Near best rational approximation and spectral methods

Joris Van Deun

University of Antwerp Dept. Math. & Computer Science

20 May 2008

Part I

Near best interpolation

A very old and very classical problem...

Given a real, continuous function f(x) on [-1, 1], find a *good* polynomial approximation

Possible solutions

 Best (minimax) polynomial approximation according to the norm

$$||f|| := ||f||_{\infty} = \max_{-1 \le x \le 1} |f(x)|$$

- Polynomial least squares approximation
- Interpolating polynomial

Linear minimax approximation

Problem

Given linearly independent functions $\{\varphi_k\}$ find

$$\min_{a_k} \left\| f(x) - \sum_{k=0}^n a_k \varphi_k(x) \right\|$$

Solution

 a_k such that $f - \sum a_k \varphi_k$ equi-oscillates, i.e. n + 2 extremal points of equal magnitude and alternating sign

Example: minimax polynomial approximation Take $\varphi_k(x) = x^k$ for k = 0, 1, ..., n

Interpolating polynomial

Take n + 1 points $x_0, x_1, ..., x_n$ and construct polynomial $p_n(x)$ such that

$$f(x_i) = p_n(x_i), \quad i = 1, 2, \dots n$$

Choice of interpolation points? It is well-known that

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0) \cdots (x - x_n)$$

where ξ depends on x and x_0, x_1, \ldots, x_n and f

Try to choose x_0, \ldots, x_n such that $f - p_n$ equi-oscillates ...

Equi-oscillating polynomial on [-1, 1]

Find points x_0, \ldots, x_n such that $(x - x_0) \cdots (x - x_n)$ equi-oscillates on [-1, 1]

Chebyshev polynomial

 $T_{n+1}(x) = \cos((n+1) \arccos x)$

Zeros are given by

$$x_k = \cos \frac{\pi(2k+1)}{2(n+1)}$$

for k = 0, ..., n

 Interpolation in x_k is near best

Alternative interpretation

From

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0) \cdots (x - x_n)$$

it follows that

$$||f - p_n|| \le \frac{\max_{-1 \le t \le 1} f^{(n+1)}(t)}{(n+1)!} ||(x - x_0) \cdots (x - x_n)||$$

Minimising $||(x - x_0) \cdots (x - x_n)||$ over x_0, \dots, x_n leads to the Chebyshev zeros

The unique monic polynomial of degree n + 1 which deviates least from zero in the infinity norm, is a scaled Chebyshev polynomial

How good is near best?

Let *f* be a continuous function on [-1, 1], p_n its polynomial interpolant in the Chebyshev zeros, and p_n^* its best approximation on [-1, 1] according to the infinity norm. Then

$$||f - p_n|| \le \left(2 + \frac{2}{\pi} \log n\right) ||f - p_n^*||$$

- If $n < 10^5$ we loose at most 1 digit
- If $n < 10^{66}$ we loose at most 2 digits

If *f* is analytic in an ellipse with foci ± 1 and semimajor/minor axis lengths $a \ge 1$ and $b \ge 0$, then

$$||f - p_n|| = O((a+b)^{-n}), \quad n \to \infty$$

Rational generalisation

What if f has singularities close to [-1, 1]? Example Take

$$f(x) = \frac{1}{\varepsilon^2 + x^2}, \quad 0 < \varepsilon \ll 1$$

with poles at $\pm i\varepsilon$

Then $||f - p_n|| = O((1 + \varepsilon)^{-n})$

Polynomial interpolation converges too slowly!

Near best fixed pole rational interpolation

Let poles $\alpha_1, \ldots, \alpha_m$ be given (real or complex conjugate) and put

$$\pi_m(x) = (x - \alpha_1) \cdots (x - \alpha_m)$$

Then

$$f(x) - \frac{p_n(x)}{\pi_m(x)} = \frac{[\pi_m(\xi)f(\xi)]^{(n+1)}}{(n+1)!} \frac{(x-x_0)\cdots(x-x_n)}{\pi_m(x)}$$

when

$$f(x_i) = \frac{p_n(x_i)}{\pi_m(x_i)}, \quad i = 0, 1, \dots, n$$

Linear minimax approximation

Problem

Given linearly independent functions $\{\varphi_k\}$ find

$$\min_{a_k} \left\| f(x) - \sum_{k=0}^n a_k \varphi_k(x) \right\|$$

Solution

 a_k such that $f - \sum a_k \varphi_k$ equi-oscillates, i.e. n + 2 extremal points of equal magnitude and alternating sign

