
for the object's attributes and attaches the ODL tree and the object data to an object
descriptor that is then returned as the function value.

OA_OBJECT OaReadSubTable (ODLTREE table_node,
 long start_row,
 long stop_row,
 ODLTREE subobject_nodes[],
 int n_subobject_nodes)

table_node in A pointer to a node of an ODL tree describing a Table
type object.

start_row in The first row of the table to be included in the output
table.

33

stop_row in The last row of the table to be included in the output
table.

subobject_nodes in The columns and containers to be included in the
output table.

n_subobject_nodes in The number of elements in the subobject_nodes array.

If the table has any prefix or suffix, they are stripped off. The routine returns a pointer to
the Simple Table object's descriptor. The input ODL tree is unchanged.

The subobject nodes can be a mixture of Columns and Containers; all must be
directly under the top-level Table object, not nested under another Container. This
routine cannot handle column-major tables. The code fragment,

OA_OBJECT partial_table;
ODLTREE table_node, column_nodes[2];
long rows;

OaKwdValuetoLong("ROWS", table_node, &rows);
column_nodes[0] = LeftmostChild(table_node);
column_nodes[1] = RightSibling(column_nodes[0]);
partial_table = OaReadPartialTable(table_node, 1, rows,
 column_nodes, 2);

reads the first two columns of the input table and returns the new table object in
partial_table.

3.7.3 OaGetSubTable

This OA routine extracts a portion of a Table type object from a table in memory. It
creates an ODL tree for the object's attributes and attaches the ODL tree and the
object data to an object descriptor that is then returned as the function value. No data
translations are done.

OA_OBJECT OaGetSubTable (OA_OBJECT table_object,
 long start_row,
 long stop_row,
 ODLTREE subobject_nodes[],
 int n_subobject_nodes)

table_object in A pointer to an object descriptor for an in-memory
Table object.

start_row in The first row of the table to be included in the output
table.

stop_row in The last row of the table to be included in the output
table.

subobject_nodes in The columns and containers to be included in the
output table.

n_subobject_nodes in The number of elements in the subobject_nodes array.

34

If the table has any prefix or suffix, they are stripped off. The routine returns a pointer to
the Simple Table object's descriptor. The input ODL tree is unchanged.

The subobject nodes can be a mixture of Columns and Containers; all must be
directly under the top-level Table object, not nested under another Container. This
routine can not handle column-major tables.

3.7.4 OaJoinTables

This OA routine appends table_B to the end of table_A. If option is OA_ADD_ROWS,
then all of table_B's rows are added after the last row of table_A; table_B must have
the same column structure and ROW_BYTES as table_A. If option is
OA_ADD_COLUMNS, then table_B's columns are added after the last column of
table_A; the number of rows in table_A and table_B must be the same. In either case,
table_A is returned changed, and table_B is unchanged. Table_A has a new ODL
tree, and a new data_ptr and size. Table_A's object descriptor pointer is then returned
as the function value.

OA_OBJECT OaJoinTables (OA_OBJECT table_A,
 OA_OBJECT table_B,
 int option)

table_A in/out Pointer to an object descriptor for the Table object to
append to.

table_B in Pointer to an object descriptor for the Table object to
append.

option in OA_ADD_ROWS or OA_ADD_COLUMNS.

Both tables must have the same interchange format and be row-major.

3.7.5 OaDeleteRow

This OA routine removes a row of data from the object data of a Table, and updates the
object's ROWS keyword.

OA_OBJECT OaDeleteRow (OA_OBJECT table_object,
 long row)

table_object in/out Pointer to an object descriptor for a Table object.

row in The row to delete, in the range 1..ROWS.

If successful, the function returns the table_object pointer, otherwise NULL. This
function will return an error if you attempt to delete the only row in a table.

35

3.7.6 OaDeleteColumn

This OA routine removes a column or container of data from the object data of a Table,
and removes the ODL tree node from the object's ODL tree.

OA_OBJECT OaDeleteColumn (OA_OBJECT table_object,
 ODLTREE input_node)

table_object in/out Pointer to an object descriptor for a Table object.

input_node in Pointer to the node to delete in the table_object's ODL
tree.

If successful, the function returns the table_object pointer, otherwise NULL. The
input_node must be a Column or Container directly under the top-level Table object,
not nested under another Container, and cannot be the only Column or Container in
the table.

3.7.7 OaTransposeTable

This OA routine converts the data and ODL tree of an in-memory Table object from one
TABLE_STORAGE_TYPE to another. If the table is ROW_MAJOR, it is converted to
COLUMN_MAJOR, and if it is COLUMN_MAJOR, it is converted to ROW_MAJOR.

OA_OBJECT OaTransposeTable (OA_OBJECT table_object)

table_object in/out Pointer to an object descriptor for a Table object.

If successful, the function returns the table_object pointer, otherwise NULL. The table's
old data has been freed and replaced with the transposed data, and has a new ODL
tree. The input Table object must not have any Containers as sub-objects.

3.7.8 OaAddLineTerminatorstoTable

This OA routine copies an ASCII table object's data, appends a <CR><LF> to the end
of each row, frees the old data and updates the ODL tree.

OA_OBJECT OaAddLineTerminatorstoTable (OA_OBJECT table_object)

table_object in/out Pointer to an object descriptor for a Table object.

If successful, the function returns the table_object pointer, otherwise NULL. PDS
recommends every row of an ASCII table be terminated with a carriage-return/line-
feed (<CR><LF>) pair.

36

3.7.9 OaAddContainerAroundTable

This OA routine only effects the object's ODL tree; its data is unchanged. It takes all the
columns and containers in a table, and adds a new Container object to enclose them.
The REPETITIONS keyword value in the Container is set equal to the table's ROWS
keyword value, and the ROWS keyword value changed to one. The resulting ODL tree
is Table node with ROWS = 1, with a single Container node below it. Below the
Container node are all the nodes which were originally below the Table node. The
input Table must be row-major.

OA_OBJECT OaAddContainerAroundTable (OA_OBJECT table_object)

table_object in/out Pointer to an object descriptor for a Table object.

If successful, the function returns the table_object pointer, otherwise NULL. The table
must be row-major. This routine is useful in conjunction with OaJoinTables when
building up a table in memory which has Container sub-object(s): be sure you modify
ROWS and REPETITIONS appropriately before calling OaJoinTable.

3.7.10 OaUnravelContainer

This OA routine only effects the object's ODL tree; its object data is unchanged. It takes
a table whose only sub-object is a Container, removes the container object, and
places all the container's sub-objects directly under the table node. It then multiplies
the table's ROWS keyword value by the container's REPETITIONS keyword value.

OA_OBJECT OaUnravelContainer (OA_OBJECT table_object)

table_object in/out Pointer to an object descriptor for a Table object.

If successful, the function returns the table_object pointer, otherwise NULL. The table
must be row-major. This routine is useful in the process of extracting a column of data
from a container, or getting at nested containers and their columns. The input Table
must be row-major.

3.7.11 OaImportColumn

This routine converts a C data array into a PDS Table object which contains a single
column.

OA_OBJECT OaImportColumn (PTR data_ptr,
 long rows,
 long items,
 long item_bytes,
 char *data_type,
 int interchange_format,
 char *name)

37

data_ptr in Pointer to the C data array that contains the column's
data. PTR is a typedef equivalent to char * on most
platforms and char huge * on the IBM PC under DOS.

rows in The number of rows in the column.

items in The number of repetitions within each row of the
column.

item_bytes in The length in bytes of each item within the column.

data_type in An indicator of the type of data in the column. The
values are defined by the enumeration type
oa_PDS_data_types_enum.

interchange_format in Indicator of whether the data are binary or ASCII
coded. The choices are defined by the enumeration
type oa_interchange_format_enum.

name in A pointer to a character string that gives the name that
is to be associated with the column in the NAME
keyword.

This function creates an OA_OBJECT and sets its data_ptr to the input pointer
data_ptr. The data pointed to by data_ptr should have been dynamically allocated by
the caller usingOaMalloc, and be layed out consistent with the input keyword values.
The routine creates an ODL tree and attaches it to the object. The root node of the
ODL tree is a Table node, with a single Column node below it.

38

3.8 OA Routines for Qube Objects
The Qube is a complicated object, which already has specialized software to deal with
it, so the OA library currently only handles a small subset of Qubes, and operations are
restricted to reads. These OA routines handle Standard ISIS Qubes whose
AXIS_NAME keyword is "(SAMPLE, LINE, BAND)" (i.e. band-sequential storage
organization), and which have no bottom planes. This accounts for the vast majority of
existing Qubes of general interest to planetary scientists.

3.8.1 OaReadImageFromQube

This OA routine reads a single band from a Qube file and returns a Monochrome
Image object in memory. It creates an ODL tree for the object's attributes and attaches
the ODL tree and the object data to an object descriptor that is then returned as the
function value. The resulting OA_OBJECT is an Image-class object, which can then
be passed to OA image routines.

OA_OBJECT OaReadImageFromQube (ODLTREE qube_node,
 int band)

qube_node in A pointer to a node of an ODL tree describing a Qube
type object in a file.

band in The number of the band to read, starting with 1.

3.8.2 OaReadSpectrumFromQube

This OA routine reads a spectrum from a Qube file corresponding to the given
line/sample, and returns a Spectrum object in memory. It creates an ODL tree for the
object's attributes and attaches the ODL tree and the object data to an object
descriptor that is then returned as the function value. The resulting OA_OBJECT is a
Spectrum-class object, which can then be passed to OA table routines.

OA_OBJECT OaReadSpectrumFromQube (ODLTREE qube_node,
 int line,
 int sample)

qube_node in A pointer to a node of an ODL tree describing a Qube
type object in a file.

line in The line number of the spectrum.

sample in The sample number of the spectrum.

39

Chapter 4. Utility Routines

The following routines are part of the OA Library and provide services that can be used
by applications.

4.1 Memory Management Routines
These routines exist so that users can replace the default calls to malloc, realloc and
free inside of them with their own custom memory management functions, if desired.

4.1.1 OaMalloc

This routine and OaRealloc are used by OAL and L3 for all dynamic memory
allocation.

char *OaMalloc (long bytes)

bytes in The number of bytes of memory to allocate.

A pointer to memory is returned, or NULL if no more memory is available.

4.1.2 OaRealloc

This routine adjusts the size of a memory block originally allocated by OaMalloc or
OaRealloc.

char *OaRealloc(char *old_ptr,
 long old_size,
 long bytes)

old_ptr in A pointer to dynamic memory originally allocated by
OaMalloc or OaRealloc.

old_size in The size of the dynamic memory block pointed to by
old_ptr.

bytes in The size to reallocate to.

A pointer to memory is returned, or NULL if no more memory is available. Note that
the old_size argument is not used by the default version of this routine as supplied in
the OAL release, but it may be useful to users who replace OaRealloc with their own
custom memory reallocation routine.

4.1.3 OaFree

This routine frees memory allocated by OaMalloc or OaRealloc.

void OaFree (PTR ptr)

40

ptr in A pointer to object data in dynamic memory, originally
allocated by OaMalloc or OaRealloc.

4.2 Error Reporting Routines
These routines can be modified to suit a particular user interface or to filter error
messages based on the value of oa_errno.

4.2.1 Error Reporting Mechanism

The OA Library indicates errors by function return values, text messages, and by
setting a global error code variable to an appropriate error code.

• Function Return Values:
If an OA routine that returns a pointer as its function value encounters an error,
then it sets the global variable oa_errno to an appropriate error code, issues an
error message with OaReportError, and returns NULL. If no error is
encountered, then a valid pointer is returned and oa_errno is not set (it retains
its last value).

If an OA routine that returns an integer as its function value encounters an error,
then it sets the global variable oa_errno to an appropriate error code, issues an
error message withOaReportError, and returns a non-zero value. If no error is
encountered, then the integer value zero is returned and oa_errno is not set.

• Text Error Messages:
Error messages are reported to the application using the OaReportError routine.
By default, OaReportError writes text error messages to the standard error
output. These messages can also be routed to a file by calling
OaRouteErrorMessages. This may be desirable if the application doesn’t make
stderr visible to the user, or doesn’t allow writing to stderr. These two routines
can be easily modified to suit a particular user interface.

• Error Codes:
Global variable oa_errno is set before every call to OaReportError, allowing the
code inside OaReportError to selectively filter messages depending on the
value of oa_errno. When multiple calls to OaReportError are made by different
layers of the OA Libary in response to an error, only the first caller sets
oa_errno. For example, a routine where an error first occurs will set oa_errno,
call OaReportError and return; its caller may then issue another error message,
without changing oa_errno. In this fashion, oa_errno is propogated up through
the layers of the OA Library to the application. A list of oa_errno values is in
Appendix A. The values are divided into categories, each with its own range of
oa_errno values, so that applications can easily filter error messages.

• Numeric Error Reporting:
The structure layer has counters which keep track of numeric errors occurring in
binary-to-binary data translations. See page 76.

41

4.2.2 OaReportError

This routine writes an error message to the standard error output by default. By calling
OaRouteErrorMessages this can be changed to output to a file. All OA routines set
oa_errno and call OaReportError when they detect an error. The routine can be easily
modified to fit any particular user interface; see "Customizing the Error Reporting
Routine" on page 9 for details.

int OaReportError (char *error_message)

error_message in Pointer to a string containing the error message to
write.

The function always returns zero.

4.2.3 OaRouteErrorMessages

This routine sets the destination for messages written by OaReportError. The
destination can be a file the caller has opened, a file the caller specifies by name, or
the standard error output (the default).

int OaRouteErrorMessages (char *message_fname,
 FILE *message_fptr)

message_fname in Pointer to a string containing a file name suitable for
fopen().

message_fptr in An pointer to an open file descriptor.

If message_fptr is non-NULL, then the output of OaReportError is directed to it. If
message_fname is non-NULL, then the file is opened and the output of OaReportError
directed to it. If both are NULL, then the output of OaReportError is directed to the
standard error output The function always returns zero.

42

4.3 Keyword Value Conversion Routines
The values of attributes (keywords) of an object are stored in an ODL tree in ASCII
format. For applications (and OA routines) to manipulate the attribute values, they
must often be translated to and from binary format. This set of routines converts
attribute values from ASCII to binary and from binary to ASCII.

4.3.1 OaKwdValuetoLong

This routine finds a specified keyword in an ODL tree node, gets its value and converts
it to a long integer.

int OaKwdValuetoLong (char *kwd_name,
 ODLTREE odltreenode,
 long *value)

kwd_name in String specifying the name of the keyword.

odltreenode in The ODL tree node in which to look for the keyword.

value out Pointer to a long integer for the result to be stored in.

If successful, the function returns zero and places the keyword value, converted to a
long integer, in *value. If unable to convert the keyword value it returns one and
reports an error; if the keyword name can't be found in the ODL tree node, it returns
one and doesn't report any error. The statements,

ODLTREE table_node;
long rows;

if (OaKwdValuetoLong("ROWS", table_node, &rows) == 0)
{
...
}

gets the value of the ROWS keyword from the ODL tree node table_node, and enters
the if block if it got it OK.

4.3.2 OaLongtoKwdValue

This routine adds a keyword with the given name and value to an ODL tree node. It
converts the long integer to ASCII and uses this as the keyword value. If there is
already a keyword in the node with the same name, it replaces its value with the new
value. Otherwise it creates a new keyword and pastes it as the last keyword in the ODL
tree node.

int OaLongtoKwdValue (char *kwd_name,
 ODLTREE odltreenode,
 long value)

kwd_name in String specifying the name of the keyword.

