FINITE ELEMENT METHODS FOR SURFACE DIFFUSION AND APPLICATIONS TO STRESSED EPITAXIAL FILMS

Ricardo H. Nochetto

Department of Mathematics and Institute for Physical Science and Technology

University of Maryland, College Park, USA

http://www.math.umd.edu/~rhn

joint work with

Eberhard Bänsch WIAS - Berlin, Germany and

Pedro Morin Santa Fe, Argentina

Outline

- 1. Problem Description and Challenges
- 2. FEM for Surface Diffusion
 - Time Discretization
 - Variational Formulation
 - Space Discretization
 - Mesh regularization and adaptivity
 - Simulations
 - Graphs: Formulation, Estimates and Simulations
- 3. Stressed Epitaxial Films
 - Coupling: 1st Approach
 - Coupling: 2nd Approach
 - Simulations
 - Related Issues and Open Problems

1. Problem Description

Physical problem: morphological changes in epitaxial thin films

Missfit between crystalline structures

- ⇒ (linear) elasticity in bulk plus surface diffusion on free boundary
- \Rightarrow large deformations of $\Gamma(t) =$ morphological instabilities
- \Rightarrow crack formation and fracture

Simplest Model

Dynamics of free surface $\Gamma(t) \qquad \rightsquigarrow \qquad V = -\Delta_{\Gamma}(\kappa - \varepsilon)$

V = normal velocity $\Delta_{\Gamma} = surface Laplacian$ $\kappa = mean curvature$ $\varepsilon = elastic energy density$

• First step: Understand the purely geometric PDE

 $V = -\Delta_{\Gamma}\kappa$ ($\varepsilon = 0$ or given) \rightsquigarrow Surface diffusion

Related work: U.F. Mayer; Falk et al.; Deckelnick/Dziuk/Elliott; Sethian; Smereka.

• Second step: Couple with elasticity ($\varepsilon =$ solution of a problem in the bulk)

Basic Properties for Closed Surfaces

• Volume conservation

$$\frac{d}{dt}|\Omega(t)| = \int_{\Gamma(t)} V = -\int_{\Gamma(t)} \Delta_{\Gamma}(\kappa + \varepsilon) = \int_{\Gamma(t)} \nabla_{\Gamma}(\kappa + \varepsilon) \cdot \nabla_{\Gamma} 1 = 0.$$

• Area decrease (for $\varepsilon = 0$)

$$rac{d}{dt}|\Gamma(t)| = -\int_{\Gamma(t)} V \,\kappa = -\int_{\Gamma(t)} |
abla_{\Gamma}\kappa|^2 \leq 0.$$

- A surface that starts as a graph may cease to be such in finite time.
- A closed embedded hypersurface may selfintersect in finite time.

Numerical Challenges

- Definition of curvature κ for a discrete surface
- Definition of $\Delta_{\Gamma}\kappa$: surface laplacian of a discrete variable
- 4th order problem
- Lack of maximum principle
- Volume conservation
- Area decrease
- Stability
- Error Analysis

2. General (closed) Surfaces

Issue: How to deal with $V = -\Delta_{\Gamma}\kappa$ Basic identity for Γ given: $\vec{\kappa} := \kappa \vec{\nu} = \Delta_{\Gamma} \vec{X}$

KEY IDEA: write the problem in the scalar and vector quantities $\vec{\kappa}, \quad \kappa, \quad V, \quad \vec{V} \quad \Rightarrow \quad \kappa = \vec{\kappa} \cdot \vec{\nu}, \quad \vec{V} = V\vec{\nu}$

$$\Rightarrow \qquad \vec{\kappa} = \Delta_{\Gamma} \vec{X} \\ \kappa = \vec{\kappa} \cdot \vec{\nu} \\ V = -\Delta_{\Gamma} \kappa \\ \vec{V} = V \vec{\nu} \qquad (Mixed Method)$$