Example: minimax rational approximation Take $\varphi_k(x) = x^k / \pi_m(x)$ for k = 0, 1, ..., n

Near best fixed pole rational interpolation

Problem statement

Given π_m , find x_0, \ldots, x_n with $n + 1 \ge m$ such that $||q_{n+1}/\pi_m||$ is minimal, where $q_{n+1}(x) = (x - x_0) \cdots (x - x_n)$ (equivalently: such that q_{n+1}/π_m equi-oscillates)

History

- Special case studied by Markoff, 1884
- General case solved by Bernstein, 1937
- Discussed in Appendix A of Achieser's "Theory of Approximation", 1956
- Only theoretical solution, no properties, computational aspects, ...

Joukowski transformation

$$x = J(z) = \frac{1}{2}\left(z + \frac{1}{z}\right)$$
$$z = x - \sqrt{x^2 - 1}$$

Near best fixed pole rational interpolation

Solution

- Let $\{\alpha_1, \ldots, \alpha_m\}$ denote zeros of π_m
- Put $\beta_k = J^{-1}(\alpha_k)$ for $k = 1, \dots, m$
- Define B_m by

$$B_m(z) = \frac{z - \beta_1}{1 - \beta_1 z} \cdots \frac{z - \beta_m}{1 - \beta_m z}$$

Then

$$\mathcal{T}_n(x) = \frac{1}{2} \left(z^{n-m} B_m(z) + \frac{1}{z^{n-m} B_m(z)} \right)$$

is a rational function in *x* of the form $q_n(x)/\pi_m(x)$. The interpolation points x_0, \ldots, x_n are the zeros of $\mathcal{T}_{n+1}(x)$.

Equi-oscillating rational function on [-1, 1]

 $T_n(x)$

Poles & zeros

Note

Poles attract zeros (see later: electrostatic interpretation)

Why bother?

Can we not just do rational interpolation in the (polynomial) Chebyshev points (zeros of Chebyshev polynomial T_n)?

- If α₁,..., α_m correspond to poles of *f* close to the interval, then ||π_m*f* − *p_n*|| will be small (enlarging the ellipse of analyticity)
- ► However, dividing by π_m can destroy this advantage and $||f p_n/\pi_m||$ may not be small
- If poles gather near the interior of the interval, Chebyshev zeros are useless
- Application: differential equations with interior layers

Let

$$f(x) = \frac{\pi x/\omega}{\sinh(\pi x/\omega)}$$

This function has simple poles at $\pm ik\omega$ for k = 1, 2, ...

- Interpolate by p_{n-1} in zeros of T_n
- Interpolate by p_{n-1}/π_{n-2}
 - in zeros of T_n
 - in zeros of T_n

Plot interpolation error $||f - p_{n-1}||$ and $||f - p_{n-1}/\pi_{n-2}||$ for the case $\omega = 0.01$

Interpolation error as function of *n*

Interpolation error as function of n

Interpolation error as function of n

Part II

Properties

Properties of T_n and T_n

Definition

$$T_n(x) = \frac{1}{2} \left(z^n + \frac{1}{z^n} \right)$$
$$T_n(x) = \frac{1}{2} \left(z^{n-m} B_m(z) + \frac{1}{z^{n-m} B_m(z)} \right)$$

Orthogonality property

$$\int_{-1}^{1} T_j(x) T_k(x) \frac{dx}{\sqrt{1-x^2}} = 0, \quad j \neq k$$
$$\int_{-1}^{1} T_j(x) T_k(x) \frac{dx}{\sqrt{1-x^2}} = 0, \quad j \neq k, \quad j,k \ge m$$

Three term recurrence It is well known that

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

for $n = 1, 2, \dots$ Writing

$$\mathcal{T}_n(x) = \frac{q_n(x)}{\pi_n(x)}$$

where

$$\pi_n(x) = (x - \alpha_1) \cdots (x - \alpha_n), \quad n \le m$$
$$= \pi_m(x), \quad n > m$$

we can extend the definition for T_n to n < m using the theory of orthogonal rational functions

