Near best rational approximation and spectral methods

Joris Van Deun

University of Antwerp
Dept. Math. \& Computer Science

20 May 2008
\square
Universiteit Antwerpen

Part I

Near best interpolation

Introduction

A very old and very classical problem. . .
Given a real, continuous function $f(x)$ on $[-1,1]$, find a good polynomial approximation

Possible solutions

- Best (minimax) polynomial approximation according to the norm

$$
\|f\|:=\|f\|_{\infty}=\max _{-1 \leq x \leq 1}|f(x)|
$$

- Polynomial least squares approximation
- Interpolating polynomial

Linear minimax approximation

Problem
Given linearly independent functions $\left\{\varphi_{k}\right\}$ find

$$
\min _{a_{k}}\left\|f(x)-\sum_{k=0}^{n} a_{k} \varphi_{k}(x)\right\|
$$

Solution
a_{k} such that $f-\sum a_{k} \varphi_{k}$ equi-oscillates, i.e. $n+2$ extremal points of equal magnitude and alternating sign

Example: minimax polynomial approximation Take $\varphi_{k}(x)=x^{k}$ for $k=0,1, \ldots, n$

Interpolating polynomial

Take $n+1$ points $x_{0}, x_{1}, \ldots, x_{n}$ and construct polynomial $p_{n}(x)$ such that

$$
f\left(x_{i}\right)=p_{n}\left(x_{i}\right), \quad i=1,2, \ldots n
$$

Choice of interpolation points?
It is well-known that

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)
$$

where ξ depends on x and $x_{0}, x_{1}, \ldots, x_{n}$ and f
Try to choose x_{0}, \ldots, x_{n} such that $f-p_{n}$ equi-oscillates \ldots

Equi-oscillating polynomial on $[-1,1]$

Find points x_{0}, \ldots, x_{n} such that $\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)$ equi-oscillates on $[-1,1]$

- Chebyshev polynomial

$$
T_{n+1}(x)=\cos ((n+1) \arccos x)
$$

- Zeros are given by

$$
x_{k}=\cos \frac{\pi(2 k+1)}{2(n+1)}
$$

for $k=0, \ldots, n$

- Interpolation in x_{k} is near
 best

Alternative interpretation

From

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)
$$

it follows that

$$
\left\|f-p_{n}\right\| \leq \frac{\max _{-1 \leq t \leq 1} f^{(n+1)}(t)}{(n+1)!}\left\|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right\|
$$

Minimising $\left\|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right\|$ over x_{0}, \ldots, x_{n} leads to the Chebyshev zeros

The unique monic polynomial of degree $n+1$ which deviates least from zero in the infinity norm, is a scaled Chebyshev polynomial

How good is near best?

Let f be a continuous function on $[-1,1], p_{n}$ its polynomial interpolant in the Chebyshev zeros, and p_{n}^{*} its best approximation on $[-1,1]$ according to the infinity norm. Then

$$
\left\|f-p_{n}\right\| \leq\left(2+\frac{2}{\pi} \log n\right)\left\|f-p_{n}^{*}\right\|
$$

- If $n<10^{5}$ we loose at most 1 digit
- If $n<10^{66}$ we loose at most 2 digits

If f is analytic in an ellipse with foci ± 1 and semimajor/minor axis lengths $a \geq 1$ and $b \geq 0$, then

$$
\left\|f-p_{n}\right\|=O\left((a+b)^{-n}\right), \quad n \rightarrow \infty
$$

Rational generalisation

What if f has singularities close to $[-1,1]$?
Example
Take

$$
f(x)=\frac{1}{\varepsilon^{2}+x^{2}}, \quad 0<\varepsilon \ll 1
$$

with poles at $\pm \mathrm{i}$ ع
Then $\left\|f-p_{n}\right\|=O\left((1+\varepsilon)^{-n}\right)$
Polynomial interpolation converges too slowly!

Near best fixed pole rational interpolation

Let poles $\alpha_{1}, \ldots, \alpha_{m}$ be given (real or complex conjugate) and put

$$
\pi_{m}(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{m}\right)
$$

Then

$$
f(x)-\frac{p_{n}(x)}{\pi_{m}(x)}=\frac{\left[\pi_{m}(\xi) f(\xi)\right]^{(n+1)}}{(n+1)!} \frac{\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)}{\pi_{m}(x)}
$$

when

$$
f\left(x_{i}\right)=\frac{p_{n}\left(x_{i}\right)}{\pi_{m}\left(x_{i}\right)}, \quad i=0,1, \ldots, n
$$