43

odltreenode in/out The ODL tree node in which to put the keyword.

value in A long integer which after binary-to-ASCII conversion
becomes the keyword value.

The function returns zero if all the input arguments were valid; otherwise it returns one.
The statement,

ODLTREE image_node;
long checksum = 1319509;

OaLongtoKwdValue("CHECKSUM", image_node, checksum);

adds keyword CHECKSUM with value 1319509 to image_node.

4.3.3 OaKwdValuetoStr

This routine finds a specified keyword in an ODL tree node, and sets the value
argument to point directly into the tree at the keyword's value.

int OaKwdValuetoStr (char *kwd_name,
 ODLTREE odltreenode,
 char **value)

kwd_name in String specifying the name of the keyword.

odltreenode in The ODL tree node in which to look for the keyword.

value out The char pointer which gets set to point to the keyword
value.

If successful, the function returns zero and sets value to point directly into the tree at
the keyword value. If the keyword name can't be found in the ODL tree node, it returns
one and doesn't report any error. The statements,

ODLTREE series_node;
char *str = NULL;

OaKwdValuetoStr("SAMPLING_PARAMETER_NAME", series_node, &str);
if (str != NULL)
{
...
}

points str to the keyword value of keyword SAMPLING_PARAMETER_NAME.

4.3.4 OaStrtoKwdValue

This routine adds a keyword to the ODL tree node with the given name and value. If
there is already a keyword in the node with the same name, it replaces its value with
the new value. Otherwise it creates a new keyword and pastes it as the last keyword
in the ODL tree node. Internally, the keyword value is copied using OaMalloc before
putting it into the keyword structure.

44

int OaStrtoKwdValue (char *kwd_name,
 ODLTREE odltreenode,
 char *str)

kwd_name in String specifying the name of the keyword.

odltreenode in/out The ODL tree node in which to put the keyword.

str in String specifying the keyword value.

The function returns zero if all the input arguments were valid; otherwise it returns one.
The statement,

ODLTREE series_node;

OaStrtoKwdValue("SAMPLING_PARAMETER_UNIT", series_node, "SECOND");

adds keyword SAMPLING_PARAMETER_UNIT with value SECOND to the ODL tree
node series_node.

4.3.5 OaSequencetoLongArray

This routine finds a specified keyword in an ODL tree node, checks that its value is a
sequence of integers, then converts all the sequence values from ASCII to binary and
stores them in an array.

int OaSequencetoLongArray (char *kwd_name,
 ODLTREE odltreenode,
 long **array,
 int *sequence_items)

kwd_name in String specifying the name of the keyword.

odltreenode in The ODL tree node in which to look for the keyword.

array in/out Pointer which on exit points to an array of longs.

sequence_items out Number of items in array.

If successful, the function returns zero. If the keyword name can't be found in the ODL
tree node, it returns one and doesn't report any error. If the keyword value isn't a
sequence of ASCII integers, or if there is an error parsing the sequence or in the
binary-to-ASCII conversions, it returns one and reports an error. This function
allocates space for the array, which the user should free. The statements,

ODLTREE qube_node;
long *core_items;
int n_core_items=0, i;
OaSequencetoLongArray("CORE_ITEMS", qube_node, &core_items,
 &n_core_items);
if (n_core_items > 0)
{
 for (i=0; i<n_core_items; i++)
 {

45

 printf("%ld ", core_items[i]);
 }
 OaFree((char *) core_items);
}

gets the CORE_ITEMS keyword value, a sequence, into the core_items variable, prints
out the values and frees the array.

4.3.6 OaSequencetoStrArray

This routine finds a specified keyword in an ODL tree node, checks that its value is a
sequence, then copies each sequence value to its own string, and stores all the
resulting string pointers in an array.

int OaSequencetoStrArray (char *kwd_name,
 ODLTREE odltreenode,
 char ***array_ptr,
 int *sequence_items)

kwd_name in String specifying the name of the keyword.

odltreenode in The ODL tree node in which to look for the keyword.

array_ptr in/out Pointer which on exit points to an array of string
pointers.

sequence_items out Number of items in the output array.

If successful, the function returns zero. If the keyword name can't be found in the ODL
tree node, it returns one and doesn't report any error. If the keyword value isn't a
sequence, or if there is an error parsing the sequence, then it returns one and reports
an error. Both the individual strings and the array of pointers to them are allocated
individually and the user should free them. The statements,

ODLTREE qube_node;
char **core_items;
int n_core_items=0, i;
OaSequencetoStrArray("CORE_ITEMS", qube_node, &core_items,
 &n_core_items);
if (n_core_items > 0)
{
 for (i=0; i<n_core_items; i++)
 {
 printf("%s ", core_items[i]);
 OaFree((char *) core_items[i]);
 }
 OaFree((char *) core_items);
}

gets the CORE_ITEMS keyword value, a sequence, into the core_items variable,
prints out the values and frees each individual string, as well as the array of strings.

46

4.4 Object Access Helper Routines
These routines are widely used inside OA's object layer routines, and may also be
useful to end-users.

4.4.1 OaGetObjectClass

This routine translates the ODL tree node's class name into an integer defined by the
enumeration type oa_object_class_enum .

int OaGetObjectClass (ODLTREE odltreenode)

odltreenode in Pointer to a node of an ODL tree.

A oa_object_class_enum enum value is returned as the function value. The
statements,

ODLTREE odltreenode;
int object_class;

object_class = OaGetObjectClass(odltreenode);

gets the object class of odltreenode into the object_class variable.

4.4.2 OaObjectClasstoStr

This routine translates an integer defined by the enumeration type
oa_object_class_enum into a string.

char *OaObjectClasstoStr (int oa_object_class)

oa_object_class in An oa_object_class_enum value, for example,
OA_CONTAINER .

The string returned as the function value is in upper case, and looks just like the
oa_object_class_enum enum value after the "OA_", for example, "CONTAINER". If the
input object class doesn't match a known object class, the string
"OA_UNKNOWN_CLASS" is returned. The returned string points into a static array,
and shouldn't be modified.

4.4.3 OaGetObjectInterchangeFormat

This routine finds the interchange format of a top-level object (Image, Table etc). It
gets the value of the INTERCHANGE_FORMAT keyword from the input node, and
translates it into an integer defined by the enumeration type
oa_interchange_format_enum.

int OaGetObjectInterchangeFormat (ODLTREE TLO_object_node)

47

TLO_object_node in Pointer to a node of an ODL tree.

An oa_interchange_format_enum enum value is returned as the function value:
OA_BINARY_INTERCHANGE_FORMAT, OA_ASCII_INTERCHANGE_FORMAT or
OA_UNKNOWN_INTERCHANGE_FORMAT. If the INTERCHANGE_FORMAT keyword
doesn't exist in the input node, it returns OA_BINARY_INTERCHANGE_FORMAT, the
default per the PDS Standards Document. If the object class is HISTORY, it returns
OA_ASCII_INTERCHANGE_FORMAT.

4.4.4 OaStrtoPDSDataType

This routine translates a DATA_TYPE keyword value string into an integer defined by
the enumeration type oa_PDS_data_types_enum .

int OaStrtoPDSDataType (char *str,
 int interchange_format)

str in Pointer to a string containing a PDS data type, (usually
points to the DATA_TYPE keyword value in an ODL
tree node).

interchange_format in An oa_interchange_format_enum value:
OA_ASCII_INTERCHANGE_FORMAT or
OA_BINARY_INTERCHANGE_FORMAT.

A oa_PDS_data_types_enum value is returned as the function value, for example, if
str = "INTEGER" and interchange_format = OA_ASCII_INTERCHANGE_FORMAT, then
the function returns OA_ASCII_INTEGER.

4.4.5 OaPDSDataTypetoStr

This routine translates an integer defined by the enumeration type
oa_PDS_data_types_enum into a string.

char *OaPDSDataTypetoStr (int PDS_data_type)

PDS_data_type in A oa_PDS_data_types_enum value, for example,
OA_VAX_INTEGER .

The string returned as the function value is in upper case, and is the de-aliased
version of the data type. For example, if PDS_data_type is OA_VAX_INTEGER, then
the output is "LSB_INTEGER". If the input data type doesn't match a known data type,
the string "UNK" is returned. The returned string points into a static array, and shouldn't
be modified.

48

4.4.6 OaGetImageKeywords

This routine gets and translates the keyword values of useful Image keywords.

int OaGetImageKeywords (ODLTREE image_node,
 long *lines,
 long *line_samples,
 long *sample_bits,
 char **sample_type_str,
 long *bands,
 int *band_storage_type,
 long *line_prefix_bytes,
 long *line_suffix_bytes,
 int *encoding_type)

image_node in Pointer to a node of an ODL tree of class Image.

lines out The value of the LINES keyword, converted to a long.

line_samples out The value of the LINE_SAMPLES keyword, converted
to a long.

sample_bits out The value of the SAMPLE_BITS keyword, converted to
a long.

sample_type_str out Points directly into the tree at the SAMPLE_TYPE
keyword value, so should not be freed.

bands The value of the BANDS keyword, converted to a long.
If the keyword doesn't exist, *bands is set to 1.

band_storage_type out The value of the BAND_STORAGE_TYPE keyword,
converted to a oa_band_storage_types_enum value.

line_prefix_bytes out The value of the LINE_PREFIX_BYTES keyword,
converted to a long. If the keyword doesn't exist,
*line_prefix_bytes is set to 0.

line_suffix_bytes out The value of the LINE_SUFFIX_BYTES keyword,
converted to a long. If the keyword doesn't exist,
*line_suffix_bytes is set to 0.

encoding_type out The value of the ENCODING_TYPE keyword,
converted to a oa_compression_types_enum value.

If successful, the function returns 0. If the input node wasn’t of class Image, or if any of
the required keywords weren't present, then the function returns 1 and the output
parameters may not all be set. The statements,

ODLTREE image_node;
long lines, line_samples, sample_bits, bands;
long line_prefix_bytes, line_suffix_bytes;
int result, encoding_type, band_storage_type;
char *sample_type_str;

result = OaGetImageKeywords(image_node, &lines, &line_samples,
 &sample_bits, &sample_type_str, &bands,

49

 &band_storage_type, &line_prefix_bytes,
 &line_suffix_bytes, &encoding_type);
if (result == 0)
{
...
}

gets the image keywords for image_node.

4.4.7 OaGetTableKeywords

This routine gets and translates the keyword values of useful Table keywords.

int OaGetTableKeywords (ODLTREE table_node,
 long *rows,
 long *row_bytes,
 long *row_prefix_bytes,
 long *row_suffix_bytes,
 int *interchange_format,
 int *table_storage_type)

table_node in Pointer to a node of an ODL tree with a Table-like
class.

rows out The value of the ROWS keyword, converted to a long.

row_bytes out The value of the ROW_BYTES keyword, converted to a
long.

row_prefix_bytes out The value of the ROW_PREFIX_BYTES keyword,
converted to a long. If the keyword isn't present, then
*row_prefix_bytes is set to 0.

row_suffix_bytes out The value of the ROW_SUFFIX_BYTES keyword,
converted to a long. If the keyword isn't present, then
*row_suffix_bytes is set to 0.

interchange_format out The value of the INTERCHANGE_FORMAT keyword,
converted to a oa_interchange_format_enum value. If
the keyword isn't present, then the value is set to
OA_BINARY_INTERCHANGE_FORMAT.

table_storage_type out The value of the TABLE_STORAGE_TYPE keyword,
converted to a oa_table_storage_type_enum value. If
the keyword isn't present, then the value is set to
OA_ROW_MAJOR.

If successful, the function returns 0. If the input node didn't have a Table-like class, or
if any of the required keywords weren't present, then the function returns 1 and the
output parameters may not all be set.

50

4.4.8 OaGetQubeKeywords

This routine gets and translates the keyword values of useful QUBE keywords.

int OaGetQubeKeywords (ODLTREE qube_node,
 long **core_items,
 char ***axis_names,
 long **suffix_items,
 long *core_item_bytes,
 char **core_item_type)

qube_node in Pointer to a node of an ODL tree of class QUBE.

core_items out Address of a pointer to a long, which on return points to
a 3-element array of longs allocated by the routine.
The caller should free the array when finished with it.

axis_names out Points to a 3-element array of strings allocated by the
routine. The caller should free each string and the
array itself when finished with it.

suffix_items out Points to a 3-element array of longs allocated by the
routine. The caller should free the array when finished
with it.

core_item_bytes out Address of a long; on return the long contains the
value of the CORE_ITEM_BYTES keyword.

core_item_type out Points directly into the ODL tree at the
CORE_ITEM_TYPE keyword value, so it should not be
freed.

The QUBE must be a standard ISIS QUBE with 3-item sequences for CORE_ITEMS,
AXIS_NAME and SUFFIX_ITEMS. If successful, the function returns 0 and sets all the
output parameters appropriately; otherwise it returns 1. The statements,

ODLTREE qube_node;
long *core_items, *suffix_items, core_item_bytes;
char **axis_names, *core_item_type
int result, i;

result = OaGetQubeKeywords(qube_node, &core_items, &axis_names,
 &suffix_items, &core_item_bytes,
 &core_item_type);
if (result == 0)
{
 ...
 for (i=0; i<3; i++)
 OaFree((char *) axis_names[i]);
 OaFree((char *) axis_names);
 OaFree((char *) core_items);
 OaFree((char *) suffix_items);
}

gets qube keywords for qube_node, and frees them after they've been used.

51

4.4.9 OaGetFileKeywords

This routine searches upwards in the ODL tree associated with a file to find various file
and object attributes, which are returned as output parameters. It returns the first
occurrence of each attribute as it searches upwards, starting at the input node.

int OaGetFileKeywords (ODLTREE odltreenode,
 char **label_filename,
 char **data_filename,
 int *record_type,
 long *record_bytes,
 long *file_records,
 long *file_offset,
 int *object_interchange_format)

odltreenode in Pointer to a node of an ODL tree associated with a file.
This node is normally a "top-level" object node, i.e. a
Table, Image etc., the search for file keywords starts
here and works up.

label_filename out A pointer to the name of the file that contains the label;
this includes the directory path, if one was specified
when the label was read in by OaReadLabelFile. The
caller should free this when finished with it.

data_filename out A pointer to the name of the file that contains the object
data. The caller should free this when finished with it.
If the data file is in the same directory as the label file,
then the directory path of the label is included, if one
was specified when the label was read in by
OaReadLabelFile.

record_type out Indicator of the type of records in the file.

record_bytes out The length of records, in bytes. For variable length
records, this is the maximum length.

file_records The number of records in the file.

file_offset out For stream and fixed length records, this is the byte
offset of the object in the file. For variable length
records, this is the record offset of the object. Both start
at zero (the start of the file).

object_interchange_
format out

Indicator of whether the object is in binary or ASCII
format. The choices are defined by the enumeration
type oa_interchange_format_enum.

The routine opens the data filename given in the label, with the path of the label file
prepended to the name, to verify the data file exists; if unsuccessful, the routine tries
variations on the name (lower-case, appended “;1”) and looks for it in the current
directory. If successful, the routine sets data_filename to the pathname it was able to
open. If the routine determines that the data file is inside a Zip compressed file, then it
spawns Unzip to decompress it, and sets data_filename to the unzipped file name.