They satisfy the recurrence relation

$$\mathcal{T}_n(x) = \left(A_n \frac{x}{1 - x/\alpha_n} + B_n \frac{1 - x/\alpha_{n-1}}{1 - x/\alpha_n}\right) \mathcal{T}_{n-1}(x) + C_n \frac{1 - x/\bar{\alpha}_{n-2}}{1 - x/\alpha_n} \mathcal{T}_{n-2}(x)$$

for $n = 1, 2, \ldots$ with $T_0 = 1$ and $T_{-1} = 0$

The recurrence coefficients A_n , B_n and C_n are known explicitly

Explicit formulas for the recurrence coefficients

$$A_n = 2 \frac{(1 - \beta_n \beta_{n-1})(1 - |\beta_{n-1}|^2)}{(1 + \beta_{n-1}^2)(1 + \beta_n^2)}$$

$$B_n = -\frac{(1 - |\beta_{n-1}|^2)(\beta_n + \bar{\beta}_{n-2}) + (\beta_{n-1} + \bar{\beta}_{n-1})(1 - \beta_n \bar{\beta}_{n-2})}{(1 + \beta_n^2)(1 - \beta_{n-1} \bar{\beta}_{n-2})}$$

$$C_n = -\frac{(1 - \beta_n \bar{\beta}_{n-1})(1 + \bar{\beta}_{n-2}^2)}{(1 - \beta_{n-1} \bar{\beta}_{n-2})(1 + \beta_n^2)}$$

Interpolation points as eigenvalues

From the three term recurrence it follows immediately that the zeros of $T_n(x)$ are the eigenvalues of

$$\begin{bmatrix} 0 & 1 & & & \\ \frac{1}{2} & 0 & \frac{1}{2} & & \\ & & \ddots & \ddots & \\ & & \ddots & & \frac{1}{2} \\ & & & \frac{1}{2} & 0 \end{bmatrix}$$

Explicitly:

$$x_k = \cos \frac{\pi (2k+1)}{2n}, \quad k = 0, 1, \dots, n-1$$

Interpolation points as eigenvalues

The zeros of $T_n(x)$ are also the generalised eigenvalues of the matrix pencil $(J_n, J_nD_n - S_n + I_n)$, where

$$J_{n} = \begin{bmatrix} -\frac{B_{1}}{A_{1}} & \frac{1}{A_{1}} & & \\ -\frac{C_{2}}{A_{2}} & -\frac{B_{2}}{A_{2}} & \frac{1}{A_{2}} & \\ & \ddots & \ddots & \ddots & \\ & & -\frac{C_{n}}{A_{n}} & -\frac{B_{n}}{A_{n}} \end{bmatrix}, D_{n} = \begin{bmatrix} 0 & & & \\ & \frac{1}{\alpha_{1}} & & \\ & & \ddots & \\ & & & \frac{1}{\alpha_{n-1}} \end{bmatrix}$$
$$S_{n} = 2i \begin{bmatrix} 0 & & & \\ & \frac{\Im(\alpha_{1})C_{3}}{|\alpha_{1}|^{2}A_{3}} & & \\ & & \ddots & \\ & & & \frac{\Im(\alpha_{n-2})C_{n}}{|\alpha_{n-2}|^{2}A_{n}} \end{bmatrix}$$

Electrostatic interpretation of the zeros

Chebyshev polynomials

- Put *n* positive unit charges on (-1, 1) to move freely
- ▶ Fix positive charges of magnitude 1/4 on −1 and 1
- Equilibrium position of unit charges corresponds to zeros of T_n

Chebyshev rational functions

Denote by $\tilde{\alpha}_k$ the *m* eigenvalues of the matrix

$$\begin{bmatrix} \alpha_1 & & \\ & \ddots & \\ & & \alpha_m \end{bmatrix} + \frac{1}{n-m} \mathbf{w} \mathbf{w}^T$$

where $\mathbf{w} = [\sqrt{w_1}, \cdots, \sqrt{w_m}]^T$ and $w_k = (1 - \beta_k^2)/(2\beta_k)$

