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1. Problem Description

Physical problem: morphological changes in epitaxial thin films

substrate

Γ
film σ σ

Missfit between crystalline structures

⇒ (linear) elasticity in bulk plus surface diffusion on free boundary

⇒ large deformations of Γ(t) = morphological instabilities

⇒ crack formation and fracture
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Simplest Model

Dynamics of free surface Γ(t)  V = −∆Γ

(
κ− ε

)
V = normal velocity

∆Γ = surface Laplacian

κ = mean curvature

ε = elastic energy density

• First step: Understand the purely geometric PDE

V = −∆Γκ (ε = 0 or given)  Surface diffusion

Related work: U.F. Mayer; Falk et al.; Deckelnick/Dziuk/Elliott; Sethian; Smereka.

• Second step: Couple with elasticity (ε = solution of a problem in the bulk)
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Basic Properties for Closed Surfaces

• Volume conservation

d

dt
|Ω(t)| =

∫
Γ(t)

V = −
∫

Γ(t)

∆Γ(κ + ε) =
∫

Γ(t)

∇Γ(κ + ε) · ∇Γ1 = 0.

• Area decrease (for ε = 0)

d

dt
|Γ(t)| = −

∫
Γ(t)

V κ = −
∫

Γ(t)

|∇Γκ|2≤ 0.

• A surface that starts as a graph may cease to be such in finite time.

• A closed embedded hypersurface may selfintersect in finite time.
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Numerical Challenges

• Definition of curvature κ for a discrete surface

• Definition of ∆Γκ: surface laplacian of a discrete variable

• 4th order problem

• Lack of maximum principle

• Volume conservation

• Area decrease

• Stability

• Error Analysis
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2. General (closed) Surfaces

Issue: How to deal with V = −∆Γκ

Basic identity for Γ given: ~κ := κ~ν = ∆Γ
~X

KEY IDEA: write the problem in the scalar and vector quantities

~κ, κ, V , ~V ⇒ κ = ~κ · ~ν, ~V = V ~ν

⇒

~κ = ∆Γ
~X

κ = ~κ · ~ν
V = −∆Γκ

~V = V ~ν

(Mixed Method)
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Time Discretization: Semi-Implicit

Given Γn, describe Γn+1 as the image of a mapping defined on Γn:

Γn −→ Γn+1, ~X −→ ~X + τ ~V n+1

Semi-Implicit Discretization:

• Compute ∆Γ and ~ν on Γn =⇒ Take Γn as a fixed domain

• Take ~X implicitly in the curvature equation:

κn+1 := ∆Γ
~X n+1 = ∆Γ( ~X n + τ ~V n+1)
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Time Discretization: Semi-Implicit

~κ = ∆Γ
~X

κ = ~κ · ~ν
V = −∆Γκ

~V = V ~ν

⇒

~κn+1 = ∆Γn( ~X n + τ ~V n+1)

κn+1 = ~κn+1 · ~ν n

V n+1 = −∆Γnκn+1

~V n+1 = V n+1~ν n

~κn+1 − τ∆Γn~V n+1 = ∆Γn ~X n

κn+1 − ~κn+1 · ~ν n = 0

V n+1 + ∆Γnκn+1 = 0

~V n+1 − V n+1~ν n = 0
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Variational Formulation

Γ := Γn, V(Γ) := H1(Γ), ~V(Γ) := V(Γ)d,

Seek ~V n+1, ~κn+1 ∈ ~V(Γ), V n+1, κn+1 ∈ V(Γ) s.t.

〈
~κn+1, ~φ

〉
+ τ

〈
∇Γ

~V n+1, ∇Γ
~φ
〉

= −
〈
∇Γ

~X n, ∇Γ
~φ
〉

∀~φ ∈ ~V(Γ)〈
κn+1, φ

〉
−

〈
~κn+1 · ~ν, φ

〉
= 0 ∀φ ∈ V(Γ)〈

V n+1, φ
〉
−

〈
∇Γκn+1, ∇Γφ

〉
= 0 ∀φ ∈ V(Γ)〈

~V n+1, ~φ
〉
−

〈
V n+1, ~ν · ~φ

〉
= 0 ∀~φ ∈ ~V(Γ)

〈
V n+1, 1

〉
=

∫
Γn

V n+1 = 0 =⇒ discrete volume conservation
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Finite Element Discretization

Γ = Γn
h, Vh(Γ) ⊆ V(Γ), ~Vh(Γ) ⊆ ~V(Γ).