Time Discretization: Semi-Implicit

Given Γ^n , describe Γ^{n+1} as the image of a mapping defined on Γ^n :

$$\Gamma^n \longrightarrow \Gamma^{n+1}, \qquad \vec{X} \longrightarrow \vec{X} + \tau \vec{V}^{n+1}$$

Semi-Implicit Discretization:

- Compute Δ_{Γ} and $\vec{\nu}$ on $\Gamma^n \implies Take \Gamma^n$ as a fixed domain
- Take \vec{X} implicitly in the curvature equation:

$$\boldsymbol{\kappa}^{n+1} := \Delta_{\Gamma} \vec{X}^{n+1} = \Delta_{\Gamma} (\vec{X}^n + \tau \vec{V}^{n+1})$$

Time Discretization: Semi-Implicit

$$\vec{\kappa} = \Delta_{\Gamma} \vec{X}$$
$$\kappa = \vec{\kappa} \cdot \vec{\nu}$$
$$V = -\Delta_{\Gamma} \kappa$$
$$\vec{V} = V \vec{\nu}$$

$$\vec{\kappa}^{n+1} = \Delta_{\Gamma^n} (\vec{X}^n + \tau \vec{V}^{n+1})$$
$$\kappa^{n+1} = \vec{\kappa}^{n+1} \cdot \vec{\nu}^n$$
$$V^{n+1} = -\Delta_{\Gamma^n} \kappa^{n+1}$$
$$\vec{V}^{n+1} = V^{n+1} \vec{\nu}^n$$

$$\vec{\kappa}^{n+1} - \tau \Delta_{\Gamma^n} \vec{V}^{n+1} = \Delta_{\Gamma^n} \vec{X}^n$$
$$\kappa^{n+1} - \vec{\kappa}^{n+1} \cdot \vec{\nu}^n = 0$$
$$V^{n+1} + \Delta_{\Gamma^n} \kappa^{n+1} = 0$$
$$\vec{V}^{n+1} - V^{n+1} \vec{\nu}^n = 0$$

Variational Formulation

$$\begin{split} &\Gamma:=\Gamma^n, \qquad \mathcal{V}(\Gamma):=H^1(\Gamma), \qquad \vec{\mathcal{V}}(\Gamma):=\mathcal{V}(\Gamma)^d,\\ &\text{Seek} \quad \vec{V}^{n+1}, \vec{\kappa}^{n+1}\in \vec{\mathcal{V}}(\Gamma), \quad V^{n+1}, \kappa^{n+1}\in \mathcal{V}(\Gamma) \quad \text{ s.t.} \end{split}$$

$$\left\langle \vec{\kappa}^{n+1}, \vec{\phi} \right\rangle + \tau \left\langle \nabla_{\Gamma} \vec{V}^{n+1}, \nabla_{\Gamma} \vec{\phi} \right\rangle = - \left\langle \nabla_{\Gamma} \vec{X}^{n}, \nabla_{\Gamma} \vec{\phi} \right\rangle \qquad \forall \vec{\phi} \in \vec{\mathcal{V}}(\Gamma)$$

$$\left\langle \kappa^{n+1}, \phi \right\rangle - \left\langle \vec{\kappa}^{n+1} \cdot \vec{\nu}, \phi \right\rangle = 0 \qquad \forall \phi \in \mathcal{V}(\Gamma)$$

$$\left\langle V^{n+1}, \phi \right\rangle - \left\langle \nabla_{\Gamma} \kappa^{n+1}, \nabla_{\Gamma} \phi \right\rangle = 0 \qquad \forall \phi \in \mathcal{V}(\Gamma)$$

$$\left\langle \vec{V}^{n+1}, \vec{\phi} \right\rangle - \left\langle V^{n+1}, \vec{\nu} \cdot \vec{\phi} \right\rangle = 0 \qquad \forall \vec{\phi} \in \vec{\mathcal{V}}(\Gamma)$$