52

4.4.10 OaCopyTree

This routine makes a copy of the ODL tree below and including the input node,
optionally stripping off keywords, comments and/or SDT nodes. (SDT nodes are never
present in the user's ODL trees, but often are present in ODL trees internal to OA
routines.)

ODLTREE OaCopyTree (ODLTREE input_node,
 int options)

input_node in Pointer to a node of an ODL tree.

options in A flag indicating whether keywords, comments and/or
SDT nodes will be stripped out. The defined values
OA_STRIP_KEYWORDS, OA_STRIP_COMMENTS
and OA_STRIP_SDT_NODES can be OR'd together in
any combination. If options is zero, then nothing is
stripped out.

A pointer to the copy of the ODL tree is returned as the function value. The statements,

OA_OBJECT oa_object;
ODLTREE odltree;

odltree = OaCopyTree(oa_object->odltree, 0);

copies the ODL tree in an OA_OBJECT.

4.4.11 ODL Tree Navigation Macros

The following macros are provided in oal.h to facilitate moving around in ODL trees:
LeftmostChild, RightmostChild, LeftSibling, RightSibling, Parent.. Each macro takes
an ODLTREE type as input and returns an ODLTREE or NULL. The caller should
never supply a NULL pointer to these macros, as there is no error checking.

53

Chapter 5. IDL Interface

IDL (Interactive Data Language) is a widely used scientific data analysis package.
Most OAL object layer routines, utility routines and L3 routines are callable from IDL.
An IDL program can read PDS Objects into memory, translate them into IDL variables,
then manipulate them using IDL. IDL variables can be translated into OA objects then
manipulated using OAL routines. Applications which use the OA Library can be
written entirely in IDL. The examples subdirectory of the release and Appendix D.2 of
this User’s Guide contains example programs written in IDL which use the OA Library.

5.1 Overview
• Calling sequences:

For every C object layer routine, utility routine and L3 routine, there is an IDL
function (called a "wrapper") with the same name as the C routine, which takes
the closest IDL equivalents of the C arguments. Macros used in OAL such as
LeftmostChild are also available as IDL functions. For routines whose C
argument is a pointer, the IDL argument should be the IDL equivalent of what
the C argument points to. For example, when a C routine's argument is a
pointer to an integer, the corresponding IDL function argument should be an
IDL integer. When an OA routine's C argument is an integer or a long (or a
pointer to an integer or long), an IDL integer or long can be passed; the
wrappers convert the input argument to the type required by the C function so
users don't have to worry about whether to pass an IDL integer or long.

• Pointers:
Pointers are returned to IDL from OAL and L3 functions as IDL 'double'
variables. These pointers are inscrutable within IDL; they can be stored and
compared to NULL (represented by 0.0), but only become useful when passed
back into OAL and L3 functions, or into OaIDLGetObjectData.

• Converting OA Objects into IDL variables:
The object data of an in-memory OA object can be gotton into an IDL variable
by calling the OaIDLGetObjectData function.
An OA Image object is returned as a 2-dimensional array variable.
An OA Histogram object is returned as a 1-dimensional array variable.
An OA Table-like object is returned as an IDL array of structures. The number of
array elements equals the number of rows in the Table, thus each structure in
the array contains one row of the Table. Each structure tag name is the same
as the corresponding NAME keyword in the ODL tree's column. Tables with
any level of nested Containers are supported; each Container becomes a
nested structure.

• OAL and IDL memory spaces:
OAL stores object in memory allocated by OaMalloc. When object data is
converted to an IDL variable, IDL code within the interface allocates space for
the IDL variable in IDL, and the data is copied from the OAL memory space to

54

the IDL variable. Once OAL object data has been converted to an IDL variable,
the object can be deleted (memory freed) by a call to OaDeleteObject without
effecting the IDL variable.

• How IDL variables are converted into OA Objects:
IDL variables of certain types can be converted into an OA object by calling the
OaIDLVariabletoOaObject function.

• OA_OBJECT and ODLTREE structures:
The contents of OA_OBJECT and ODLTREE structures can be gotton into IDL
variables with OaIDLGetOaObjectStruct and OaIDLGetODLTreeNodeStruct
These functions return IDL structures which contain IDL versions of the contents
of the C structure. Although individual ODL tree node pointers can be stored in
IDL, the actual linked tree structure is still in OAL's memory space, and not
directly accessible in IDL. This is not a limitation, because all L3 tree
manipulation functions can be called from IDL; the tree being manipulated is
the ODL tree in OAL's memory space, not an IDL variable.

• Enumerated types:
Enumerated types commonly used in calling OAL and L3 routines are available
in IDL via the !OA and !ODL system variables. For example, where in C code
you use ODL_RECURSIVE_DOWN, in IDL you use !ODL.RECURSIVE_DOWN.
See the end of OAL_IDL_interface.pro for a complete list.

• Prevent screen output from OAL and L3:
Screen output from OAL and L3 should be inhibited when IDL is running,
because on certain platforms it will crash IDL. Always specify an error message
file when calling OaParseLabelFile, and call OaRouteErrorMessages at the start
of your IDL application to redirect messages issued internally by OaReportError
(or modify OaReportError in rprt_err.c to write somewhere else besides the
default stderr).

• Supported Platforms:
This interface is portable to any platform on which the IDL CALL_EXTERNAL
function is available. The IDL interface has been tested on these platforms:
Sun SPARCstation, SGI, Dec Alpha/OSF, PowerMac with CodeWarrier.

• Installation:
A Makefile for Unix platforms is provided in the release to create the shareable
library containing the OA library, L3 and OAL_IDL_interface.c.
The variable OAL_SHARED_LIB_NAME in the file OAL_IDL_interface.pro must
be set to the path name of the shareable library file where the compiled OAL
code is located; edit OAL_IDL_interface.pro and set it for your system.
Once the library is created, compile the IDL part of the interface code and define
the !OAL and !ODL system variables with:

IDL> .run OAL_IDL_interface.pro

55

5.2 IDL Interface Routines

5.2.1 OaIDLReadObject

This IDL procedure reads a PDS object from a file into an IDL variable; it is provided
as a useful user interface, and as an example of using OAL from IDL.

pro OaIDLReadObject(IDL_VARIABLE, OA_OBJECT,
 FILE_NAME=FILE_NAME,
 OBJECT_NAME=OBJECT_NAME)

IDL_VARIABLE out The IDL variable in which to return the object data.

OA_OBJECT out Optional parameter; if present, the OA_OBJECT
pointer is returned in it, which can then be passed to
other OAL functions. If not present, the OA_OBJECT is
deleted before returning.

FILE_NAME in Optional keyword giving the name or path to the label
file. If not present, the procedure prompts the user for
the label file name.

OBJECT_NAME in Optional keyword giving the name of the object to be
read in. If not present, the procedure lists the object
names it found in the label, and prompts the user to
enter the name of the object to read.

In this interactive example, OaIDLReadObject prompts the user for the label file name
and the object name to read. Since the user didn't specify a directory path,
OaIDLReadObject looks for the label file in the current working directory. It then reads
in the Image object, and returns the object data in the VAR variable. The user then
calls help to find out about VAR.

IDL> OaIDLReadObject, VAR
Enter PDS label spec: BROWSE.LBL
Objects are: IMAGE_HEADER IMAGE
Enter object name: IMAGE
IDL> help,VAR
VAR BYTE = Array(1024, 512)
IDL>

This non-interactive example accomplishes the same thing:

IDL> OaIDLReadObject, VAR, FILE_NAME='BROWSE.LBL', OBJECT_NAME='IMAGE'
IDL> help,VAR
VAR BYTE = Array(1024, 512)
IDL>

56

In this example, OaIDLReadObject reads a Table object from a GRSFE CD-ROM, and
returns an array of 360 structures, corresponding to the 360 rows in the Table:

IDL> OaIDLReadObject, VAR
Enter PDS label spec: /cdrom/gr_0001/daedalus/DAEDWAVE.LBL
Objects are: TABLE_HEADER TABLE
Enter object name: TABLE
IDL> help,VAR
VAR STRUCT = -> <Anonymous> Array(360)
IDL> help,/struct,VAR
** Structure <2120b8>, 5 tags, length=20, refs=1:

CHANNEL_NUMBER LONG 0
WAVELENGTH LONG 0
SEGMENT_NUMBER LONG 1
GAIN_OFFSET LONG 4
DECONVOLUTION_COEFFICIENTSLONG 0

IDL>

5.2.2 OaIDLGetObjectData

This IDL function gets the object data of an in-memory OA object into an IDL variable.

function OaIDLGetObjectData(OA_OBJECT)

OA_OBJECT in An IDL double representing a pointer to an
OA_OBJECT in OAL's memory space, as returned by
OaReadObject, for example.

The function returns an IDL variable; if unsuccessful, it returns a scalar integer IDL
variable with a value of zero. If successful, it returns one of the following, depending
on the input object class:

• Image:
The function returns a two-dimensional IDL array.

• Histogram:
The function returns a one-dimensional IDL array.

• Table, Series, Spectrum, Palette, Collection:
The function returns an IDL array of structures. The number of array elements
equals the number of rows in the Table, thus each structure in the array
contains one row of the Table. Each structure's tag name is the same as the
NAME keyword in the corresponding ODL tree's column. Tables with any level
of nested Containers are supported; each Container becomes a nested
structure.

• ARRAY:
If the ARRAY doesn't have a Collection under it, the function returns an IDL
array with the same dimensions as the OAL array.
If the array does have a Collection under it, the function returns an IDL array of
structures, just like for a Table (see above).

In this example, the IDL procedure DisplayImage reads a label file and checks if there
is an Image object in it. If so, it reads in the image object, converts it to an IDL variable
and displays it.

57

pro DisplayImage, LABEL_FILENAME

ODLTREE = OaParseLabelFile(LABEL_FILENAME, 'PARSER_ERRORS.TXT',
 !ODL.ODL_EXPAND_STRUCTURE, 1);
if ODLTREE eq 0.0 then return
IMAGE_NODE = OdlFindObjDesc(ODLTREE, '*IMAGE', '', '', 0, 0)
if IMAGE_NODE eq 0.0 then return
OA_OBJECT = OaReadObject(IMAGE_NODE)
if OA_OBJECT eq 0.0 then return
IMAGE = OaIDLGetObjectData(OA_OBJECT)
if n_elements(IMAGE) ne 1 then tvscl, IMAGE
return
end

5.2.3 OaIDLVariabletoOaObject

This IDL function converts an IDL variable to an OA object.

function OaIDLVariabletoOaObject(IDL_VARIABLE, CLASS_NAME)

IDL_VARIABLE in An IDL variable whose type is consistent with
CLASS_NAME (see below).

CLASS_NAME in An IDL string variable giving the OA object class to
convert IDL_VARIABLE to.

The function returns an IDL double, which is a pointer to the OA Object in OAL's
memory space, and can be passed to OAL routines. If unsuccessful, it returns 0.0.
CLASS_NAME is currently restricted to the following:

• 'IMAGE':
IDL_VARIABLE must be a two-dimensional array of any numeric type except
complex.

• 'HISTOGRAM':
IDL_VARIABLE must be a one-dimensional array of any numeric type.

• 'TABLE', 'SERIES', 'SPECTRUM', 'PALETTE', 'COLLECTION':
IDL_VARIABLE must be a one-dimensional array of structures. The number of
array elements becomes the number of rows in the Table, so each row in the
Table will contain the data from one structure in the array. The structure's tag
names are used as the NAME keywords in the OA_OBJECT's ODL tree
columns. Nested structures are not currently supported.

5.2.4 OaIDLGetOaObjectStruct

This IDL function gets the useful fields of an OA_OBJECT structure in OAL’s memory
space into an IDL structure.

function OaIDLGetOaObjectStruct(OA_OBJECT)

58

OA_OBJECT in An IDL double returned from a previous OAL function,
such as OaReadObject.; points to an OA_OBJECT in
OAL's memory space.

The function returns this IDL structure:

{oa_object_struct, ODLTREE : double(0.0), $
 DATA_PTR : double(0.0), $
 SIZE : long(0)}

This code fragment prints out all the keyword names in the root node of an
OA_OBJECT's ODL tree.

S = OaIDLGetOaObjectStruct(OA_OBJECT)
KWD = OdlGetFirstKwd(S.ODLTREE)
while KWD ne 0 do begin
 print, OdlGetKwdName(KWD)
 KWD = OdlGetNextKwd(KWD)
endwhile

5.2.5 OaIDLGetODLTreeNodeStruct

This IDL function gets the useful fields of an ODLTREE structure into an IDL structure.

function OaIDLGetODLTreeNodeStruct(ODLTREE)

ODLTREE in An IDL double returned from a previous OAL or ODL
function; points to an ODLTREE in OAL's memory
space.

The function returns this IDL structure:

{ODLTREE_node_struct, CLASS_NAME : '', $
 PRE_COMMENT : '', $
 LINE_COMMENT : '', $
 POST_COMMENT : '', $
 END_COMMENT : '', $
 FILE_NAME : '', $
 CHILD_COUNT : long(0), $
 PARENT : double(0.0), $
 LEFT_SIBLING : double(0.0), $
 RIGHT_SIBLING : double(0.0), $
 FIRST_CHILD : double(0.0), $
 LAST_CHILD : double(0.0), $
 FIRST_KEYWORD : double(0.0), $
 LAST_KEYWORD : double(0.0)}

This routine is rarely used, since L3 routines and macros are available in IDL to get at
most of the fields of an ODLTREE. Instead of calling OaIDLGetODLTreeNodeStruct,
call OdlGetObjDescClassName, OdlGetObjDescChildCount, Parent, LeftSibling,
RightSibling, LeftmostChild, RightmostChild, OdlGetFirstKwd, or OdlGetNextKwd.

59

5.2.6 OaIDLGetProfile

This IDL procedure gets the fields of OAL’s global Oa_profile variable into an IDL
structure.

pro OaIDLGetProfile, OA_PROFILE

OA_PROFILE out An IDL structure variable with fields listed below.

{profile_struct, DST_FORMAT_FOR_ASCII_SRC : long(0), $
 DST_FORMAT_FOR_BINARY_SRC : long(0), $
 DST_ALIGNMENT_TYPE : long(0), $
 DATA_TRANSLATION_PROFILE : long(0), $
 CHECK_ASCII_WRITES : long(0)}

5.2.7 OaIDLSetProfile

This IDL procedure sets the fields of OAL’s global Oa_profile variable from the input
IDL structure.

pro OaIDLSetProfile, OA_PROFILE

OA_PROFILE in An IDL structure variable with fields listed below.

{profile_struct, DST_FORMAT_FOR_ASCII_SRC : long(0), $
 DST_FORMAT_FOR_BINARY_SRC : long(0), $
 DST_ALIGNMENT_TYPE : long(0), $
 DATA_TRANSLATION_PROFILE : long(0), $
 CHECK_ASCII_WRITES : long(0)}

60

Chapter 6. Fortran Interface

Most object layer routines, utility routines and L3 routines are callable from FORTRAN
via wrapper routines written in C, on VAX/VMS and all Unix platforms. Macros used in
OAL such as LeftmostChild are also provided as functions in FORTRAN. The code for
these wrappers is in the files OAL_fortran_interface.c and L3_fortran_interface.c in the
source subdirectory of the release. The two FORTRAN include files,
OAL_FORTRAN.INC and L3_FORTRAN.INC, provide parameters to replace the C
#defines and enumerated types, and FORTRAN function declarations for the wrappers.
A documentation header preceeding each wrapper routine describes the FORTRAN
calling sequence for the routine. The examples subdirectory of the release contains
example programs in FORTRAN.