Seek ~V n+1, ~κn+1 ∈ ~Vh(Γ), V n+1, κn+1 ∈ Vh(Γ) s.t.

〈
~κn+1, ~φh

〉
+ τ

〈
∇Γ

~V n+1, ∇Γ
~φh

〉
= −

〈
∇Γ

~Xn, ∇Γ
~φh

〉
∀~φh ∈ ~Vh(Γ)〈

κn+1, φh

〉
−

〈
~κn+1 · ~ν, φh

〉
= 0 ∀φh ∈ Vh(Γ)〈

V n+1, φh

〉
−

〈
∇Γκn+1, ∇Γφh

〉
= 0 ∀φh ∈ Vh(Γ)〈

~V n+1, ~φh

〉
−

〈
V n+1, ~ν · ~φh

〉
= 0 ∀~φh ∈ ~Vh(Γ)

•
〈
V n+1, 1

〉
=

∫
Γn V n+1 = 0 =⇒ discrete volume conservation

• |Γn+1|+ τn

∫
Γn |∇Sκn+1|2 ≤ |Γn| =⇒ area decrease + stability
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Nodal Representation and Schur Complement
τ ~A 0 ~M 0
0 −A 0 M
~M 0 0 − ~N

0 M − ~NT 0




~V
K
~K
V

 =


− ~A~Xn

0
0
0


Schur complement for V:

Q
(
τ ~NT ~M−1 ~A ~M−1 ~N + MSM

)
QV = −Q ~NT ~M−1 ~AXn

S is the inverse of A| ker(A)⊥: AS = I = SA on ker(A)⊥

Q is the L2(Γ) projection onto Xh(Γ) = {φ ∈ Vh(Γ) :
∫

Γ
φ = 0}

The system is symmetric and positive definite ⇒ Solvability
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(Basic) Final Procedure

1. Let T be the initial triangulation of Γ with nodes ~X.

2. Build the matrices A, ~A, M , ~M , ~N .

3. Solve for V the system

Q
(
τ ~NT ~M−1 ~A ~M−1 ~N + MSM

)
QV = −Q ~NT ~M−1 ~AX.

4. Solve for ~V the system: ~M ~V = ~NV.

5. Update ~X← ~X + τ ~V.

6. Go to step 2.
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Mesh Regularization

Regularization sweep

1. For each node z of the mesh do the
following:

(a) Compute a normal ~νz to the node
z.

(b) Compute a weighted average ẑ of
all the vertices that belong to
the star centered at z.

(c) Consider the line that passes
through ẑ in the direction of
the normal ~νz. Replace the node
z by the only point belonging to
this line that keeps the volume
enclosed by the surface
unchanged.

vertex to update z
new vertex \tilde{z}

The area of the shaded triangle
coincides with that of the triangle
marked with thick lines. 
Then the area of the whole bulk 
remains unchanged.

midpoint of 
the element midpoint of 

the element

direction of normal \nu_z

\hat{z}
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Timestep Control

Two goals:

1. Prevent large timesteps for which the position change of a node, is larger than the
element size (to avoid crossing).

2. Allow large timesteps when the normal velocity does not exhibit large variations.

Relative position change = τ |~V (z0)− ~V (z)| ≈ τhT |∇Γ
~V |≈ εthT

Compute ρ =
εt

max |∇ΓV |
and try to use τ ≈ ρ
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Space Adaptivity

Goal: Have an accurate representation of Γ in the sense that the density of nodes should
correlate with the local variation (regularity) of Γ.

We achieve this by enforcing
hS|∠(~ν1, ~ν2)| ≈ α

on every side S of the mesh.

Angle Width Control

Split those elements with an angle wider than a certain αmax.
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(Natural) Boundary Conditions

t = 0 t = 0.113× 10−5 t = 0.932× 10−5

t = 0.4300× 10−4 t = 0.35039× 10−3 t = 0.31211× 10−2

t = 0.02545 t = 0.07545 t = 0.12545
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Features of Final Procedure

• Consistent approximation, no smoothing of normals etc. needed

• Only C0 regularity for the finite element spaces

• Arbitrary polynomial degree for the finite element spaces

• Nearly volume conservative (exact volume conservation in the graph case)

• Area decrease / stability

• Time/Space Adaptation and volume conservative Mesh Regularization

• Simulations using ALBERT with P 1 elements (A. Schmidt and K. Siebert) and
GEOMVIEW (Geomety Center-Minneapolis)
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Volume Conservation and Area Decrease
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Graphs: Formulation

If Ω ⊆ Rd Γ(t) = {(x, u(x, t))|x ∈ Ω} ⊂ Rd, and Q :=
√

1 + |∇u|2, then

ν =
1
Q

(−∇u, 1) (outward unit normal),

κ = div
(
∇u

Q

)
(mean curvature),

V =
ut

Q
, (normal velocity).