$$\left\langle V^{n+1}, 1 \right\rangle = \int_{\Gamma^n} V^{n+1} = 0 \qquad \Longrightarrow$$

discrete volume conservation

Finite Element Discretization

$$\begin{split} &\Gamma = \Gamma_h^n, \qquad \mathcal{V}_h(\Gamma) \subseteq \mathcal{V}(\Gamma), \qquad \vec{\mathcal{V}}_h(\Gamma) \subseteq \vec{\mathcal{V}}(\Gamma). \end{split}$$
 Seek $\vec{V}^{n+1}, \vec{\kappa}^{n+1} \in \vec{\mathcal{V}}_h(\Gamma), \qquad V^{n+1}, \kappa^{n+1} \in \mathcal{V}_h(\Gamma)$ s.t

$$\left\langle \vec{\kappa}^{n+1}, \vec{\phi}_h \right\rangle + \tau \left\langle \nabla_{\Gamma} \vec{V}^{n+1}, \nabla_{\Gamma} \vec{\phi}_h \right\rangle = - \left\langle \nabla_{\Gamma} \vec{X}^n, \nabla_{\Gamma} \vec{\phi}_h \right\rangle \qquad \forall \vec{\phi}_h \in \vec{\mathcal{V}}_h(\Gamma)$$

$$\left\langle \kappa^{n+1}, \phi_h \right\rangle - \left\langle \vec{\kappa}^{n+1} \cdot \vec{\nu}, \phi_h \right\rangle = 0 \qquad \qquad \forall \phi_h \in \mathcal{V}_h(\Gamma)$$

$$\left\langle V^{n+1}, \phi_h \right\rangle - \left\langle \nabla_{\Gamma} \kappa^{n+1}, \nabla_{\Gamma} \phi_h \right\rangle = 0 \qquad \qquad \forall \phi_h \in \mathcal{V}_h(\Gamma)$$

$$\left\langle \vec{V}^{n+1}, \vec{\phi}_h \right\rangle - \left\langle V^{n+1}, \vec{\nu} \cdot \vec{\phi}_h \right\rangle = 0 \qquad \qquad \forall \vec{\phi}_h \in \vec{\mathcal{V}}_h(\Gamma)$$

- $\langle V^{n+1}, 1 \rangle = \int_{\Gamma^n} V^{n+1} = 0 \implies \text{discrete volume conservation}$
- $|\Gamma^{n+1}| + \tau_n \int_{\Gamma^n} |\nabla_S \kappa^{n+1}|^2 \le |\Gamma^n| \implies \text{area decrease} + \text{stability}$

Nodal Representation and Schur Complement

$$\begin{bmatrix} \tau \vec{A} & 0 & \vec{M} & 0\\ 0 & -A & 0 & M\\ \vec{M} & 0 & 0 & -\vec{N}\\ 0 & M & -\vec{N}^T & 0 \end{bmatrix} \begin{bmatrix} \vec{\mathbf{V}} \\ \mathbf{K} \\ \vec{\mathbf{K}} \\ \mathbf{V} \end{bmatrix} = \begin{bmatrix} -\vec{A}\vec{\mathbf{X}}^n \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Schur complement for V:

$$Q\Big(\tau\vec{N}^T\vec{M}^{-1}\vec{A}\vec{M}^{-1}\vec{N} + MSM\Big)Q\mathbf{V} = -Q\vec{N}^T\vec{M}^{-1}\vec{A}\mathbf{X}^n$$

S is the inverse of $A_{|\ker(A)^{\perp}} \colon \qquad AS = I = SA \qquad \text{ on } \ker(A)^{\perp}$

Q is the $L^2(\Gamma)$ projection onto $\mathcal{X}_h(\Gamma) = \{\phi \in \mathcal{V}_h(\Gamma) : \int_{\Gamma} \phi = 0\}$ The system is symmetric and positive definite \Rightarrow Solvability