• Each object layer routine, utility routine and L3 routine has a wrapper written in
C which is directly callable from FORTRAN. Each wrapper routine is simply a
short piece of C code which handles the different FORTRAN parameter passing
mechanism, converts strings, and calls the corresponding C routine. Most of
the wrappers are called as FORTRAN functions; a few are called as
subroutines.

• There are also several functions to facilitate access to OAL’s global Oa_profile
variable, and to OA_OBJECT data structures.

• ODLTREE node pointers are passed to and from FORTRAN using INTEGER*4
on all platforms except the Dec/Alpha, where INTEGER*8 are used. Users
running on a Dec/Alpha must edit OAL_FORTRAN.INC and L3_FORTRAN.INC,
and change the return values of the functions from integer*4 to integer*8.

• There are no common blocks or other internal storage of the pointers.
FORTRAN programs layered on top of the OA library and L3 must keep track of
pointers exactly the way C programs do.

• FORTRAN strings can be passed to and from the wrapper routines; conversions
between FORTRAN and C strings are done internally inside the wrapper
routines.

• The '%val' construct is not needed when calling these wrapper routines.

61

Part II — Advanced User's Guide

Chapter 7. Stream Layer
Stream layer functions are called from object layer methods to read from and write to
files containing the data for one or more PDS data objects. The stream layer performs
many of the same functions that are performed by the standard C language
input/output routines, but it does so in a way that eliminates the differences that can
arise when reading PDS data files formatted for one platform (e.g., VAX/VMS) on
another type of platform (e.g., Sun/Unix). The stream layer has no knowledge of — or
concern for — data objects: to the stream layer the contents of a file are simply a
stream of bytes, potentially arranged into a series of records. A single call to a stream
layer routine can read or write a portion of an object, a complete object, or even
multiple objects.

The stream layer can handle fixed length and variable length records, as well as
stream files which have embedded record delimiters (for example, a stream of ASCII
text with carriage return or line feed markers delimiting each line). See Sections 14.1
to 14.3 of the PDS Standards Reference for further information on these formats and
their use. A variable-length record has a 16-bit record control word (RCW) at the
beginning of each record giving the length of the record in bytes. In the stream layer
the RCW is interpreted as a VAX LSB two-byte integer. Note that the ISO-9660
CD-ROM standard allows the RCW to be an integer value in MSB order, but in practice
this situation probably never occurs, and it violates PDS standards, so it is not handled
by the stream layer. If the value of the RCW is odd, an extra byte with value zero is
expected at the end of the record to make the record length even.

Different code is compiled into stream layer routines to handle I/O depending upon the
platform on which the software is running. For example, file I/O on a variable-length
record file is transparent to the software under VMS, because the VMS file I/O system
specifically handles this format; but variable-length record I/O is not transparent on
other systems and has to be handled explicitly by stream layer code.

The stream layer is tolerant of a limited set of discrepancies which can arise when a
data file is transferred from one operating environment to another (e.g., from VAX to
Unix) resulting in the data file no longer having the same record format specified in its
label. Handling all of the pathological possibilities that can arise during data file
transfer is, however, not possible. Instructions on how to properly transfer data files
across platforms — and what to do if you have an improperly transferred file — is
included in Appendix C - Transferring PDS Files Between Computers.

The stream layer is a stand-alone package which can be compiled separately from the
rest of the OA library. The source files are stream_l.c, stream_l.h, oamalloc.c,
oamalloc.h and rprt_err.c.

62

The data structures and routines specific to the stream layer are described below. The
compilable definitions for these structures and routines are found in the include file
named stream_l.h.

7.1 Stream Layer Data Structures
The stream layer uses a stream descriptor to track the status of each active input or
output data stream. A stream descriptor is created through a call to OalOpenStream,
deallocated by OalCloseStream, and used by the other stream layer routines. It is
neither necessary nor desirable for the user to modify the contents of a stream
descriptor directly: all initialization and updating is done through the stream layer
routines. An exception is if the user wants to do I/O through a pipe or socket.

struct OaStreamStruct {
 char *filename;
 int record_type;
 int VMS_record_type;
 long record_bytes;
 FILE *fp;
 char *buf;
 long buf_siz;
 long current_position;
 int flags;
};

filename Name of the file open for reading or writing.

record_type Indicator of the type of record. Values are a subset of
oa_record_type_enum enumeration type values:

OA_FIXED_LENGTH
OA_VARIABLE_LENGTH
OA_STREAM
OA_UNDEFINED_RECORD_TYPE

VMS_record_type Indicator of the type of RMS record on VMS systems
only; not used on other platforms. Values are a subset
of oa_record_type_enum enumeration type values:

OA_FIXED_LENGTH
OA_VARIABLE_LENGTH
OA_STREAM
OA_UNDEFINED_RECORD_TYPE

record_bytes For fixed length records, this is the length of each
record. For variable length records, this is the length of
the longest record in the file. It is ignored for stream
files.

fp Pointer to the file control structure for the input/output
file.

buf Pointer to an internal buffer for input and output.

buf_siz Length of the input/output buffer in bytes.

63

current_position For stream, fixed-length and undefined record formats,
this is the byte offset at which the next read or write will
begin (starting from 0, the start of the file). For variable
length records, this is the next record number (starting
from 0).

flags Indicator for various stream characteristics. Values are
defined by the oa_stream_flags_enum enumeration
type: OA_IS_SEEKABLE

OA_MISSING_LAST_RECORD_BYTE
These are bits, and one or more can be set at a time.
See the OalSeek function for a description of the
OA_IS_SEEKABLE flag.
OA_MISSING_LAST_RECORD_BYTE is set internally
by OalOpenStream when it detects a condition caused
by improper file transfer.

7.2 Stream Layer Routines
This section describes the routines that make up the stream layer. The names of all
these routines begin with the three letters Oal to indicate that they are part of the inner
workings of the OA Library.

7.2.1 OalOpenStream

This routine opens a file, allocates space for a stream descriptor for the file, and
initializes the descriptor.

struct OaStreamStruct *OalOpenStream(char *filename,
 int record_type
 long record_bytes,
 long file_records,
 char *read_write_mode)

filename in Name of the file to be opened for reading or writing.
The file name string should be suitable for use by the
fopen() C library routine.

record_type in Record type indicator. See the description in Section
7.1 above. When read_write_mode is "r", if record_type
is OA_VARIABLE_LENGTH and we're not running
under the VMS file system, OalOpenStream goes
through various contortions to see if the file is truly a
variable-length record file. If record_type is
OA_UNKNOWN_RECORD_TYPE, OalOpenStream
assumes the input file starts with a PDS label, and tries
to determine the record type.

64

record_bytes in Length of each record. See the description in Section
7.1 above.

file_records in This is an optional input which helps OalOpenStream
verify files which were transferred over a network from
another machine. If unknown, should be set to 0.

read_write_mode in Read/write indicator. See the description in Section
7.1 above.

The routine opens the file with the name specified by the filename parameter and
stores a pointer to the file's control block into the stream descriptor. The routine then
fills in the rest of the stream descriptor, calculating the value for buf_siz, allocating
space for the buffer pointed to by buf, and setting the value of current_position to zero.

The function returns a pointer to the created stream descriptor. If an error occurs, the
return value is set to NULL.

7.2.2 OalReadStream

This routine reads data from a file.

int OalReadStream (struct OaStreamStruct *stream_id,
 long bytes_to_read,
 char **buf_ptr,
 long file_offset,
 long *bytes_read)

stream_id in/out Pointer to the stream descriptor for the file that is to be
read.

bytes_to_read in The number of bytes to read. If the value supplied for
this parameter is >0, the specified number of bytes are
read and placed in the output buffer. If the parameter
value is 0, the routines reads as much data as it
pleases (usually the number of bytes specified by
buf_siz).

buf_ptr in/out Pointer to a buffer to hold the output. If the pointer this
points to is NULL on input, then the data will be read
into the internal buffer pointed to within the stream
descriptor and a pointer to this buffer will be returned
upon exit.

file_offset in For stream, undefined, and fixed length records, this is
the byte position to which to start reading. For variable
length records, this is the record at which to start
reading. The count starts at zero.

bytes_read out Number of bytes actually read.

65

 If the file_offset parameter has a value of -1, the read starts at the current position;
otherwise the OalSeek function is called to position the file to the position indicated by
the value.

This routine removes the RCWs at the beginning of variable-length records. It also
eliminates the pad byte at the end of odd-length variable length records. The routine
does string-oriented fgets() calls for stream files and byte-oriented fread() calls
otherwise.

If at least one byte is read, a value of zero is returned. If the stream descriptor's file
pointer was already at end-of-file when OalReadStream was called, 1 is returned. If
there was any other error, -1 is returned with an error message.

7.2.3 OalWriteStream

This routine writes data to a file.

int OalWriteStream (struct OaStreamStruct *stream_id,
 long bytes_to_write,
 char *buf,
 long *bytes_written)

stream_id in/out Pointer to the stream descriptor for the file that is to be
written.

bytes_to_write in The number of bytes to write.

buf in Pointer to a buffer that holds the data to be written.

bytes_written out Actual number of bytes written.

• VARIABLE_LENGTH records:
Each call to OalWriteStream causes a new record, with bytes_to_write as the
LSB integer byte count prefix, to be written to the file; an extra byte is added to
make the byte count even, if necessary (this extra byte is NOT included in the
byte count prefix). On VMS this is done transparently. On other systems it is
done explicitly by OalWriteStream.

• FIXED_LENGTH records:
If bytes_to_write is less than RECORD_BYTES, then OalWriteStream writes
additional bytes to pad the record out to RECORD_BYTES; if bytes_to_write is
greater than RECORD_BYTES, then OalWriteStream writes multiple records,
each RECORD_BYTES in size, and pads the last one out to RECORD_BYTES if
necessary

• STREAM or UNDEFINED records:
OalWriteStream writes bytes_to_write bytes with no modifications. The PDS
recommended <CR><LF> line terminators should already be present in the
buffer. The object layer routine OaAddLineTerminatorstoTable can be used to
add these.

If the write is successful, a value of zero is returned.

66

7.2.4 OalSeek

This routine acts like the similar C library function fseek(), except that it also works for
variable-length record files. For variable length records, the file is positioned to the
first byte of the RCW associated with the specified record. When the stream
descriptor's flags field has the OA_IS_SEEKABLE bit set, OalSeek may use fseek();
this is the default set by OalOpenStream. When it is not set, OalSeek will use fread()
instead; this is useful when reading from a non-seekable device such as a pipe or
socket. OalSeek can only be used to position in streams opened for read.

int OalSeek (struct OaStreamStruct *stream_id,
 long file_offset)

stream_id in/out Pointer to the stream descriptor for the file that is to be
read.

file_offset in For stream and fixed length records, this is the byte
position to which to position the file. For variable length
records, this is the record at which to position. The
count starts at zero.

If the seek is successful, a value of zero is returned. If the stream descriptor's file
pointer was already at end-of-file when OalSeek was called, 1 is returned. If there was
any other error, -1 is returned, and an error message is issued with OaReportError.

7.2.5 OalCloseStream

This routine closes a file and deallocates the stream descriptor associated with the file.

int OalCloseStream (struct OaStreamStruct *stream_id)

stream_id in/out Pointer to the stream descriptor for the file that is to be
closed.

A value of zero is returned.

7.2.6 OalNewStreamDescriptor

This routine allocates a stream descriptor and initializes it to all zeroes.

struct OaStreamStruct *OalNewStreamDescriptor ()

A pointer to the stream descriptor is returned.

67

Chapter 8. Structure Layer

This chapter describes the structure layer of the OA Library. Where the stream layer
discussed above treats the data associated with PDS data objects as a stream of
bytes, the structure layer treats these data as a sequence of atomic data types: integer
and real numbers, ASCII characters, etc. The bit patterns for representing atomic data
can vary from one computer platform to another. For example, VAX floating point
numbers differ in several significant ways from the floating point numbers used on a
Sun workstation. Since PDS data can be encoded using the atomic data formats for
any one of a number of platforms, it is often necessary to translate binary data read
from a file into the atomic data formats appropriate to a user's computer. The structure
layer performs this function. The structure layer can also translate data from ASCII to
binary format or from binary to ASCII, and it can be used to skip over unwanted data in
a file.

The key to the functioning of the structure layer is a data structure called a Stream
Decomposition Tree (SDT). An SDT is an ODL tree that is augmented with some
additional information to facilitate the transfer and translation of data. For the OA
Library, each data object or collection of data objects that resides in a file or in memory
has an ODL tree associated with it. The ODL tree is a static description of the data
insofar as it specifies the attributes for the data object or objects at a point in time.
When data are being transferred — either from file into memory or from one memory
location to another — there are two points in time that matter: the instance before the
transfer, when there must be an ODL tree describing the original, or source, data; and
immediately after the transfer when there must be an ODL tree that describes the
destination data. Whenever a transfer takes place, the structure layer creates a
destination ODL tree from the source tree. The source and destination trees describing
any given PDS object may differ for the following reasons:

• If the data are stored in the file in ASCII format, it may be desirable to convert
the data to binary data at the destination so that the data object can be
manipulated directly.

• If the data are stored in a binary file in a format different than what the host
computer can handle, the atomic data types might need to be converted to the
host's native data types.

• Some platforms prefer or require binary numeric data types to be aligned on
word or double-word boundaries. If this is the case, the SDT specifies the
proper alignment for the data at the destination.

• Only a portion of a source data object may be selected for transfer. For example,
image and table objects can have prefixes and suffixes, but if the prefix or suffix
aren't needed, they can be eliminated from the destination data to save space
and simplify access.

68

To begin the process of transferring — and potentially translating data — from source
to destination, an object layer routine calls the structure layer routine OalCreateSDT
(and possibly OalCompressSDT as well) to create the SDT from the source ODL tree.
To transfer data from a file to memory, buffers of data read from the source file using
stream layer routines are provided to the OalProcessSDT routine which uses the SDT
to translate the data as needed. At the end of the data transfer/translation process, the
object layer routine calls OalSDTtoODLTree to clean up, eliminating the SDT
information used only for data transfer and translation, and leaving an ODL tree that
properly describes the destination data. SDTs are usually only used for reading in
data from a file and doing in-memory conversions. Object layer routines that write an
object to a file typically should not use an SDT, because it is better to first convert the
object to the proper destination format in memory and then call the stream layer
routines to write the object to a file.

The mechanisms for determining the size and format of a source PDS data object vary
from object to object. For example, the size of an image is determined by a
combination of several type-specific attributes (LINES, LINE_SAMPLES and
SAMPLE_BITS). The OalCreateSDT routine and some of the routines that it calls
contain code to convert the object-specific size and format information into object-
independent parameters that are encoded in the SDT and used by the structure layer
routines that actually transfer and translate data. The OalSDTtoODLTree routine then
translates these object-independent parameters back into the proper attributes for
each type of PDS data object. This means that if new types of objects are added to the
PDS repertoire, some structure layer routines may need to be modified to
accommodate the new objects.

