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Part I

Near best interpolation
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Introduction

A very old and very classical problem. . .
Given a real, continuous function f (x) on [−1, 1], find a good
polynomial approximation

Possible solutions
I Best (minimax) polynomial approximation according to the

norm
‖f‖ := ‖f‖∞ = max

−1≤x≤1
|f (x)|

I Polynomial least squares approximation
I Interpolating polynomial
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Linear minimax approximation

Problem
Given linearly independent functions {ϕk} find

min
ak

∥∥∥∥∥f (x)−
n∑

k=0

akϕk(x)

∥∥∥∥∥
Solution
ak such that f −∑ akϕk equi-oscillates, i.e. n + 2 extremal points
of equal magnitude and alternating sign

Example: minimax polynomial approximation
Take ϕk(x) = xk for k = 0, 1, . . . , n
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Interpolating polynomial

Take n + 1 points x0, x1, . . . , xn and construct polynomial pn(x)
such that

f (xi) = pn(xi), i = 1, 2, . . . n

Choice of interpolation points?
It is well-known that

f (x)− pn(x) =
f (n+1)(ξ)
(n + 1)!

(x− x0) · · · (x− xn)

where ξ depends on x and x0, x1, . . . , xn and f

Try to choose x0, . . . , xn such that f − pn equi-oscillates . . .
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Equi-oscillating polynomial on [−1, 1]

Find points x0, . . . , xn such that (x− x0) · · · (x− xn)
equi-oscillates on [−1, 1]

I Chebyshev polynomial

Tn+1(x) = cos((n+1) arccos x)

I Zeros are given by

xk = cos
π(2k + 1)
2(n + 1)

for k = 0, . . . , n
I Interpolation in xk is near

best
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Alternative interpretation

From

f (x)− pn(x) =
f (n+1)(ξ)
(n + 1)!

(x− x0) · · · (x− xn)

it follows that

‖f − pn‖ ≤ max−1≤t≤1 f (n+1)(t)
(n + 1)!

‖(x− x0) · · · (x− xn)‖

Minimising ‖(x− x0) · · · (x− xn)‖ over x0, . . . , xn leads to the
Chebyshev zeros

The unique monic polynomial of degree n + 1 which deviates
least from zero in the infinity norm, is a scaled Chebyshev
polynomial
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How good is near best?

Let f be a continuous function on [−1, 1], pn its polynomial
interpolant in the Chebyshev zeros, and p∗n its best
approximation on [−1, 1] according to the infinity norm. Then

‖f − pn‖ ≤
(

2 +
2
π

log n
)
‖f − p∗n‖

I If n < 105 we loose at most 1 digit
I If n < 1066 we loose at most 2 digits

If f is analytic in an ellipse with foci ±1 and semimajor/minor
axis lengths a ≥ 1 and b ≥ 0, then

‖f − pn‖ = O((a + b)−n), n→∞
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Rational generalisation

What if f has singularities close to [−1, 1]?

Example
Take

f (x) =
1

ε2 + x2 , 0 < ε� 1

with poles at ±iε

Then ‖f − pn‖ = O((1 + ε)−n)

Polynomial interpolation converges too slowly!
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Near best fixed pole rational interpolation

Let poles α1, . . . , αm be given (real or complex conjugate) and
put

πm(x) = (x− α1) · · · (x− αm)

Then

f (x)− pn(x)
πm(x)

=
[πm(ξ)f (ξ)](n+1)

(n + 1)!
(x− x0) · · · (x− xn)

πm(x)

when
f (xi) =

pn(xi)
πm(xi)

, i = 0, 1, . . . , n
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Linear minimax approximation

Problem
Given linearly independent functions {ϕk} find

min
ak

∥∥∥∥∥f (x)−
n∑

k=0

akϕk(x)

∥∥∥∥∥
Solution
ak such that f −∑ akϕk equi-oscillates, i.e. n + 2 extremal points
of equal magnitude and alternating sign

Example: minimax rational approximation
Take ϕk(x) = xk/πm(x) for k = 0, 1, . . . , n
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Near best fixed pole rational interpolation

Problem statement
Given πm, find x0, . . . , xn with n + 1 ≥ m such that ‖qn+1/πm‖ is
minimal, where qn+1(x) = (x− x0) · · · (x− xn)
(equivalently: such that qn+1/πm equi-oscillates)