(Basic) Final Procedure

- 1. Let \mathfrak{T} be the initial triangulation of Γ with nodes $\vec{\mathbf{X}}$.
- 2. Build the matrices A, \vec{A} , M, \vec{M} , \vec{N} .
- 3. Solve for ${\bf V}$ the system

$$Q\Big(\tau \vec{N}^T \vec{M}^{-1} \vec{A} \vec{M}^{-1} \vec{N} + MSM\Big) Q \mathbf{V} = -Q \vec{N}^T \vec{M}^{-1} \vec{A} \mathbf{X}.$$

- 4. Solve for $\vec{\mathbf{V}}$ the system: $\vec{M}\vec{\mathbf{V}} = \vec{N}\mathbf{V}$.
- 5. Update $\vec{\mathbf{X}} \leftarrow \vec{\mathbf{X}} + \tau \vec{\mathbf{V}}$.
- 6. Go to step 2.

Mesh Regularization

Regularization sweep

- For each node z of the mesh do the following:
 - (a) Compute a normal $\vec{\nu}_z$ to the node $m{z}$.
 - (b) Compute a weighted average \hat{z} of all the vertices that belong to the star centered at z.
 - (c) Consider the line that passes through \hat{z} in the direction of the normal $\vec{\nu_z}$. Replace the node z by the only point belonging to this line that keeps the volume enclosed by the surface unchanged.

Timestep Control

Two goals:

- 1. Prevent large timesteps for which the position change of a node, is larger than the element size (to avoid crossing).
- 2. Allow large timesteps when the normal velocity does not exhibit large variations.

Relative position change
$$= \tau |\vec{V}(z_0) - \vec{V}(z)| \approx \tau h_T |\nabla_{\Gamma} \vec{V}| \approx \epsilon_t h_T$$

Compute
$$\rho = \frac{\epsilon_t}{\max |\nabla_{\Gamma} V|}$$
 and try to use $\tau \approx \rho$

Space Adaptivity

Goal: Have an accurate representation of Γ in the sense that the density of nodes should correlate with the local variation (regularity) of Γ .

We achieve this by enforcing

 $h_S |\angle (\vec{\nu}_1, \vec{\nu}_2)| \approx \alpha$

on every side S of the mesh.

Angle Width Control

Split those elements with an angle wider than a certain α_{max} .

(Natural) Boundary Conditions

t = 0

 $t = 0.113 \times 10^{-5}$

 $t = 0.932 \times 10^{-5}$

 $t = 0.4300 \times 10^{-4}$

t = 0.02545

 $t = 0.35039 \times 10^{-3}$

t = 0.07545

 $t = 0.31211 \times 10^{-2}$

t = 0.12545

Features of Final Procedure

- Consistent approximation, no smoothing of normals etc. needed
- Only C^0 regularity for the finite element spaces
- Arbitrary polynomial degree for the finite element spaces
- Nearly volume conservative (exact volume conservation in the graph case)
- Area decrease / stability
- Time/Space Adaptation and volume conservative Mesh Regularization
- Simulations using ALBERT with P¹ elements (A. Schmidt and K. Siebert) and GEOMVIEW (Geomety Center-Minneapolis)

Volume Conservation and Area Decrease

Relative volume and surface area with respect to the initial values vs. time. The computations were performed with the full adaptive algorithm.

Graphs: Formulation

If
$$\Omega\subseteq \mathbb{R}^d$$
 $\Gamma(t)=\{(x,u(x,t))|x\in \Omega\}\subset \mathbb{R}^d$, and $Q:=\sqrt{1+|
abla u|^2}$, then

$$\nu = \frac{1}{Q}(-\nabla u, 1) \quad \text{(outward unit normal)},$$

$$\kappa = \operatorname{div} \left(\frac{\nabla u}{Q}\right) \quad \text{(mean curvature)},$$

$$V = \frac{u_t}{Q}, \quad \text{(normal velocity)}.$$

$$V = -\Delta_{\Gamma}\kappa \quad \Rightarrow \quad \frac{u_t}{Q} = -\Delta_{\Gamma}\kappa, \quad \kappa = \nabla \cdot \left(\frac{\nabla u}{Q}\right)$$

Anisotropic surface diffusion of graphs: Deckelnick, Dziuk, Elliott (2003)

Comparison between Graph and General Formulation AFTER MUSHROOM

 \Rightarrow Same time-scale and dynamics!