Linear minimax approximation

Problem
Given linearly independent functions $\left\{\varphi_{k}\right\}$ find

$$
\min _{a_{k}}\left\|f(x)-\sum_{k=0}^{n} a_{k} \varphi_{k}(x)\right\|
$$

Solution
a_{k} such that $f-\sum a_{k} \varphi_{k}$ equi-oscillates, i.e. $n+2$ extremal points of equal magnitude and alternating sign

Example: minimax rational approximation
Take $\varphi_{k}(x)=x^{k} / \pi_{m}(x)$ for $k=0,1, \ldots, n$

Near best fixed pole rational interpolation

Problem statement
Given π_{m}, find x_{0}, \ldots, x_{n} with $n+1 \geq m$ such that $\left\|q_{n+1} / \pi_{m}\right\|$ is minimal, where $q_{n+1}(x)=\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)$ (equivalently: such that q_{n+1} / π_{m} equi-oscillates)

History

- Special case studied by Markoff, 1884
- General case solved by Bernstein, 1937
- Discussed in Appendix A of Achieser's "Theory of Approximation", 1956
- Only theoretical solution, no properties, computational aspects, ...

Joukowski transformation

$$
\begin{aligned}
& x=J(z)=\frac{1}{2}\left(z+\frac{1}{z}\right) \\
& z=x-\sqrt{x^{2}-1}
\end{aligned}
$$

Near best fixed pole rational interpolation

Solution

- Let $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ denote zeros of π_{m}
- Put $\beta_{k}=J^{-1}\left(\alpha_{k}\right)$ for $k=1, \ldots, m$
- Define B_{m} by

$$
B_{m}(z)=\frac{z-\beta_{1}}{1-\beta_{1} z} \cdots \frac{z-\beta_{m}}{1-\beta_{m} z}
$$

Then

$$
\mathcal{T}_{n}(x)=\frac{1}{2}\left(z^{n-m} B_{m}(z)+\frac{1}{z^{n-m} B_{m}(z)}\right)
$$

is a rational function in x of the form $q_{n}(x) / \pi_{m}(x)$.
The interpolation points x_{0}, \ldots, x_{n} are the zeros of $\mathcal{T}_{n+1}(x)$.

Equi-oscillating rational function on $[-1,1]$

Example
$\pi_{m}(x)=\prod_{k=1}^{m / 2}\left(x^{2}+k^{2} \omega^{2}\right)$ where $\omega=0.1$

$\mathcal{T}_{n}(x)$

Poles \& zeros

Note
Poles attract zeros (see later: electrostatic interpretation)

Why bother?

Can we not just do rational interpolation in the (polynomial) Chebyshev points (zeros of Chebyshev polynomial T_{n})?

- If $\alpha_{1}, \ldots, \alpha_{m}$ correspond to poles of f close to the interval, then $\left\|\pi_{m} f-p_{n}\right\|$ will be small (enlarging the ellipse of analyticity)
- However, dividing by π_{m} can destroy this advantage and $\left\|f-p_{n} / \pi_{m}\right\|$ may not be small
- If poles gather near the interior of the interval, Chebyshev zeros are useless
- Application: differential equations with interior layers

Example

Let

$$
f(x)=\frac{\pi x / \omega}{\sinh (\pi x / \omega)}
$$

This function has simple poles at $\pm \mathrm{i} k \omega$ for $k=1,2, \ldots$

- Interpolate by p_{n-1} in zeros of T_{n}
- Interpolate by p_{n-1} / π_{n-2}
- in zeros of T_{n}
- in zeros of \mathcal{T}_{n}

Plot interpolation error $\left\|f-p_{n-1}\right\|$ and $\left\|f-p_{n-1} / \pi_{n-2}\right\|$ for the case $\omega=0.01$

Graph of $f(x)$

Interpolation error as function of n

Interpolation error as function of n

Interpolation error as function of n

Part II

Properties

Properties of T_{n} and \mathcal{T}_{n}

Definition

$$
\begin{aligned}
& T_{n}(x)=\frac{1}{2}\left(z^{n}+\frac{1}{z^{n}}\right) \\
& \mathcal{T}_{n}(x)=\frac{1}{2}\left(z^{n-m} B_{m}(z)+\frac{1}{z^{n-m} B_{m}(z)}\right)
\end{aligned}
$$

Orthogonality property

$$
\begin{aligned}
& \int_{-1}^{1} T_{j}(x) T_{k}(x) \frac{d x}{\sqrt{1-x^{2}}}=0, \quad j \neq k \\
& \int_{-1}^{1} \mathcal{T}_{j}(x) \mathcal{T}_{k}(x) \frac{d x}{\sqrt{1-x^{2}}}=0, \quad j \neq k, \quad j, k \geq m
\end{aligned}
$$