History

I Special case studied by Markoff, 1884
I General case solved by Bernstein, 1937
I Discussed in Appendix A of Achieser’s “Theory of

Approximation”, 1956
I Only theoretical solution, no properties, computational

aspects, . . .
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Joukowski transformation

J−1

J

x = J(z) =
1
2

(
z +

1
z

)
z = x−

√
x2 − 1
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Near best fixed pole rational interpolation

Solution
I Let {α1, . . . , αm} denote zeros of πm

I Put βk = J−1(αk) for k = 1, . . . ,m
I Define Bm by

Bm(z) =
z− β1

1− β1z
· · · z− βm

1− βmz

Then

Tn(x) =
1
2

(
zn−mBm(z) +

1
zn−mBm(z)

)
is a rational function in x of the form qn(x)/πm(x).
The interpolation points x0, . . . , xn are the zeros of Tn+1(x).
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Equi-oscillating rational function on [−1, 1]

Example
πm(x) =

∏m/2
k=1(x2 + k2ω2) where ω = 0.1
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Why bother?

Can we not just do rational interpolation in the (polynomial)
Chebyshev points (zeros of Chebyshev polynomial Tn)?

I If α1, . . . , αm correspond to poles of f close to the interval,
then ‖πmf − pn‖ will be small (enlarging the ellipse of
analyticity)

I However, dividing by πm can destroy this advantage and
‖f − pn/πm‖ may not be small

I If poles gather near the interior of the interval, Chebyshev
zeros are useless

I Application: differential equations with interior layers
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Example

Let
f (x) =

πx/ω
sinh(πx/ω)

This function has simple poles at ±ikω for k = 1, 2, . . .
I Interpolate by pn−1 in zeros of Tn

I Interpolate by pn−1/πn−2
I in zeros of Tn
I in zeros of Tn

Plot interpolation error ‖f − pn−1‖ and ‖f − pn−1/πn−2‖ for the
case ω = 0.01
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Graph of f (x)
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Interpolation error as function of n
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Part II

Properties
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Properties of Tn and Tn

Definition

Tn(x) =
1
2

(
zn +

1
zn

)
Tn(x) =

1
2

(
zn−mBm(z) +

1
zn−mBm(z)

)

Orthogonality property

∫ 1

−1
Tj(x)Tk(x)

dx√
1− x2

= 0, j 6= k∫ 1

−1
Tj(x)Tk(x)

dx√
1− x2

= 0, j 6= k, j, k ≥ m
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Properties of Tn and Tn

Three term recurrence
It is well known that

Tn+1(x) = 2xTn(x)− Tn−1(x)

for n = 1, 2, . . .
Writing

Tn(x) =
qn(x)
πn(x)

where

πn(x) = (x− α1) · · · (x− αn), n ≤ m

= πm(x), n > m

we can extend the definition for Tn to n < m using the theory of
orthogonal rational functions
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They satisfy the recurrence relation

Tn(x) =
(

An
x

1− x/αn
+ Bn

1− x/αn−1

1− x/αn

)
Tn−1(x)

+ Cn
1− x/ᾱn−2

1− x/αn
Tn−2(x)

for n = 1, 2, . . . with T0 = 1 and T−1 = 0

The recurrence coefficients An, Bn and Cn are known explicitly

23 / 44



Explicit formulas for the recurrence coefficients

An = 2
(1− βnβn−1)(1− |βn−1|2)

(1 + β2
n−1)(1 + β2

n)

Bn = −(1− |βn−1|2)(βn + β̄n−2) + (βn−1 + β̄n−1)(1− βnβ̄n−2)
(1 + β2

n)(1− βn−1β̄n−2)

Cn = − (1− βnβ̄n−1)(1 + β̄2
n−2)

(1− βn−1β̄n−2)(1 + β2
n)
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Interpolation points as eigenvalues

From the three term recurrence it follows immediately that the
zeros of Tn(x) are the eigenvalues of

0 1
1
2 0 1

2
. . . . . .
. . . 1

2
1
2 0


Explicitly:

xk = cos
π(2k + 1)

2n
, k = 0, 1, . . . , n− 1
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Interpolation points as eigenvalues

The zeros of Tn(x) are also the generalised eigenvalues of the
matrix pencil (Jn, JnDn − Sn + In), where