Binary-to-binary translations are carried out using a mechanism called a Binary
Representation, or binrep. A binrep is an abstract description of a numeric binary data
type. There is a binrep for each of the numeric atomic data types for each platform
supported by the OA Library. The structure layer uses the binreps for the source and
the binreps for the destination to guide the translation process. This allows binary
translations to be done by a single routine (most other schemes require from 2N to N2
conversion routines for each atomic data type, where N is the number of platforms
supported). A new platform can be supported by adding the binreps for its atomic data
types, and updating the data types profile structure; no additional code is required.

The format of the destination data in a data transfer/translation operation is typically
determined by a host profile data that is specific to the platform on which the software
is running. This profile indicates the format of the atomic data types used by the host
computer. The proper host profile is selected using a constant (which must be defined
at compile time) which identifies the platform on which the software is running. By
default the host profile specifies that the destination data are to be in binary format,
even when the source data are encoded in ASCII. The host profile also defaults to
aligning binary data properly for the platform. The interchange format and alignment of
the destination data can be overridden by the user. Over-riding the interchange format
can be used to leave ASCII data transferred from file in ASCII format in memory; over-
riding the alignment might be desirable if saving memory space is particularly
important.

69

8.1 Structure Layer Data Structures
The data structures used by the structure layer are created and maintained within the
structure layer routines themselves. Users who operate upon PDS data objects with
OA routines need know nothing about these structures, and writers of OA routines
usually don't need to deal directly with them. The data structures are defined in the
files oal.h and binrep.h.

8.1.1 Stream Decomposition Tree Node

This is the data structure that is attached to the nodes of an ODL tree to convert the
tree into an SDT. The SDT node data structure is attached to the ODL tree node by
putting a pointer to the SDT node in the appl1 field of the ODL tree node.

typedef struct Stream_Decomposition_Tree_Node {
 long total_repetitions;
 long current_reps;
 OA_ATOM_INFO src;
 OA_ATOM_INFO dst;
 char conversion_type;
 long buf_bytes;
 char *buf;
} SDT_node;

typedef SDT_node *SDTNODE;

total_repetitions The number of times to loop through all of this node's
children.

current_reps Running count of repetitions currently done during
stream processing.

src The data structure that describes the source data. See
the oa_atom_info data structure below.

dst Same as above, but for the destination data.

conversion_type Type of conversion to perform. Allowed values, as
defined by the oa_conversion_types_enum
enumeration type are:

OA_NOT_APPLICABLE
OA_BINREP
OA_ASCII_TO_BINARY
OA_BINARY_TO_ASCII
OA_MEMCPY

buf_bytes The number of bytes currently in the transfer buffer.

buf Small internal buffer used to hold a partial atom of data
when the atom is broken across a stream buffer.

The following data structure is used twice in each SDT node to describe the source
and destination for a data transfer.

70

typedef struct oa_atom_info {
 long start_offset;
 long bytes_processed;
 long size;
 PTR ptr;
 char PDS_data_type;
 struct binrep_desc *binrep_descrip;
 char format_spec[15];
 char alignment_req;
} OA_ATOM_INFO;

start_offset The offset in bytes of the start of the first repetition of a
data atom from its parent.

bytes_processed Number of bytes of the atom which have been
processed during the current repetition.

size Size of a single repetition of the atom in bytes.

ptr Pointer to the start of the current repetition of the SDT
node's source or destination data. PTR is a typedef
equivalent to char * on most platforms and char huge *
on the IBM PC under MS-DOS.

binrep_descrip Pointer to a data structure containing a binrep to guide
binary-to-binary data conversion.

format_spec The format specification used to direct binary-to-ASCII
conversions.

alignment_req The memory boundary on which the atomic data must
be aligned, in bytes. Zero means not applicable.
Other allowed values are 1 (byte aligned), 2, 4 and 8.

71

PDS_data_type Type of atomic data value. The values are defined by
the enumeration type oa_PDS_data_types_enum .
There is a enumerated value for each of the data types
and aliases from the PDS Standards Reference, Table
3.2. The values for aliased data types are set to the
same value as the corresponding standard data type.

OA_ASCII_REAL
OA_ASCII_INTEGER
OA_ASCII_COMPLEX
OA_BIT_STRING
OA_BOOLEAN
OA_CHARACTER
OA_COMPLEX
OA_DATE
OA_FLOAT
OA_IBM_COMPLEX
OA_IBM_INTEGER
OA_IBM_REAL
OA_IBM_UNSIGNED_INTEGER
OA_IEEE_COMPLEX
OA_IEEE_REAL
OA_INTEGER
OA_LSB_BIT_STRING
OA_LSB_INTEGER
OA_LSB_UNSIGNED_INTEGER
OA_MAC_COMPLEX
OA_MAC_INTEGER
OA_MAC_REAL
OA_MAC_UNSIGNED_INTEGER
OA_MSB_BIT_STRING
OA_MSB_INTEGER
OA_MSB_UNSIGNED_INTEGER
OA_PC_COMPLEX
OA_PC_INTEGER
OA_PC_REAL
OA_PC_UNSIGNED_INTEGER
OA_REAL
OA_SUN_COMPLEX
OA_SUN_INTEGER
OA_SUN_REAL
OA_SUN_UNSIGNED_INTEGER
OA_TIME
OA_UNSIGNED_INTEGER
OA_VAX_BIT_STRING
OA_VAX_COMPLEX
OA_VAX_DOUBLE
OA_VAX_INTEGER
OA_VAX_REAL
OA_VAX_UNSIGNED_INTEGER
OA_VAXG_COMPLEX
OA_VAXG_REAL
OA_UNKNOWN_DATA_TYPE

72

8.1.2 Host Profile

The profile specifies how data are to be translated and aligned.

struct oa_profile {
 char dst_format_for_ASCII_src;
 char dst_format_for_binary_src;
 char dst_alignment_type;
 char data_translation_profile;
 char check_ASCII_writes;
};

dst_format_for_ASCII_src Indicator of the interchange format for the
destination data when the source data is ASCII.
The choices are defined by the enumeration type
oa_interchange_format_enum:

OA_ASCII_INTERCHANGE_FORMAT
OA_BINARY_INTERCHANGE_FORMAT

dst_format_for_binary_src Indicator of the interchange format for the
destination data when the source data is binary.
The choices are defined by the enumeration type
oa_interchange_format_enum, as above.

dst_alignment_type Indicator of the alignment desired for the
destination data. The choices are defined by the
enumeration type oa_alignment_type_enum:

OA_NOALIGN
OA_ALIGN_EVEN
OA_ALIGN_RISC

data_translation_profile Indicator of the platform for which the destination
data are to be formatted. The choices are defined
by the enumeration type
oa_data_type_profiles_enum:

OA_ALPHA_OSF
OA_ALPHA_VMS
OA_IBM_PC
OA_MAC_IEEE
OA_SGI
OA_SUN3
OA_SUN4
OA_ULTRIX
OA_VAX

check_ASCII_writes If TRUE, OaWriteObject checks that ASCII objects
consist only of alpha-numeric characters and
allowed control characters.

73

The value of data_translation_profile is used as an index into the data types profile, a
variable Oa_type_conversion_info, which is an array of data structures giving the
proper translations for each atomic data type on the specified platform. This includes
information for binary-to-binary translations as well as the default field widths and
formats for binary-to-ASCII translations. Enum values are the same for platforms with
identical data types, for example, OA_ALPHA_OSF, OA_ULTRIX and OA_IBM_PC.

The writer of application code can change these values — although the need to do so
is probably only when converting to or from ASCII — by directly modifying the global
variable Oa_profile. Changes should be made prior to building the SDT (or calling an
OA routine), and set back to the defaults afterwards. For example, if on a Sun 4, the
default host profile is:

Oa_profile.dst_format_for_ASCII_src = OA_BINARY_INTERCHANGE_FORMAT
Oa_profile.dst_format_for_binary_src = OA_BINARY_INTERCHANGE_FORMAT
Oa_profile.dst_alignment_type = OA_ALIGN_RISC
Oa_profile.data_translation_profile = OA_SUN4
Oa_profile.check_ASCII_writes = TRUE

If a user wanted to convert a binary object to VAX data types prior to writing it to a file,
she would change the profile as follows, then call OaConvertObject.

Oa_profile.dst_alignment_type = OA_NOALIGN
Oa_profile.data_translation_profile = OA_VAX
VAX_object = OaConvertObject(native_object);

The user can also change the individual data translation specifications in the data
types profile Oa_type_conversion_info, but this is not recommended, except possibly
to change the default field width or format in which an ASCII value is to be written
during a binary-to-ASCII conversion.

8.2 Structure Layer Routines
The chief structure layer routines — those routines that are called directly from within
OA routines — are fully specified below. Routines that are invoked by other structure
layer routines — and thus hidden from the sight of developers of OA routines — are
discussed only briefly. The names of all these routines begin with the three letters Oal
to indicate that they are part of the inner workings of the OA Library.

8.2.1 OalCreateSDT

This routine creates an SDT from a source ODL tree.

ODLTREE OalCreateSDT (ODLTREE TLO_node,
 int src_interchange_fmt)

TLO_node in/out A pointer to a top-level object node in an ODL tree, for
example, a Table or Image.

74

src_interchange_fmt in Indicator of the interchange format of the source data.
The choices are defined by the enumeration type
oa_interchange_format_enum:

OA_ASCII_INTERCHANGE_FORMAT
OA_BINARY_INTERCHANGE_FORMAT

This routine is called by OA routines to set up an SDT. Upon return, each node of the
ODL tree that was passed as the first argument has an SDT node attached to it, with all
the initial SDT parameters set.

For Image and Table type objects (as well as the object types derived from Table), the
tree structure may be modified to accommodate prefixes and suffixes. When a table
with prefix bytes is to be read in, a node representing the prefix table is added before
the first column of the table node. Since prefixes are always stripped out, this node
has dst.size=0. For an image with prefix/suffix bytes, an additional node is added
below the image node. The image node specifies a loop through all the lines, and the
new node below it specifies a loop through all the samples in a line. Nodes
representing the prefix and suffix tables are added before and after the new node.
Since the prefix and/or suffix bytes are always thrown away, these nodes have
dst.size=0.

8.2.2 OalCompressSDT

This function improves performance by combining SDT nodes which have memory-to-
memory transfer (using memcpy) as their conversion function. Several short transfers
may be combined into one longer one, and the number of nodes in the SDT, as well
as the overhead in structure layer processing, reduced.

ODLTREE OalCompressSDT (ODLTREE sdt)

sdt in A pointer to the root node of the SDT that is to be
compressed.

The function copies the tree before compressing it. It returns the root node of the
compressed SDT. The input SDT is unchanged.

8.2.3 OalInitializeSDT

This function finds the first data node to be used as the input for the first call to
OalProcessSDT, and stores the data_ptr pointer in that node, as well as in the root
node.

ODLTREE OalInitializeSDT (ODLTREE sdt,
 PTR data_ptr)

sdt in/out A pointer to the root node of the SDT.

75

data_ptr in A pointer into memory where OalProcessSDT will start
placing the destination data. PTR is a typedef
equivalent to char * on most platforms and char huge *
on the IBM PC under MS-DOS.

8.2.4 OalProcessSDT

This routine controls the actual transfer and translation of data. It traverses the SDT,
calling the transfer/translation routines at each SDT node, until all the data in the buffer
has been processed.

int OalProcessSDT (PTR source,
 long source_bytes,
 ODLTREE *current_node)

source in A pointer to the source data. PTR is a typedef
equivalent to char * on most platforms and char huge *
on the IBM PC under MS-DOS.

source_bytes in Number of bytes in the source data.

current_node in/out Pointer to a pointer to the current data node in an SDT.

When reading from files, the source is an I/O buffer full of data and the destination(s)
are in memory. For in-memory conversions, both the source and destination are in
memory. When writing to files the source is in memory and the destination is an I/O
buffer. This latter option might, for example, be used to convert a row of a binary table
to ASCII, which OalWriteStream could then write to a file.

OalProcessSDT always processes the number of bytes specified for the source unless
it reaches the end of the SDT while doing so. Care should be taken that the output
buffer doesn’t overflow. This is usually done by allocating the output buffer to be the
entire size of the object being processed by OalProcessSDT.

Upon exit the current_node parameter points to the ODL tree node where the
processing of the next piece of the source data begins. This may be the same as the
previous current node or it may be a different node.

8.2.5 OalSDTtoODLTree

This routine strips off the SDT nodes associated with the ODL tree nodes and updates
the ODL tree nodes' keywords to match the destination data instead of the source data
described by the original ODL tree nodes.

int OalSDTtoODLTree (ODLTREE sdt
 int dst_interchange_format)

sdt in/out A pointer to the root node of an SDT.

76

dst_interchange_format
in

Indicator of the interchange format of the destination
data. The choices are defined by the enumeration type
oa_interchange_format_enum:

OA_ASCII_INTERCHANGE_FORMAT
OA_BINARY_INTERCHANGE_FORMAT

8.2.6 OalFreeSDT

This routine frees the ODL tree whose root is passed in, including freeing the SDT
nodes which are attached to the ODL tree nodes.

int OalFreeSDT (ODLTREE sdt)

sdt in/out A pointer to the root node of an SDT.

The function always returns zero.

8.2.7 OalReportBinrepErrors

This routine calls OaReportError with oa_errno=904 if any of the binrep error counters
are non-zero: integer truncation errors, negative-to-unsigned integer conversions,
exponent underflows and overflows, and precision losses. The error message reports
the number of errors of each type which have occurred since the counters were last set
to zeros by OalResetBinrepErrors.

int OalReportBinrepErrors (char *proc_name)

proc_name in If non-NULL, then the error message will be
prepended by proc_name to give the user an
indication of where the errors occurred.

8.2.8 OalResetBinrepErrors

This routine sets all the binrep error counters to zeros. It can be called by object layer
routines before a conversion; after the conversion, a call to OalReportBinrepErrors
shows if any errors occurred during the conversion.

int OalResetBinrepErrors ()

77

8.2.9 Low-Level Structure Layer Routines

The following routines are called directly or indirectly by the top-level structure layer
routines discussed above. They are briefly described here, but since they are not
called by the developers of object layer routines, their calling sequences are not
detailed.

 8.2.9.1 OalPostOrderTraverse

This routine does a post-order traversal of an SDT tree, and at each node it calls a
function specified as an input parameter. If the called function returns a non-zero
value, OalPostOrderTraverse aborts the traversal and returns the value. The root node
is the last node to be visited. This routine is called by OalCreateSDT and
OalSDTtoODLTree.

 8.2.9.2 OalBuildSDTNode

This routine initializes all the parameters of a single SDT node. It identifies two types
of nodes: data nodes, which describe an atomic data type and it’s conversion to
another atomic data type, and repetition nodes, which indicate how many passes
through the repetition node’s children to make. For data nodes, the offset, size and
data type of both the source and destination data are stored in the SDT node attached
to the ODL tree node. This is later used by OalConvert to convert the data atom of
source data into destination data. For repetitions nodes, the repetitions count used by
OalPositionToNextDataNode is initialized. This function is called by OalCreateSDT
from within OalPostOrderTraverse.

 8.2.9.3 OalDetermineConvertParameters

This routine determines the SDT destination parameters for data nodes: destination
data type, size, alignment, conversion type and binrep description. If the
conversion_type is BINARY_TO_ASCII, then it also determines the format specification
to use in conversion, and stores it in the SDT node's dst.format_spec field. This
function is called by OalBuildSDTNode.