A Priori Error Estimate for the SPACE discretization

$$\sup_{s\in[0,T]} \left(\left\| e_u(s) \right\|^2 + \int_{\Gamma_h(s)} |\nabla_{\Gamma} e_u(s)|^2 \right) + \int_0^T \left(\left\| e_\kappa(s) \right\|^2 + \int_{\Gamma_h(s)} |\nabla_{\Gamma} e_\kappa(s)|^2 \right) ds \le C h^{2k}$$

with $e_u = u - u_h$, $e_\kappa = \kappa - \kappa_h$, $k = \text{polynomial degree} \ge 1$, $\tau = h^2$.

ars	h	$err_{\nu,0}$	EOC	$err_{u,1}$	EOC	$err_{\kappa,1}$	EOC	$err_{u,0}$	EOC	$err_{\kappa,0}$	EOC
	1/2	0.5597		0.6051		18.4		0.0835		2.2214	
ine	1/4	0.2470	1.18	0.2782	1.12	7.67	1.26	0.0254	1.71	0.4073	2.45
	1/8	0.1240	0.99	0.1365	1.03	4.61	0.73	0.0082	1.63	0.1466	1.47
	1/16	0.0611	1.02	0.0669	1.03	2.38	0.96	0.0022	1.93	0.0392	1.90
	1/32	0.0304	1.01	0.0332	1.01	1.19	1.00	0.0005	1.98	0.0099	1.99

quadratics

h	$\operatorname{err}_{\nu,0}$	EOC	$err_{u,1}$	EOC	$err_{\kappa,0}$	EOC	$err_{u,0}$	EOC	$err_{\kappa,0}$	EOC
1/2	0.1271		0.1376		7.38		0.0101		0.3277	
1/4	0.0419	1.60	0.0487	1.50	2.47	1.58	0.0040	1.35	0.0797	2.04
1/8	0.0102	2.03	0.0122	1.99	0.71	1.80	0.0009	2.19	0.0152	2.39
1/16	0.0025	2.01	0.0030	2.00	0.17	2.07	0.0002	2.11	0.0032	2.24

 $t = 1 \times 10^{-4}$

 $t = 1 \times 10^{-3}$

Ricardo H. Nochetto - NIST, May 4, 2004

 ε is *destabilizing* \rightsquigarrow we take it *explicit* in the equation for the velocity.

Coupling: 1st version

 $\sim \rightarrow$

- Start with an initial mesh of the bulk, such that part of its boundary is the free surface
- Solve the equation in the bulk, and obtain ${\ensuremath{\varepsilon}}$
- Update the surface by surface diffusion
- Adjust the mesh to the new boundary
- Repeat

Large deformations and topological changes

... after many timesteps

remeshing will be necessary

Coupling: 2nd version

- Start with a given (discrete) surface
- Generate a bulk mesh (TRIANGLE by Jonathan R. Shewchuk, Berkeley)
- Solve the equation in the bulk, and obtain ε
- Update the surface by surface diffusion
- Repeat

This method seems to work very well!!

Related Issues and Open Questions

- Error analysis for surface diffusion (without coupling)
 - graphs:
 - * optimal a priori error estimates for a space semidiscretization: Bänsch, Morin, Nochetto
 - * extension to ful discretization with anisotropy Deckelnik, Dziuk, Elliott
 - * a posteriori error estimates: nothing done
 - parametric surfaces: nothing done
- More open problems:
 - coupled problem: nothing done
 - mesh smoothing
 - balance of accuracy between bulk and surface
 - 3d version of the coupled problem