Jn =


−B1

A1

1
A1

−C2
A2
−B2

A2

1
A2

. . . . . . . . .
−Cn

An
−Bn

An

 ,Dn =


0

1
α1

. . .
1

αn−1



Sn = 2i


0
=(α1)C3
|α1|2A3

. . .
=(αn−2)Cn
|αn−2|2An
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Electrostatic interpretation of the zeros

Chebyshev polynomials

I Put n positive unit charges on (−1, 1) to move freely
I Fix positive charges of magnitude 1/4 on −1 and 1
I Equilibrium position of unit charges corresponds to zeros

of Tn
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Chebyshev rational functions
Denote by α̃k the m eigenvalues of the matrix α1

. . .
αm

+
1

n− m
wwT

where w = [
√

w1, · · · ,√wm]T and wk = (1− β2
k )/(2βk)

These α̃k are ghost poles

If m fixed and n→∞, then they converge to the real poles
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Chebyshev rational functions

I Put n positive unit charges on (−1, 1) to move freely
I Fix positive charges of magnitude 1/4 at −1 and 1
I Fix negative charges of magnitude 1/2 at each αk and α̃k

I Equilibrium position of unit charges corresponds to zeros
of Tn
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Part III

Spectral collocation methods
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Approximating the derivative

Example
Uniform grid x0, . . . , xn with xj+1 − xj = h and function values
f (xj) = fj
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Finite difference approximation

f ′(xj) ≈ fj+1 − fj−1

2h
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Differentiation matrix

Writing down this approximation for each j gives
f ′0

...

f ′n

 ≈ h−1



0 1
2 −1

2

− 1
2 0

. . .

. . .

. . . 0 1
2

1
2 − 1

2 0




f0

...

fn


Differentiation becomes sparse matrix-vector multiplication

f′ ≈ Df

Differential equation

f ′(x) + f (x) = g(x)

becomes linear system

(D + I)f = g
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Spectral collocation

I Use global interpolant (polynomial or rational function)
instead of local

I Dense differentiation matrices instead of sparse
I O(e−cn) convergence instead of O(n−2) or O(n−4)
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Boundary value problems

Boundary conditions
If boundary conditions are given in 1 and −1, then we need
those points as interpolation points

I either use zeros of Tn or Tn, and include −1 and 1
I or use the extrema (which already include −1 and 1)

Polynomial case
Extrema of Tn are given by the zeros of Un−1 together with the
points −1 and 1, where Un−1 is a Chebyshev polynomial of the
second kind

Rational case
Extrema of Tn are given by the zeros of Un−1 together with the
points −1 and 1, where Un−1 is a Chebyshev rational function of
the second kind
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Solution with boundary/interior layer

If the solution f (x) changes abruptly (almost discontinuously) in
a small region of [−1, 1], then

I polynomial interpolation converges too slowly
I rational interpolation is appropriate

How do we choose the poles?
Obtain rough approximation of f (x) using

I boundary layer analysis, or
I polynomial interpolation, or
I . . .

and extract poles doing some kind of Padé approximation
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Interior layer problem

Solve the boundary value problem

ε
d2f
dx2 + x

df
dx

+ xf = 0, −1 < x < 1

with boundary values f (−1) = e and f (1) = 2/e where 0 < ε� 1
Asymptotic estimate for ε→ 0 gives

f (x) ≈
(

1
2

erf
(

x√
2ε

)
+

3
2

)
e−x

Padé approximation of erf function provides poles
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Solution for ε = 0.0002

Spectral method with n = 50 and m = 10
Using

I Polynomial interpolant in zeros of Tn

I Rational interpolant in zeros of Tn

I Rational interpolant in zeros of Tn
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Using the extrema
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Chebyshev-Padé instead of asymptotic
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Chebyshev-Padé instead of asymptotic
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Boundary layer problem

Solve the boundary value problem

4ε
d2f
dx2 − 2

(
x + 1

2
− a
)2 df

dx
− x + 1

2
f = 0, −1 < x < 1

with boundary values f (−1) = −3 and f (1) = 1 where 0 < ε� 1
Example: ε = 0.01, a = 0.4
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ε = 0.0001, zeros, asymptotic, n = 80, m = 20
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Same with extrema instead of poles
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Same with Padé instead of asymptotic
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THE END
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