 8.2.9.4 OalGetTypeConversionFromProfile

This routine gets the profile record for a particular data type conversion from the host
profile. The profile record specifies a binary and an ASCII type to convert to. This
routine is called by OalDetermineConversionParameters.

 8.2.9.5 OalFindBinrepDescrip

This routine gets the proper binrep for a given binary data type from an array of
binreps. This routine is called by OalDetermineConversionParameters.

78

 8.2.9.6 OalPositionToNextDataNode

This function positions to the next SDT node during transfer/translation process, and
updates the source and destination data pointers in the SDT node. These point to the
current memory locations in the source and destination data. A modified post-order
tree traversal order is used; a node with children has a repetition count associated with
it, which is decremented each time a complete loop through the children nodes is
finished. This function is called by OalProcessSDT.

 8.2.9.7 OalC onvert

This routine performs the data conversion specified in an SDT node. The conversions
are ASCII-to-binary, binary-to-ASCII, binary-to-binary and straight copy. This function
is called by OalProcessSDT.

 8.2.9.8 OalGetNativeCTypeInfo

This routine gets the PDS enumerated data type, size and binrep description which
map to the input C type string on the platform being run on. For example, if the input C
type string is "int" and OAL is running on a Sun, the routine returns MSB_INTEGER, 4,
and a pointer to the MSB_INT4 binrep structure. This routine is called during
initialization by OalConvert.

 8.2.9.9 OalBinrepConvert

This routine does a single binary-to-binary conversion. It converts a binary numeric
type to a different binary numeric type and stores the result. The number of bytes in the
source and destination and a specification of their types are given in the source and
destination binrep description structures. This routine is called by OalConvert.

 8.2.9.10 OalAdjustKwdstoMatchSDT

This routine updates an ODL tree node's keywords to match its SDT node. It is called
after SDT processing to make the ODL tree's keyword values, which describe the
source data, now describe the converted destination data. This function is called by
OalSDTtoODLTree.

79

Chapter 9. Developing New Object Access Routines

9.1 Understanding Object Access Routines
The code of an OA read routine tends to follow a predictable pattern (which means that
new OA routines can be created quickly from existing routines). Other types of routines
in the object layer which manipulate in-memory data, as opposed to reading the data
from a file, use many of the same structures and logic, so much of this discussion is
also applicable to them.

Figure 2 below shows a schematic of the routine OaReadTable, which reads table
objects from a file. Like all OA routines for reading PDS data objects from a file, the
input to this routine is a pointer to the node of an ODL tree that describes the table (1).
OaReadTable first calls the object layer utility routine OaGetFileKeywords to get from
the ODL tree information about the file that contains the table (2). It then calls the
object layer utility routine OaCheckODLTree to make sure that the ODL tree is
organized properly and can be handled by the OA Library software (3).

OaReadTable then calls the structure layer routine OalCreateSDT to turn the ODL tree
for the table object into an SDT that will guide the process of transferring the table to
memory (4). OalCreateSDT checks to determine the data formats for the source data in
the file and determines from the host profile the proper data formats for the table in
memory. After the SDT is built, the structure layer routine OalCompressSDT can be
called to simplify the SDT if possible, thus speeding the data transfer process (5). As
the final step in setting up for data transfer, the stream layer routineOalOpenStream is
called to initialize the input stream from the file (6).

OaReadTable now begins the actual data transfer process by making repeated calls to
OalReadStream to read buffers of data and OalProcessSDT to translate the table data
as needed and place it into the proper location in memory (7 and 8).

Upon completion of the data transfer, the structure layer routine OalSDTtoODLTree is
called to get rid of the SDT nodes and to leave an ODL tree that describes the
resultant data table in memory (9). An object descriptor is then built to point to both the
table object data and the table's associated ODL tree. The object descriptor is returned
as the function value of OaReadTable (10).

80

OaReadTableGetFileKeywordsOalGetFileKeywords

OalOpenStream

OalReadStream

OalProcessSDT

ODL Tree Object Descriptor

file keywords

SDT

file
keywords

Stream
Descriptor

input
buffer

input buffer,
SDT node

translated
object data

(7)

(8)
OalCreateSDT

ODL Tree

OalCompressSDT

SDT

SDT

(4)

(5)

(6)

(10)

OalSDTtoODLTree
SDT

ODL Tree

(1)

(9)

ODL Tree

(2)

(3)

ODL Tree

OalCheckODLTree ODL Tree,
status

Stream
Descriptor

Figure 2 — Process Flow for the Object Layer Routine OaReadTable

Additional steps which apply to all OA routines:

 • Check all input parameters for validity.

 • Always make a copy of the input ODL tree before changing it or calling
OalCreateSDT, otherwise the caller's tree will be changed.

 • Initialize the SDT with a pointer which points to the start if the destination
memory, usually space you've allocated with OaMalloc.

 • In the first call to OalReadStream, specify the file_offset to start reading at; this is
the value returned by OaGetFileKeywords, or one you've calculated yourself.

 • After calling OalSDTtoODLTree, be sure to delete or modify the values of
keywords which were copied from the input tree but are no longer applicable to
the output tree. E.g. is CHECKSUM still valid?

Other OA routines manipulate objects in memory, instead of reading an object from a
file. These routines generally don't need the stream layer, but may still use an SDT to
transfer, filter and/or convert data.

81

9.2 Techniques For Creating the SDT
The SDT data structure is the key to describing the locations and sizes of the source
data atoms (in a file or in memory), getting your data converted to the right format, and
filtering out unwanted data. Once you've created an SDT, the structure layer routine
OalProcessSDT processes the input stream, handling all the positioning, conversions
and filtering you've specified.

If you are implementing an OA routine for an existing object type, then you can use
OalCreateSDT to to most of the work for you. Even if you're implementing a routine for
a new object type OalCreateSDT doesn't know about, you can still use it - you should
avoid creating an SDT from scratch.

If you're writing an OA routine to handle an object type the structure layer doesn't know
about, consider transforming your ODL tree or creating a new one which looks like one
of the supported object types - the same data can be represented by many different
PDS objects. For a simple example of this, look at the code for
OaReadSpectrumFromQube in obj_l2.c - this routine reads a Spectrum from a Qube
without the structure layer knowing anything about Qubes or Qube-specific keywords.
It does this by transforming the Qube tree into a Spectrum-type tree, whose single
column node represents each core pixel in the Qube. The rest of the data in the Qube
is not explicitly described, but is encompassed by the ROW_BYTES and ROWS
keywords in the Spectrum node. The call to OalCreateSDT detects implicit SPARES
before and after the column, and adds explicit SPARE nodes, and sets up their SDT
nodes to throw out this data.
In this case the ODL tree created to input into the SDT has the same class and
structure as the output ODL tree, but you could make a different ODL tree to describe
the output data than the one you used to create the SDT with.

9.3 Requirements for New Object Access Routines
As new routines are added to the OA Library, certain conventions should be followed
to make the new routines easy to use for others.

In general, routines that read data objects from file should do only that: they shouldn't
manipulate the data, except possibly to reformat the data for easier access in memory.
An example of this kind of reformatting is the decompression done by OaReadImage,
which decompresses a compressed image during the read operation.

An OA routine that manipulates data objects should take as its input arguments one or
more object descriptors for objects that are already in memory. The routine may also
have zero, one or more arguments that are of a standard C data type. The routine will
return either an object descriptor or a data value of a standard C type. An example of
such a manipulation routine might be an OA routine that takes in an Image object and
a Histogram object and that returns an Image object that has been histogram-
equalized to enhance its contrast. In general any PDS data objects that are input to an
OA routine should be left undisturbed by the routine.

82

The routines that form the OA Library's object layer meet the following general
requirements. User-supplied OA routines are strongly encouraged to also adhere to
these requirements.
These requirements assume that the language of implementation is C.

[9.3.1] Each OA routine shall have a name that conforms to the PDS OA software
naming convention:

• An OA routine name begins with the letters Oa, with the first letter
only capitalized.

• After the beginning letters, the name includes a word or words that
specify the operation that is to be performed. The first letter only of
each word is capitalized. Examples are: Read and Convert.

• At the end of the name is a word or words that identifies the type of
object — or part of an object — that is operated upon by the routine.
The first letter only of each of these words is capitalized. For
example, Image, CompressedImage, and CompressedImageLine.

• All of the parts of the name are provided without underscores or other
intervening punctuation. For example, OaReadImage.

[9.3.2] Any OA routine that can access more than one type of PDS data object
shall signify this by setting the type name in the routine to be Object. For
example, OaCopyObject.

[9.3.3] An OA routine for a specific type of object (for example Image objects) shall
be capable of handling all objects of that type, although the operation
performed by the routine may not be appropriate for some data objects (for
example, a routine for decompressing an image must be able to accept an
uncompressed image but won't do anything with it).

[9.3.4] An OA routine that reads an object, or part of an object, from a PDS-
labeled file shall be designated by having the word Read in its name. For
example, a routine to read a Histogram from file would be named
OaReadHistogram.

• The parameter list to an OA routine that reads an object from file shall
include as input an ODL tree for the file, with a pointer to the node of
the ODL tree that identifies the object to be read from the file.

• The OA routine shall use OA stream layer routines to open and read
from the file whenever feasible. An example of an exception to this is
the Clementine JPEG decompression software - OaReadImage uses
the stream layer to open and position the file pointer to the start of the
compressed data, but then passes the file pointer to custom
decompression software. This software then takes over reading the
file using it's own I/O.

• If an OA routine reads all of an object it shall call the appropriate
stream layer routine to close the stream to the file before returning.

83

[9.3.5] An OA routine that writes a PDS data object to a file shall have the word
Write in its name.

[9.3.6] An OA routine that converts a non-PDS data object into a PDS data object
shall have the word Import in its name. For example, a routine to take a
standard C array and make it a PDS Image object would have the name
OaImportImage.

[9.3.7] An OA routine that converts a PDS data object into a non-PDS data object
shall have the word Export in its name. For example, a routine to take a
PDS image object and make it into a standard C array would have the
name OaExportImage.

[9.3.8] An OA routine shall have a fixed number of parameters. Each parameter
may be either a pointer to a node of an ODL tree, a pointer to a PDS data
object or a value that belongs to a standard C language data type (or a
pointer to such a value).

[9.3.9] All PDS data objects shall be passed to OA routines in a consistent
manner using an object descriptor.

[9.3.10] If an OA routine reads from or writes to a file, then an object descriptor for
the file shall be the first parameter of the OA routine.

[9.3.11] If an existing data object, or set of data objects, of the type specified in the
routine name are to be manipulated by an OA routine, then those data
objects shall be the first parameters in the calling sequence, with the
exception of cases where the objects are being read from or written to files
(see Requirement 9.3.6 above).

[9.3.12] An OA routine shall return a single value that is either a pointer to an object
descriptor or a value belonging to a standard C data type (or a pointer to
such a value).

[9.3.13] An OA routine that creates a PDS data object shall create all of the
required keywords (attributes) of the data object, although the keyword
need not have values initially assigned. The user may need to supply
keyword values either through other OA routines or using L3 routines.

[9.3.14] An OA routine that manipulates and changes a PDS data object must also
update any of the keywords that are affected by the change, and delete
any keywords which have been rendered invalid by the change. For
example, a routine which decompresses an image should remove the
ENCODING_TYPE keyword, or set it to "N/A".

[9.3.15] An OA routine that copies a data object shall copy all of its keyword values,
along with the data associated with the object.

84

[9.3.16] A routine that deletes a data object shall delete both the data associated
with the object, all of the attributes of the data object (the ODL tree), and
the associated object descriptor.

[9.3.17] An OA routine may have all or only part of a data object in memory at a
time. It shall be possible for a user to determine which portion of an object
is in memory at any given time (for example, which lines of a large image
are currently in memory). This should be done by setting keywords in the
object's ODL tree.

[9.3.18] OA routines shall adhere to the standard scheme for reporting processing
status and errors that is described in the User's Guide.

[9.3.19] OA routines shall adhere to a standard scheme for routing error messages
to users as described in the User's Guide. The user shall be able to select
the destination of error messages (i.e., to the screen, to a file, etc.).

85

Appendices

Appendix A. Error Codes

This appendix lists the error codes currently returned by OA routines in global variable
oa_errno.

The error codes are arranged in categories to facilitate the future addition of new
codes. Each category has a range of values allotted to it. The currently used values
for each category are listed, along with descriptions of the errors which are similar in
text to the message issued by OaReportError. Filtering of error messages inside
OaReportError can be done by category (check if oa_errno is within a range of values)
or by individual error code (check if oa_errno is equal to a certain value).

When new error messages are added to the OA Library, existing error codes should
be used for errors similar to those already existing. Any new error codes should be
added within the appropriate category.

Note that these codes have a dual purpose: filtering of messages, since oa_errno is
set before every call to OaReportError, and testing the severity of erroneous function
returns (which are almost always accompanied by a call to OaReportError).

A.1 Bad Input Arguments
This category uses oa_errno values in the range 501 - 509.

501
 • Input ODL tree node, OA_OBJECT, OA_OBJECT's ODL tree or data pointer is

NULL.
• Input string (char *) is NULL.

502
 • Invalid input row number, start_line, stop_line, start_sample, stop_sample,

read_write_mode, record_bytes, bytes_to_write.

A.2 Inconsistent Input Object
This category uses oa_errno values in the range 510 - 519.

510
 • Invalid combination of is_in_memory, data_ptr and size in OA_OBJECT.

86

511
 • LINES * LINE_SAMPLES * SAMPLE_BITS/8 not equal to input OA_OBJECT's

size.
 • (PREFIX_BYTES + ROW_BYTES + SUFFIX_BYTES) * ROWS not equal to

input OA_OBJECT's size.

A.2 Illegal Operation
This category uses oa_errno values in the range 520 - 529.

520
 • Attempt to delete the only sub-object in a table, attempt to delete the only row in

a table.
 • Binary INTERCHANGE_FORMAT objects not allowed in STREAM output files.
 • Detected illegal control character in data for output to ASCII file.
 • Data buffer for STREAM output didn't have \n terminator.
 • Attempt to write object to output file which already has an object with the same

name.
 • Attempt to seek backwards when stream_id->flags OA_IS_SEEKABLE isn't set.
 • Input tables must have same INTERCHANGE_FORMAT, ROW_BYTES,

COLUMNS or ROWS.
 • Improper RECORD_TYPE, ENCODING_TYPE, SAMPLE_BITS or

TABLE_STORAGE_TYPE for operation.
 • Image cannot have LINE_PREFIX_BYTES or LINE_SUFFIX_BYTES for

operation.
 • Table cannot be COLUMN_MAJOR for operation.
 • Image is multi-banded (not supported yet).
 • Can't perform operation with a variable-length record file.
 • Can't handle a BIT_ELEMENT or BIT_COLUMN node directly under an ARRAY

node.
 • Can't convert a float of this size.
 • HFD compressed images supported only in variable-length record files.
 • Attempt to open file for write which has RECORD_TYPE of

OA_UNKNOWN_RECORD_TYPE or OA_UNDEFINED_RECORD_TYPE.
 • Attempt to open fixed-length file for write with odd record length.
 • Attempt to read an object with unknown class.

A.3 Bad Input ODL Tree, Keywords or Class for Operation
This category uses oa_errno values in the range 530 - 549.

