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Human Hemoglobin
(oxygen transport protein)

(Structure by
G. FERMI and
M.F. PERUTZ)

Globular proteins have dense, crystal-like packing density.
Proteins are small biomolecular “machines’ responsible
for carrying out many life processes.



Hemoglobin Protein Backbone
(string of a—carbon units)

One chain

i

“ball of yarn”




4x4x4 Compact L attice Loop

Possible cube dimensions: 2x2x2,4x4x4,6x6x6,...,LXLXL,...

No. of distinct conformations; (Z—_l) N (Flory)
e

Z=6 1n3D



Hamiltonian Path Generation
(A. Borovinskiy, based on work by R. Ramakrishnan, J.F. Pekny, J.M.

Caruthers)
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14x14x14 Compact Lattice Loop
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In thistalk...

knots and thelir relevance to physics
“virtual” toolsto study knots
knotting probability of compact lattice loops

statistics of subchains in compact lattice
loops

knots In proteins



Knot —aclosed curve in space that does not
Intersect itsalf.

Thefirst few knots:

@ Trivia knot (Unknot)
0-1

@ 3-1 (Trefoll)

7 .
@ 4-1 (Figure-8)
@ 5-1 (Cinquefoil, Pentafoill @ 5 5

Solomon’ s seal)



Knots in Physics

Lord Kelvin (1867): Atoms are knots (vortices)
of some medium (ether).

*Knots appear in Quantum Field Theory and
Statistical Physics.

*Knots in biomolecules. Example: The more
complicated the knot in circular DNA the faster it
moves in gel-electrophoresis experiments




A Little Knot Math



Reldemeaister Moves
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Reldemeister’ s Theorem:

Two knots are equivalent if and only if
any diagram of one may be transformed
Into the other via a sequence of
Reldemeister moves.



Compounded Reidemelster Moves
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Knot Invariants -Mathematical signatures of a

knot.
Name Symbol
Alexander A(-1)

Vassliev degree 2 |v,
Vassliev degree 3 |v,

Examples; . . A(-1)=1
Trivial knot v,=0
O-1 V3:O

Trefoil knot @ A(-1)=3

v,=1

3-1 Vy=1




Alexander Polynomial, A(t)

(first knot invariant/signature)

Start
T ul

gl g3

u2 u3

g2
Alexander matrix for thistrefoil:

Alexander invariant: A(-]_):det - =3




Recipe for Constructing Alexander Matrix, ay;

N X nmatrix wherenis
the number of underpasses

In the following
Index k corresponds to kth underpass and
Index | corresponds to the generator number
of the arc overpassing the kth underpass
For row k:
1) when i=k or i=k+ 1 then
Q=1 Aa1=1
2) when | equals neither k nor k+1.:
If the crossing has sign -1
Q=1, Ay =1, @=1-1
If the crossing has sign +1..
C‘kk:'t’ Gkk+1:1’ aki:t_l
3) All other elements are zero.



Gauss Code and Gauss Diagram

1,(-)
Gauss code for left-handed trefoll:
b-1,a-2,b-3,a-1,b-2 a-3
3, () 2, (-) l
(Alternatively...)
a— 3bove Gauss Diagram for trefoil:
b —‘below’
| + 1
Sgn. | |

+1 -1



Vassiliev Invariants
(Diagram methods by M. Polyak and O. Viro)

Degree two (v,): Look for this pattern:
e.g. trefoll

Degree three (v;): Look for these patterns:




Prime and Composite Knots

Composite knot, K E
< & +@ “

Alexander: A1), =A(t), At),
V,(K) =v,(K)) +Vv,(K,)
V,(K) =v,(K)) +v,(K,)

Vassiliev:



Method to Determine Type of Knot

Preprocess and ssimplify diagram
using Reidemelister moves.




A. Projection

3D conformation

Projection process

N\
L,
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2D knot projection

Projected nodes and links



B. Preprocessing

Using Reidemeister moves

BN~ s N SR

4

20 0
6 114
8 383 40
10 969 187
12 2057 537

14 3896 1219




C. Knot Signature Computation

FLV
Ar(—1)=3 (Alexander) B
v, (T=1 (Veassiliev 2)
v.(|=1  (Vassiliev 3)

© Trivial 1 0 0 NO
@ 3-1 3 1 1 YES
@ 4-1 5 1 0 NO
@ 5-1 5 3 5 YES
@ 5-2 7 2 3 YES




Cavedt!

Knot invariants cannot unambiguously classify a
knot.

However

» knot invariants of the trivial knot and the first four
knots are distinct from those of other prime knots
with 10 crossings or fewer (249 knotsin al), with

one exception (5-1 and 10-132): @ @

* Redemaister moves and knot inflation can
considerably reduce the number of possibilities.



not I nflation

Monte Carlo



Knot Tightening

Shrink-On-No-Overlaps (SONO) method of Piotr Pieranski.
Scale all coordinates s<1, keep bead radius fixed.



Results



Knotting Probabilities for Compact Lattice
L oops



Chance of getting an unknot for several cube sizes:
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Chance of getting the first few ssmple knots for different cube sizes:
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—e—trefoil (3-1) @
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Subchain statistics



14x14x14 Compact Lattice Loop

Average size of subchain (mean-square end-to-end) versus
length of subchain
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Fragments of trivial knots are more crumpled compared to
fragments of all knots.