V = −∆Γκ ⇒ ut

Q
= −∆Γκ, κ = ∇ ·

(
∇u

Q

)

Anisotropic surface diffusion of graphs: Deckelnick, Dziuk, Elliott (2003)
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Comparison between Graph and General FormulationAFTER MUSHROOM

t = 4.8× 10−5 t = 9.6× 10−5 t = 19.2× 10−5 t = 38.4× 10−5

t = 4.8× 10−5 t = 9.6× 10−5 t = 19.2× 10−5 t = 38.4× 10−5

⇒ Same time-scale and dynamics!
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A Priori Error Estimate for the SPACE discretization

sup
s∈[0,T ]

(
||eu(s)||2 +

∫
Γh(s)

|∇Γeu(s)|2
)

+
T∫
0

(
||eκ(s)||2 +

∫
Γh(s)

|∇Γeκ(s)|2
)
ds ≤ C h2k

with eu = u− uh, eκ = κ− κh, k = polynomial degree ≥ 1, τ = h2.

lin
ea

rs

h errν,0 EOC erru,1 EOC errκ,1 EOC erru,0 EOC errκ,0 EOC

1/2 0.5597 0.6051 18.4 0.0835 2.2214

1/4 0.2470 1.18 0.2782 1.12 7.67 1.26 0.0254 1.71 0.4073 2.45

1/8 0.1240 0.99 0.1365 1.03 4.61 0.73 0.0082 1.63 0.1466 1.47

1/16 0.0611 1.02 0.0669 1.03 2.38 0.96 0.0022 1.93 0.0392 1.90

1/32 0.0304 1.01 0.0332 1.01 1.19 1.00 0.0005 1.98 0.0099 1.99

q
u
ad

ra
ti
cs

h errν,0 EOC erru,1 EOC errκ,0 EOC erru,0 EOC errκ,0 EOC

1/2 0.1271 0.1376 7.38 0.0101 0.3277

1/4 0.0419 1.60 0.0487 1.50 2.47 1.58 0.0040 1.35 0.0797 2.04

1/8 0.0102 2.03 0.0122 1.99 0.71 1.80 0.0009 2.19 0.0152 2.39

1/16 0.0025 2.01 0.0030 2.00 0.17 2.07 0.0002 2.11 0.0032 2.24
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t = 0 t = 5× 10−6 t = 1× 10−5

t = 1× 10−4 t = 1× 10−3 t = 3× 10−3

t = 5× 10−3 t = 7× 10−3 t = 7.1× 10−3
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3. Stressed Epitaxial Films

Dynamics of free surface Γ(t)  V = −∆Γ

(
κ− ε

)

Ω

Γ

Γ
S

Γ
S

Γ
D

where ε = |∇u|2, and

−∆u = 0 in Ω

u = x on ΓD

u = x + periodic on ΓS

∇u · ν = 0 on Γ

ε is destabilizing  we take it explicit in the equation for the velocity.
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Coupling: 1st version

• Start with an initial mesh of the bulk, such that
part of its boundary is the free surface

• Solve the equation in the bulk, and obtain ε

• Update the surface by surface diffusion

• Adjust the mesh to the new boundary

• Repeat

. . . after many timesteps

Large deformations and topological changes  remeshing will be necessary
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Coupling: 2nd version

• Start with a given (discrete) surface

• Generate a bulk mesh (TRIANGLE by Jonathan
R. Shewchuk, Berkeley)

• Solve the equation in the bulk, and obtain ε

• Update the surface by surface diffusion

• Repeat

This method seems to work very well!!
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Related Issues and Open Questions

• Error analysis for surface diffusion (without coupling)

– graphs:
∗ optimal a priori error estimates for a space semidiscretization: Bänsch, Morin,

Nochetto
∗ extension to ful discretization with anisotropy Deckelnik, Dziuk, Elliott
∗ a posteriori error estimates: nothing done

– parametric surfaces: nothing done

• More open problems:

– coupled problem: nothing done
– mesh smoothing
– balance of accuracy between bulk and surface
– 3d version of the coupled problem
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