530
 • Input ODL tree node or input OA_OBJECT's ODL tree has improper object class

for operation.
 • Input node's parent must be a Table, the root of the ODL tree or the child of the

root of the ODL tree.
 • Input Table node has no sub-objects.
 • Input Table must have Container as only sub-object.
 • Child_count field not the same as COLUMNS keyword value.
 • File_name field in ODL tree node is NULL.

87

 • Collection must be nested inside an ARRAY or Collection.
 • COLUMN_MAJOR table with nested Container or ROW_PREFIX_BYTES or

ROW_SUFFIX_BYTES not allowed.
 • Couldn't find top-level object.
 • Couldn't find pointer to top-level object.
 • Given object class doesn't have required parent and/or child node(s) or class.
 • Couldn't find encoding histogram for HFD compressed image.

531
 • Required keyword missing.
 • Invalid or unknown keyword value for INTERCHANGE_FORMAT,

TABLE_STORAGE_TYPE, FILE_TYPE, RECORD_TYPE, DATA_TYPE,
COMPRESSION_TYPE.

 • Keyword required for operation but not found.

532
 • Miscellaneous label errors: two sequences which should have the same

number of items don't, unknown PDS version, PDS_VERSION_ID doesn't
match label contents, number of sequence items in AXIS_ITEMS not equal to
AXIS keyword value.

533
 • Illegal number of bytes for INTEGER or REAL type.

534
 • Overlapping source data (structure layer). This is usually due to an error in the

label.

535
 • Invalid SDT contents (src.PDS_data_type, conversion_type field, Oa_profile

field(s).

A.4 Inconsistency Between File and File Keywords
This category uses oa_errno values in the range 550 - 559.

550
 • Actual record type doesn't match RECORD_TYPE keyword value.
 • Actual file size doesn't equal FILE_RECORDS * RECORD_BYTES.

A.5 Syntax Errors in ODL Keyword Values
This category uses oa_errno values in the range 600 - 609.

600
 • Error converting keyword value to long.
 • Error converting keyword long to keyword value.
 • Error converting sequence value to long.
 • Error parsing ODL sequence.

88

601
 • Error parsing FORMAT keyword value.

A.6 Low-level I/O Errors
This category uses oa_errno values in the range 700 - 709.

700
 • fread, read, write, or rewind error.
 • fopen error opening object file, label file or tmp file for output.
 • fstat on HISTORY tmp file returned error.
 • fread failed to read HISTORY tmp file.
 • Invalid current variable-length record size read.

A.7 Run-time Errors
This category uses oa_errno values in the range 710 - 719.

710
 • Image position and file position are out-of-sync.
 • First byte in Previous Pixel compressed image wasn't 255.
 • SDT source size not equal to HFD decompressed line buffer size.

A.8 Memory Errors
This category uses oa_errno values in the range 720 - 729.

720
 • OaMalloc or OaRealloc failed.

A.9 Internal Errors
This category uses oa_errno values in the range 730 - 739.

730
 • Couldn't find binrep_q_code.
 • Oa_type_conversion_info array index out-of-range.
 • Oa_profile.dst_alignment_type has unknown value.

A.10 Warnings
This category uses oa_errno values in the range 900 - 949.

900
 • Implicit SPARE detected.

901
 • File size not equal to FILE_RECORDS * RECORD_BYTES for fixed-length file.

89

902
 • Read 0 bytes (OaReadStream).

903
 • PDS version number not PDS3.

904
 • OalReportBinrepErrors sets oa_errno to 904 when it calls OaReportError.

A.11 Informational
This category uses oa_errno values in the range 950 - 999.

950
 • OaReportFileAttributes.
 • Opened file after upper-casing file name or after appending ";1".
 • VMS record type/length message.
 • Converting ODL tree to version 3.
 • Debug messages.

90

Appendix B. How OAL Deals with Spares

An explanation of SPARES and usage guidelines for them are found in the PDS
Standards Document from A-97 to A-100.

• OAL treats SPARES the same as prefixes and suffixes: they are removed when
reading from a file or doing an in-memory transfer.

• OAL may add SPARES to binary tables for alignment purposes, just as
compilers add alignment spares in structures.

• OAL treats implicit and explicit SPARES the same.

• Binary-to-ASCII Conversions: SPARES are always removed.

• ASCII-to-Binary Conversions: SPARES may be added to align the data in
memory on platforms which require alignment, or they may be removed on
platforms which don't require alignment.

• Binary-to-Binary Conversions: SPARES are added or removed as needed to
align the data in memory.

• ASCII-to-ASCII Conversions: SPARES are always removed; this means double
quote delimitors for CHARACTER columns, commas, and <CR><LF> line
delimitors are always removed. Users should manipulate ASCII tables in
memory with these removed, and add them only when preparing to write the
data to an output file, if their presence is desired in the output file.

91

Appendix C. Transferring PDS Files Between Computers

When transfering files between different host systems, use ASCII (text) mode for files
which contain only ASCII data (PDS label files, ASCII Tables, etc), and use binary
(image) mode for files which contain binary data objects.

The following are some of the discrepancies which can arise when a PDS file is
transferred from one operating environment to another (e.g. from VAX to Unix),
resulting in the file no longer having the same record format specified in its label, or
having otherwise altered contents.

• When transfering an ASCII file to a Mac in ASCII mode, the PDS recommended
<CR><LF> (carriage-return and line-feed) characters at the end of each line
may be converted to <CR><CR>. Similarily, when transfering a file from a Mac,
<CR><LF> (or <CR><CR>) may be converted to <LF><LF>. The OA stream
layer handles this situation.

• When transfering a PDS file from UNIX to VMS in ASCII mode, the <LF>s are
stripped out and made part of the file's VMS record attributes, and an extra pad
byte may be added to make each record an even number of bytes. For
FIXED_LENGTH files, this may make the RECORD_BYTES keyword value
invalid.

• A similar situation occurs when the ASCII file is transferred from VMS to UNIX in
binary (image) mode (which is not recommended - use ASCII mode). The
<LF>'s hidden in the VMS record attributes are not transferred, and the resulting
actual 'record' length is one less than the RECORD_BYTES keyword indicates.
The OA stream layer handles both these situations.

• Files transfered to a VAX with binary mode end up as fixed-length, 512-byte
record files.

• Under VMS, a file with RECORD_TYPE keyword value of VARIABLE_LENGTH
may be a real VMS variable-length record file, or it may be a fixed-length 512
byte record file which was transferred from another machine, with embedded 2-
byte record length integers for each variable-length record. The OA stream
layer detects and handles this situation.

92

Appendix D. Example Code

The same example program is given below in C, IDL and Fortran. This source code is
also provided in the release in the files t_images.c, t_images.pro, and t_images.f. The
program reads an Image and a Histogram from a PDS data file (from a Voyager CD-
ROM), calculates the histogram of the Image, then compares the calculated histogram
to the histogram read from the data file - the two should be identical. Another example
program provided in the release (t_tables.c, t_tables.pro, t_tables.f) demonstrates
various Table functions.

D.1 C Example

This is one of the C examples supplied with the OA library distribution.

/* This program reads the IMAGE and IMAGE_HISTOGRAM objects from the
 attached label file V1.LBL. It then calculates the histogram of the
 image, and compares it with the IMAGE_HISTOGRAM read from the file -
 the two should be identical. The file V1.LBL must be present in the
 default directory the program is run from.
*/

#include "oal.h"
#include <string.h>
#include <stdio.h>

main() {

#ifdef IBM_PC
typedef long int4;
#else
typedef int int4;
#endif

OA_OBJECT oa_object, image_object1, image_object2, histogram_object;
OA_OBJECT image_handle;
ODLTREE root_node, odltreenode, image_node, histogram_node;
KEYWORD *kwdptr;
char *label_filename, *errfilespec, fmt[80];
PTR image_values;
int4 histogram_values[256];
int4 *image_histogram_values;
int i, j, lines_per_call, err, lines;
long line, sample;
unsigned char u;

/* Initialize histogram buffer to 0's. */
for (i=0; i<256; i++)
 histogram_values[i] = 0;

/* Read in the label from V1.LBL. This is an attached label with
 variable-length records, containing a HFD compressed Voyager image of
 miranda, an engineering table and two histograms. OaParseLabelFile

93

 uses OA's Stream Layer to read the variable-length records, and L3's
 OdlParseLabelString to create the ODL tree. */

label_filename = "V1.LBL";
root_node = OaParseLabelFile(label_filename, NULL,
 ODL_EXPAND_STRUCTURE,

 TRUE);
if (root_node == NULL) {
 OaReportError("Error from OaParseLabelFile!");
 return(0);
}

/* Find the IMAGE node in the ODL tree. */

if ((image_node = OdlFindObjDesc(root_node, "IMAGE", NULL, NULL, 0,
 ODL_RECURSIVE_DOWN)) == NULL) {
 OaReportError("Couldn't find IMAGE node!");
 return(0);
}

/* Calculate the histogram from the image; use OaReadPartialImage to
 read in the image piece by piece, lines_per_call lines at a time.
 This uses less memory than OaReadImage (or OaReadObject), because
 only a small portion of the image is in memory at a time. */

lines_per_call = 200;

if ((image_handle = OaOpenImage(image_node)) == NULL) {
 OaReportError("Error from OaOpenImage!");
 return(0);
}

sprintf(error_string,
 "Calculating histogram; %d calls to OaReadPartialImage...",
 800/lines_per_call);
oa_errno = 950; /* Error code for Informational messages. */
OaReportError(error_string);

for (i=0; i<(800/lines_per_call); i++) {
 image_object1 = OaReadPartialImage(
 image_handle,
 (long) (i*lines_per_call+1),
 (long) (i*lines_per_call+lines_per_call),
 (long) 1, (long) 800));
 if (image_object1 == NULL) {
 OaReportError("Error from OaReadPartialImage!");
 return(0);
 }
 image_values = image_object1->data_ptr;

 for (line=0; line<lines_per_call; line++) {
 for (sample=0; sample<800; sample++) {
 u = (unsigned char) image_values[line*800 + sample];
 histogram_values[u] += 1;
 }
 }
 OaDeleteObject(image_object1);
}

94

OaCloseImage(image_handle);

/* Find the IMAGE_HISTOGRAM node in the ODL tree. */

histogram_node = OdlFindObjDesc(root_node, "IMAGE_HISTOGRAM", NULL,
 NULL, 0, ODL_RECURSIVE_DOWN);
if (histogram_node == NULL) {
 OaReportError("Couldn't find IMAGE_HISTOGRAM node!");
 return(0);
}

/* Read the IMAGE_HISTOGRAM into memory. */

histogram_object = OaReadHistogram(histogram_node);
if (histogram_object == NULL) {
 OaReportError("Error from OaReadHistogram!");
 return(0);
}

/* Strip the HISTOGRAM object of everything but the object data. */

image_histogram_values = (int4 *) OaExportObject(histogram_object);

/* Print out a few values to see if it worked. */

oa_errno = 950; /* Error code for Informational messages. */
OaReportError(
 "First 5 values should be: 529 182 139 284 315");
#ifdef IBM_PC
strcpy(fmt, "First 5 values are: %ld %ld %ld %ld %ld\n");
#else
strcpy(fmt, "First 5 values are: %d %d %d %d %d\n");
#endif
sprintf(error_string, fmt, image_histogram_values[0],
 image_histogram_values[1], image_histogram_values[2],
 image_histogram_values[3], image_histogram_values[4]);
OaReportError(error_string);

/* Compare the histogram we calculated from the image with the histogram
 read from the file. */

for (i=0; i<256; i++)
 if (histogram_values[i] != image_histogram_values[i]) {
 sprintf(error_string,
 "Error: histograms do not match; i = %d\n", i);
 OaReportError(error_string);
 return(0);
 }
OaReportError("histograms match");

OaFree((PTR) image_histogram_values);

return(0);
}

95

D.2 IDL Example

This is one of the IDL examples supplied with the OA library distribution.

;**
; This procedure reads the IMAGE and IMAGE_HISTOGRAM objects from the
; attached label file V1.LBL, calculates the histogram of the image,
; and compares it with the IMAGE_HISTOGRAM read from the file - the two
; should be identical.
; The file V1.LBL must be present in directory specified by LABEL_DIR
; (edit first section of code below to match your directory).
;
; Platforms and compilers this has been tested on are:
; 1) SGI/Irix
; 2) Sun SPARCstation/Solaris
; 3) DecAlpha/OSF
; 4) PowerMac, Metrowerks CodeWarrier
;
;**

pro t_images, IMAGE, HIST

case 1 of
 (!VERSION.arch eq 'mipseb'): begin
 LABEL_DIR = '/miranda2/monk/oal/lbls/' ;SGI
 end
 (!VERSION.arch eq 'sparc'): begin
 LABEL_DIR = '/alcmene2/monk/oal/lbls/' ;Sun SPARCstation
 end
 (!VERSION.arch eq 'alpha' and !VERSION.os eq 'OSF'): begin
 LABEL_DIR = '/usr/users/monks/oal/lbls/' ;Dec Alpha/OSF
 end
 else: begin
 LABEL_DIR = 'MacT06-2:OAL:' ;Macintosh
 end
endcase

Z = OaRouteErrorMessages(LABEL_DIR + 'OAL_ERRORS.TXT', 0)

ROOT_NODE = OaParseLabelFile(LABEL_DIR + 'V1.LBL', $
 LABEL_DIR + 'ODL_ERRORS.TXT', 1, 0)
if ROOT_NODE eq 0 then begin
 print,'OaParseLabelFile returned NULL!'
 return
endif

IMAGE_NODE = OdlFindObjDesc(ROOT_NODE, 'IMAGE', '', '', 0, 0)
if IMAGE_NODE eq 0 then begin
 print,'OdlFindObjDesc could not find IMAGE node!'
 return
endif

IMAGE_OBJECT = OaReadObject(IMAGE_NODE)
if IMAGE_OBJECT eq 0 then begin

96

 print,'OaReadObject returned NULL!'
 return
endif

IMAGE = OaIDLGetObjectData(IMAGE_OBJECT)

HISTOGRAM_NODE = OdlFindObjDesc(ROOT_NODE, 'IMAGE_HISTOGRAM', '', '', $
 0, 0)
if HISTOGRAM_NODE eq 0 then begin
 print,'OdlFindObjDesc could not find IMAGE_HISTOGRAM node!'
 return
endif

HISTOGRAM_OBJECT = OaReadObject(HISTOGRAM_NODE)
if HISTOGRAM_OBJECT eq 0 then begin
 print,'OaReadObject returned NULL!'
 return
endif

HIST = OaIDLGetObjectData(HISTOGRAM_OBJECT)

print,'First 5 values should be: 529 182 139 284 315'
print,'First 5 value are: ' + string(format='(5(I6))',HIST(0:4))

W = where(HIST ne histogram(IMAGE), COUNT)
if COUNT gt 0 then begin
 print,'Error: histograms do not match; ', COUNT, ' differences.'
endif else begin
 print,'histograms match'
endelse
return
end

97

D.3 Fortran Example

This is one of the Fortran examples supplied with the OA library distribution.