Noncompact, Unrestricted Loop
Average gyration radius (sguared) versus length

Results: Gyration Radius Average

Closed random walk
with fixed step length 5%

I corrected frivial =
average, N''9
nuplot - az "‘-n-..._‘___
100
off_coords.txt" —— 50 i
I .‘I'
7

Vologodski data
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Trivial knots swell compared to all knots for noncompact chains.
Thistopologically-driven swelling isthe same asthat driven by
self-avoidance (Flory exponent 3/5 versus gaussian exponent 1/2).

R=N°®

N



Compact Lattice Loops

Ratios of average sub-chain sizes, trivial/all knots

& 4x4x4
m 6X6X6
A 8x8x8
x 10x10x10
W 12x12x12
e 14x14x14

ratio mean-square end-to-end of unknot vs

0 50 100 150 200 250

segment length

Fragmentsof trivial knots are consistently more compact
compared to fragments of all knots.



Compact L attice Loops

General scaling of subchains (mean-sguare end-to-end) versus length

22 _ ~ 3
Overdlknots R = t
l.e. Gaussian;
A Flory’s result for chainsin
[ a polymer melt.
| lattice size
segment contour length, /

(A. Borovinskiy)



Knot (De)Localization



Localized or delocalized?



What have been shown computationally...

Random Flat knots
circular chains | (Polymer on

sticky surface)

Noncompact L ocalized* L ocalized**
(swollen)
Compact ») Delocalized**
(collapsed) .

*Katritch,Olson, Vologodskii, Dubochet, Stasiak (2000).
Preferred size of ‘core’ of trefoil knot is 7 segments.
**QOrlandini, Stella, Vanderzande (2003). Localization to
delocalization transition below a 6—point temperature.



Knot Renormalization

Localized

trefoll \

N

g:l g:2



FRACTION OF TREFOQIL KNOTS

Renormalization trg ectory space
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Renormalization tragectory
Initial state: Noncompact |loop, N=384
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Renormalization tragectory
Initial state: 8x8x8 compact lattice loop
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Renormalization tragectory
Initial state: 12x12x12 compact lattice loop
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Knots in Protans



Previous work...

1. M.L. Mansfield (1994):

Approx. 400 proteins, with random bridging of
terminals, using Alexander polynomial. Found at
most 3 knots.

2. W.R. Taylor (2000)

3440 proteins, fixing the terminals and smoothing
(shrinking) the segments in between. Found 6
trefoils and 2 figure-eights.

3. K. Millet, A. Dobay, A. Stasiak (2005)

(Not about proteins) A study of linear random knots
and their scaling behaviour.



Steps

. Obtain protein structural information (.pdb files)
from the Protein Data Bank. 4716 id’ s of

representative protein chains obtained from the

Parallel Protein Information Analysis (PAPIA)

system’ s Representative Protein Chains from PDB

(PDB-REPRDB).

Extract coordinates of protein backbone e

Close the knot

Calculate knot invariants/signatures



Protein gyration radius versus length
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CM-to-terminals distance versus gyration
radius

I |:-rt:rre-irr'5.I t
fit, 1 ATEA5E"»"0 973308




DIRECT closure method

T1, T2 — protein terminals



CM-AY G closure method

C — center of mass
S1, S2 - located on surface of sphere surrounding the protein
F- point at some |large distance away from C



RANDOM 2 closure method

Study statistics of knot closures after generating 1000 pairs
of points S1 and S2. Determine the dominant knot-type.



Knot probabilitiesin RANDOM2 closures for
protein 1gg chain A
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Knot probabilitiesin RANDOM2 closures for
protein 1xd3 chain A

protein 1xd3A
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Knot counts in the three closure methods

Knot-type
Closure method 0y 31 | 4y | 5y | Ba | Gpoup
RANDOM?2 4697 | 15 | 3 | O | 1 0
CM-AYG 4692 | 20 | 3 | 0 | 1 0
DIRECT 4516 | 164 [ O | 9 | 3 15

*RANDOM2Z2 and CM-AY G methods gave the
same predictions for 4711 chains (out of 4716).
*RANDOM?2 and DIRECT methods gave the same
predictions for 4528 chains (out of 4716).



Distribution of the % of RANDOM?2 closures
giving the dominant knot-type
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Unknotting probabilities versus length for
proteins and for compact lattice loops

RANDOMZ closure proteins

04 F

fraction of frivial knots

o
i

0 I 1 1 I 1 1 —
4] 200 400 =00 8O0 1000 1200 1400 100 18C
H

Total of 19 non-trivial knots in the RANDOM 2
method.

Knots in proteins occur much less often than in
compact lattice loops.



Summary of Results

« Unknotting probability drops exponentially with
chain length. P

trivial

e For compact conformations, subchains of trivial
knots are consistently smaller than subchains of
non-trivial knots. For noncompact conformations,
the opposite is observed. The fragments seemto be
‘aware’ of the knottedness of the whole thing.
(AYG)

o Knotsin proteins are rare.

~ e_ Vo



Unresolved 1ssues...

*Are knots in compact |loops delocalized? To what
degree?

*Theoretical treatment of the scaling of subchains
In compact loops with trivial knots.

*Theoretical prediction for the characteristic
length of knotting N,,. P.(N)=e VM
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