These $\tilde{\alpha}_k$ are *ghost poles*

If *m* fixed and $n \rightarrow \infty$, then they converge to the real poles

Chebyshev rational functions

- ▶ Put *n* positive unit charges on (-1, 1) to move freely
- ► Fix positive charges of magnitude 1/4 at -1 and 1
- Fix negative charges of magnitude 1/2 at each α_k and α̃_k
- Equilibrium position of unit charges corresponds to zeros of *T_n*

Part III

Spectral collocation methods

Approximating the derivative

Example

Uniform grid x_0, \ldots, x_n with $x_{j+1} - x_j = h$ and function values $f(x_j) = f_j$

Finite difference approximation

$$f'(x_j) \approx \frac{f_{j+1} - f_{j-1}}{2h}$$

Approximating the derivative

Example

Uniform grid x_0, \ldots, x_n with $x_{j+1} - x_j = h$ and function values $f(x_j) = f_j$

Finite difference approximation

$$f'(x_j) \approx \frac{f_{j+1} - f_{j-1}}{2h}$$

Differentiation matrix

Writing down this approximation for each *j* gives

$$\begin{bmatrix} f'_0 \\ \vdots \\ f'_n \end{bmatrix} \approx h^{-1} \begin{bmatrix} 0 & \frac{1}{2} & & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \ddots & & \\ & \ddots & & & \\ & & \ddots & 0 & \frac{1}{2} \\ \frac{1}{2} & & -\frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_n \end{bmatrix}$$

Differentiation becomes sparse matrix-vector multiplication

 $\mathbf{f}'\approx D\mathbf{f}$

Differential equation

$$f'(x) + f(x) = g(x)$$

becomes linear system

$$(D+I)\mathbf{f} = \mathbf{g}$$

Spectral collocation

- Use global interpolant (polynomial or rational function) instead of local
- Dense differentiation matrices instead of sparse
- $O(e^{-cn})$ convergence instead of $O(n^{-2})$ or $O(n^{-4})$

Boundary value problems

Boundary conditions

If boundary conditions are given in 1 and -1, then we need those points as interpolation points

- either use zeros of T_n or T_n , and include -1 and 1
- or use the extrema (which already include -1 and 1)

Polynomial case

Extrema of T_n are given by the zeros of U_{n-1} together with the points -1 and 1, where U_{n-1} is a Chebyshev polynomial of the second kind

Rational case

Extrema of T_n are given by the zeros of U_{n-1} together with the points -1 and 1, where U_{n-1} is a Chebyshev rational function of the second kind

Solution with boundary/interior layer

If the solution f(x) changes abruptly (almost discontinuously) in a small region of [-1, 1], then

- polynomial interpolation converges too slowly
- rational interpolation is appropriate

How do we choose the poles? Obtain rough approximation of f(x) using

- boundary layer analysis, or
- polynomial interpolation, or

▶ ...

and extract poles doing some kind of Padé approximation

Interior layer problem

Solve the boundary value problem

$$\epsilon \frac{d^2 f}{dx^2} + x \frac{df}{dx} + xf = 0, \quad -1 < x < 1$$

with boundary values f(-1) = e and f(1) = 2/e where $0 < \epsilon \ll 1$ Asymptotic estimate for $\epsilon \to 0$ gives

$$f(x) \approx \left(\frac{1}{2}\operatorname{erf}\left(\frac{x}{\sqrt{2\epsilon}}\right) + \frac{3}{2}\right)e^{-x}$$

Padé approximation of erf function provides poles

Solution for $\epsilon = 0.0002$

Spectral method with n = 50 and m = 10Using

- Polynomial interpolant in zeros of T_n
- Rational interpolant in zeros of T_n
- Rational interpolant in zeros of T_n

Using the extrema

Chebyshev-Padé instead of asymptotic

Chebyshev-Padé instead of asymptotic

Boundary layer problem

Solve the boundary value problem

$$4\epsilon \frac{d^2f}{dx^2} - 2\left(\frac{x+1}{2} - a\right)^2 \frac{df}{dx} - \frac{x+1}{2}f = 0, \quad -1 < x < 1$$

with boundary values f(-1) = -3 and f(1) = 1 where $0 < \epsilon \ll 1$ Example: $\epsilon = 0.01$, a = 0.4

 $\epsilon = 0.0001$, zeros, asymptotic, n = 80, m = 20

Same with extrema instead of poles

Same with Padé instead of asymptotic

THE END