C This program reads the IMAGE and IMAGE_HISTOGRAM object from the
C attached label file V1.LBL, calculates the histogram of the image,
C and compares it with the IMAGE_HISTOGRAM read from the file - the two
C should be identical.
C The file V1.LBL must be present in the default directory the program
C is run from.
C
C Platforms this has been tested on are:
C 1) SGI/Irix
C 2) Sun Sparc/Solaris
C 3) VAX/VMS
C 4) Dec 3100/Ultrix
C 5) Dec Alpha/OpenVMS
C

 implicit none

 INCLUDE 'OAL_FORTRAN.INC'
 INCLUDE 'L3_FORTRAN.INC'

C These variables must be the same size as C long's or pointers.
C On a Dec Alpha they should be integer*8; on all other platforms they
C should be integer*4.

 integer*4 ODLTREE, SIZE
 integer*4 ROOT_NODE, ODLTREENODE, IMAGE_NODE
 integer*4 HISTOGRAM_NODE
 integer*4 IMAGE_OBJECT1, HISTOGRAM_OBJECT
 integer*4 IMAGE_OBJECT2, IMAGE_HANDLE
 integer*4 IMAGE_HISTOGRAM_PTR, IMAGE_PTR
 integer*4 START_LINE, STOP_LINE
 integer*4 START_SAMPLE, STOP_SAMPLE

C These variables must be the same size as C int's.

 integer*4 OBJECT_POSITION, ERR
 integer*4 HISTOGRAM(256)

C These variables must be the same size as C short's.

 integer*2 EXPAND, NOMSGS, SEARCH_SCOPE

 byte IS_IN_MEMORY
 character*80 LABEL_FILENAME, ERRFILESPEC
 character*128 STR
 character*50 KEYWORD_NAME, KEYWORD_VALUE, OBJECT_CLASS

C Local function declarations:

98

 integer*4 COMPARE_HISTOGRAMS

C Read in the label from V1.LBL. This is an attatched label with
C variable-length records, containing a HFD compressed Voyager image
C of miranda, an engineering table and two histograms.

 type *,'Reading V1.LBL'
 LABEL_FILENAME = 'V1.LBL'
 ERRFILESPEC = ' '
 EXPAND = 0
 NOMSGS = 0
 ROOT_NODE = OaFortParseLabelFile(LABEL_FILENAME, ERRFILESPEC,
 1 EXPAND, NOMSGS)
 if (ROOT_NODE .eq. NULL) then
 call OaFortReportError('Error: OaFortParseLabelFile ' //
 1 'returned 0!')
 go to 999
 end if

C Print out the class names of all the root node's children.

 ODLTREENODE = OdlFortLeftmostChild(ROOT_NODE)
 call OaFortReportError('Children of root node are:')
 do while (ODLTREENODE .ne. NULL)
 ERR = OdlFortGetObjDescClassName(ODLTREENODE, OBJECT_CLASS)
 call OaFortReportError('OBJECT_CLASS = ' // OBJECT_CLASS)
 ODLTREENODE = OdlFortRightSibling(ODLTREENODE)
 end do
 type *,' '

C Get the IMAGE node.

 OBJECT_CLASS = 'IMAGE'
 KEYWORD_NAME = ' '
 KEYWORD_VALUE = ' '
 OBJECT_POSITION = 0
 SEARCH_SCOPE = ODL_RECURSIVE_DOWN
 IMAGE_NODE = OdlFortFindObjDesc(ROOT_NODE, OBJECT_CLASS,
 1 KEYWORD_NAME, KEYWORD_VALUE,
 2 OBJECT_POSITION, SEARCH_SCOPE)
 if (IMAGE_NODE .eq. NULL) then
 call OaFortReportError('Error: OdlFortFindObjDesc ' //
 1 'could not find IMAGE node!')
 go to 999
 end if

C Read the IMAGE into memory two different ways.

 type *,'Reading in IMAGE with OaFortReadImage...'
 IMAGE_OBJECT1 = OaFortReadImage(IMAGE_NODE)
 if (IMAGE_OBJECT1 .eq. NULL) then
 call OaFortReportError('Error: OdlFortReadImage failed!')
 go to 999
 end if

 type *,'Reading in IMAGE with OaFortReadPartialImage...'
 IMAGE_HANDLE = OaFortOpenImage(IMAGE_NODE)

99

 if (IMAGE_HANDLE .eq. NULL) then
 call OaFortReportError('Error: OaFortOpenImage ' //
 1 'failed!')
 go to 999
 end if
 START_LINE = 1
 STOP_LINE = 800
 START_SAMPLE = 1
 STOP_SAMPLE = 800
 IMAGE_OBJECT2 = OaFortReadPartialImage(IMAGE_HANDLE,
 1 START_LINE,
 2 STOP_LINE,
 3 START_SAMPLE,
 4 STOP_SAMPLE)
 if (IMAGE_OBJECT2 .eq. NULL) then
 call OaFortReportError('Error: OdlFortReadPartialImage ' //
 1 'failed!')
 go to 999
 end if
 ERR = OaFortCloseImage(IMAGE_HANDLE)

C Get the IMAGE_HISTOGRAM node.

 OBJECT_CLASS = 'IMAGE_HISTOGRAM'
 HISTOGRAM_NODE = OdlFortFindObjDesc(ROOT_NODE, OBJECT_CLASS,
 1 KEYWORD_NAME, KEYWORD_VALUE,
 2 OBJECT_POSITION, SEARCH_SCOPE)
 if (HISTOGRAM_NODE .eq. NULL) then
 call OaFortReportError('Error: OdlFortFindObjDesc ' //
 1 'could not find IMAGE_HISTOGRAM ' //
 2 'node!')
 go to 999
 end if

C Read the IMAGE_HISTOGRAM into memory.

 type *,'Reading in HISTOGRAM'
 HISTOGRAM_OBJECT = OaFortReadHistogram(HISTOGRAM_NODE)
 if (HISTOGRAM_OBJECT .eq. NULL) then
 call OaFortReportError('Error: OdlFortReadHistogram ' //
 1 ' failed!')
 go to 999
 end if

C Strip the HISTOGRAM object of everything but the data. The returned
C value is a pointer to the data.

 IMAGE_HISTOGRAM_PTR = OaFortExportObject(HISTOGRAM_OBJECT)

C Print out a few values to see if it worked.

 call OaFortReportError('First 5 values should be: ' //
 1 '529 182 139 284 315')
 STR = 'First 5 histogram values are: '
 call PRINT_HISTOGRAM_VALUES(%val(IMAGE_HISTOGRAM_PTR))

C Calculate the histogram from the image, and put the result in
HISTOGRAM.

100

C Instead of calling OaFortExportObject to get the data_ptr, get values
C from the Oa_object structure, just to show a different way of doing
C it. Then pass the data_ptr into CALCULATE_HISTOGRAM.

 call OaFortGetObjectInfo(IMAGE_OBJECT1, ODLTREE, IMAGE_PTR,
 1 SIZE, IS_IN_MEMORY)
 call CALCULATE_HISTOGRAM(%val(IMAGE_PTR), HISTOGRAM)

C Compare the calculated histogram with the histogram read from the
C file.

 ERR = COMPARE_HISTOGRAMS(%val(IMAGE_HISTOGRAM_PTR), HISTOGRAM)
 if (ERR .ne. 0) then
 go to 999 !Error message already printed
 end if

C Free all the objects. HISTOGRAM_OBJECT was already freed by export
C call.

 call OaFortDeleteObject(IMAGE_OBJECT1)
 call OaFortDeleteObject(IMAGE_OBJECT2)

 type *,'All tests worked!'
999 end

 subroutine PRINT_HISTOGRAM_VALUES(IMAGE_HISTOGRAM)
 integer*4 IMAGE_HISTOGRAM(*)

 character*32 TMP_STR
 character*128 STR
 integer*4 I

 do I = 1,5
 write(TMP_STR, '(I5)') IMAGE_HISTOGRAM(I)
 STR = STR(1:index(STR, ' ')) // TMP_STR
 end do
 STR = 'First 5 values are: ' // STR
 call OaFortReportError(STR)
 end

 subroutine CALCULATE_HISTOGRAM(IMAGE, HISTOGRAM)
 byte IMAGE(800,800)
 integer*4 HISTOGRAM(256)

C Define an equivalence (overlay) so that can access the MSB and LSB
C bytes of a 2-byte integer independently. By setting the 2-byte
C integer to 1, then testing which byte is 1, you can find whether the
C platform you're running on uses MSB integers or LSB integers, and thus
C which byte of a 2-byte integer is the MSB byte.
C When calculating the histogram, each 1-byte image pixel is copied into
C a 2-byte integer, then the integer's MSB byte set to 0. This is then
C used to index the HISTOGRAM array. Indexing the array with a byte
C directly from the image doesn't work because pixel values between 128
C and 255 give negative numbers, and an error when trying to index.

 byte PIXEL_BYTE_MASK(2)

101

 integer*2 PIXEL, I, J
 equivalence(PIXEL, PIXEL_BYTE_MASK)
 byte MSB_BYTE

 PIXEL = 1
 if (PIXEL_BYTE_MASK(1) .eq. 1) then
 MSB_BYTE = 2
 else
 MSB_BYTE = 1
 end if

C Initialize output HISTOGRAM.

 do I = 1,256
 HISTOGRAM(I) = 0
 end do

 do I = 1,800
 do J = 1,800
 PIXEL = IMAGE(I,J)
 PIXEL_BYTE_MASK(MSB_BYTE) = 0
 HISTOGRAM(PIXEL+1) = HISTOGRAM(PIXEL+1) + 1
 end do
 end do
 end

 integer*4 function COMPARE_HISTOGRAMS(HISTOGRAM1, HISTOGRAM2)
 integer*4 HISTOGRAM1(256)
 integer*4 HISTOGRAM2(256)

 integer*4 I

 do I = 1,256
 if (HISTOGRAM1(I) .ne. HISTOGRAM2(I)) then
 type *,'Error: histograms do not match; I = ',I
 COMPARE_HISTOGRAMS = 1
 return
 end if
 end do
 type *,'histograms match'
 COMPARE_HISTOGRAMS = 0
 return
 end

102

Index
—A—

attribute. See keyword

—B—
binrep, 68

—C—
compiling, 8
converting

keyword values, 42–45
label files, 14
objects

according to profile, 17
to ASCII, 17
to one type, 18

copying
objects, 16
ODL trees, 52

—D—
data object, 3, 5, 6
data types, 71
deleting

objects, 16

—E—
error codes, 40, 85–89
error reporting, 9, 40

—F—
FORTRAN interface

description, 60
example program, 97

free, 39
ftp

usage with PDS files, 91

—I—
IDL interface

example program, 95
OaIDLGetOaObjectStruct, 57
OaIDLGetObjectData, 56
OaIDLGetODLTreeNodeStruct, 58
OaIDLGetProfile, 59
OaIDLReadObject, 55
OaIDLSetProfile, 59
OaIDLVariabletoOaObject, 57
overview, 53–54

image objects
routines, 24–31
supported compression types, 26

InfoZip, 10

—K—
keywords

converting values, 42–45
definition, 5
object-specific routines, 46–50

—L—
L3

description, 5
User's Guide reference, 7

Label Library Lite. See L3
labels. See PDS labels
LeftmostChild macro, 52
LeftSibling macro, 52

—M—
macros, 52
malloc, 39
memory management routines, 10

—N—
numeric error reporting, 40

—O—
OaAddContainerAroundTable, 36
OaAddLineTerminatorstoTable, 35
OaCloseImage, 29
OaCloseOutputFile, 12, 22
OaConvertImagetoArray, 30
OaConvertLabel, 11, 14
OaConvertObject, 17
OaConvertObjecttoOneType, 12, 18
OaCopyObject, 16
OaCopyTree, 52
OaCreateAttachedLabel, 12, 22
OaDeleteColumn, 35
OaDeleteObject, 16
OaDeleteRow, 34
OaExportObject, 16
OaFree, 10, 39
OaGetFileKeywords, 51
OaGetImageKeywords, 48
OaGetObjectClass, 46
OaGetObjectInterchangeFormat, 46
OaGetPartialImage, 30
OaGetQubeKeywords, 50
OaGetSubTable, 33
OaGetTableKeywords, 49
OaImportColumn, 36
OaImportImage, 29
OaJoinTables, 34
OaKwdValuetoLong, 42
OaKwdValuetoStr, 43
OalAdjustKwdstoMatchSDT, 78
OalBinrepConvert, 78
OalBuildSDTNode, 77

103

OalCloseStream, 66
OalCompressSDT, 74
OalConvert, 78
OalCreateSDT, 73
OalDetermineConvertParameters, 77
OalFindBinrepDescrip, 77
OalFreeSDT, 76
OalGetNativeCTypeInfo, 78
OalGetTypeConversionFromProfile, 77
OalInitializeSDT, 74
OalNewStreamDescriptor, 66
OaLongtoKwdValue, 42
OalOpenStream, 63
OalPositionToNextDataNode, 78
OalPostOrderTraverse, 77
OalProcessSDT, 75
OalReadStream, 64
OalReportBinrepErrors, 76
OalResetBinrepErrors, 76
OalSDTtoODLTree, 75
OalSeek, 66
OalWriteStream, 65
OaMalloc, 10, 39
OaObjectClasstoStr, 46
OaOpenImage, 27
OaOpenOutputFile, 12, 20
OaParseLabelFile, 5, 6, 11, 14
OaPDSDataTypetoStr, 47
OaReadImage, 27
OaReadImageFromQube, 38
OaReadImagePixels, 28
OaReadObject, 15, 32
OaReadPartialImage, 28
OaReadSpectrumFromImage, 31
OaReadSpectrumFromQube, 38
OaReadSubTable, 32
OaReadTable, 32
OaRealloc, 10, 39
OaReportError, 9, 40, 41, 85
OaRouteErrorMessages, 40, 41
OaSequencetoLongArray, 44
OaSequencetoStrArray, 45
OaStrtoKwdValue, 43
OaStrtoPDSDataType, 47
OaTransposeTable, 35
OaUnravelContainer, 36
OaWriteObject, 12, 21, 72
oa_errno, 9, 40

listing of error codes, 85–89
OA_OBJECT. See object descriptor
object

attributes, 4
data, 4, 5
descriptor, 6, 13

Object Description Language. See ODL
Object Layer

brief description, 5, 6
detailed design, 11–50

ODL
language, 1, 6
tree, 4, 6
version, 15

OdlParseLabelFile, 14

—P—
Parent macro, 52
path, 14
PDS, 1
PDS data object. See data object
PDS labels, 1, 6

attached, 22
reading, 14
writing, 22

PDS_VERSION_ID keyword, 15
Planetary Data Systems. See PDS
Planetary Science Data Dictionary. See PSDD
profile

C structure definition, 72–73
examples of modifying, 18, 73
selection when compiling, 8
updating for new platform, 68
usage by OaConvertObject, 17

PSDD, 1, 6

—Q—
qube objects

routines, 37–38

—R—
reading

data objects, 15
label files, 14

realloc, 39
RightmostChild macro, 52
RightSibling macro, 52

—S—
SDT

brief description, 6
creating custom SDT, 81
detailed description, 67
SDT_node structure, 69–71

spares, 81, 88, 90
stream decomposition tree. See SDT
stream descriptor, 6
Stream Layer

brief description, 4, 6
detailed design, 61–66
separate compilation, 61

STRUCTURE keyword, 14
Structure Layer

brief description, 4, 6
detailed design, 67–81

—T—
table objects

routines, 32–37
transferring PDS files, 91

—U—
Unzip decompression, 10, 51

104

—W—
writing

attached label files, 22

objects to a file, 20

—Z—
Zip compression, 10, 51