Properties of T_{n} and \mathcal{T}_{n}

Three term recurrence
It is well known that

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

for $n=1,2, \ldots$
Writing

$$
\mathcal{T}_{n}(x)=\frac{q_{n}(x)}{\pi_{n}(x)}
$$

where

$$
\begin{aligned}
\pi_{n}(x) & =\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right), \quad n \leq m \\
& =\pi_{m}(x), \quad n>m
\end{aligned}
$$

we can extend the definition for \mathcal{T}_{n} to $n<m$ using the theory of orthogonal rational functions

They satisfy the recurrence relation

$$
\begin{aligned}
\mathcal{T}_{n}(x)=\left(A_{n} \frac{x}{1-x / \alpha_{n}}+B_{n} \frac{1-x / \alpha_{n-1}}{1-x / \alpha_{n}}\right) & \mathcal{T}_{n-1}(x) \\
& +C_{n} \frac{1-x / \bar{\alpha}_{n-2}}{1-x / \alpha_{n}} \mathcal{T}_{n-2}(x)
\end{aligned}
$$

for $n=1,2, \ldots$ with $\mathcal{T}_{0}=1$ and $\mathcal{T}_{-1}=0$
The recurrence coefficients A_{n}, B_{n} and C_{n} are known explicitly

Explicit formulas for the recurrence coefficients

$$
\begin{aligned}
& A_{n}=2 \frac{\left(1-\beta_{n} \beta_{n-1}\right)\left(1-\left|\beta_{n-1}\right|^{2}\right)}{\left(1+\beta_{n-1}^{2}\right)\left(1+\beta_{n}^{2}\right)} \\
& B_{n}=-\frac{\left(1-\left|\beta_{n-1}\right|^{2}\right)\left(\beta_{n}+\bar{\beta}_{n-2}\right)+\left(\beta_{n-1}+\bar{\beta}_{n-1}\right)\left(1-\beta_{n} \bar{\beta}_{n-2}\right)}{\left(1+\beta_{n}^{2}\right)\left(1-\beta_{n-1} \bar{\beta}_{n-2}\right)} \\
& C_{n}=-\frac{\left(1-\beta_{n} \bar{\beta}_{n-1}\right)\left(1+\bar{\beta}_{n-2}^{2}\right)}{\left(1-\beta_{n-1} \bar{\beta}_{n-2}\right)\left(1+\beta_{n}^{2}\right)}
\end{aligned}
$$

Interpolation points as eigenvalues

From the three term recurrence it follows immediately that the zeros of $T_{n}(x)$ are the eigenvalues of

$$
\left[\begin{array}{ccccc}
0 & 1 & & & \\
\frac{1}{2} & 0 & \frac{1}{2} & & \\
& & \ddots & \ddots & \\
& & \ddots & & \frac{1}{2} \\
& & & \frac{1}{2} & 0
\end{array}\right]
$$

Explicitly:

$$
x_{k}=\cos \frac{\pi(2 k+1)}{2 n}, \quad k=0,1, \ldots, n-1
$$

Interpolation points as eigenvalues

The zeros of $\mathcal{T}_{n}(x)$ are also the generalised eigenvalues of the matrix pencil ($J_{n}, J_{n} D_{n}-S_{n}+I_{n}$), where

$$
J_{n}=\left[\begin{array}{cccc}
-\frac{B_{1}}{A_{1}} & \frac{1}{A_{1}} & & \\
-\frac{C_{2}}{A_{2}} & -\frac{B_{2}}{A_{2}} & \frac{1}{A_{2}} & \\
& \ddots & \ddots & \ddots \\
& & -\frac{C_{n}}{A_{n}} & -\frac{B_{n}}{A_{n}}
\end{array}\right], D_{n}=\left[\begin{array}{cccc}
0 & & & \\
& \frac{1}{\alpha_{1}} & & \\
& & \ddots & \\
& & & \frac{1}{\alpha_{n-1}}
\end{array}\right]
$$

$$
S_{n}=2 \mathrm{i}\left[\begin{array}{llll}
0 & & & \\
& \frac{\Im\left(\alpha_{1}\right) C_{3}}{\left|\alpha_{1}\right|^{2} A_{3}} & & \\
& & \ddots & \\
& & & \frac{\Im\left(\alpha_{n-2}\right) C_{n}}{\left|\alpha_{n-2}\right|^{2} A_{n}}
\end{array}\right]
$$

Electrostatic interpretation of the zeros

Chebyshev polynomials

- Put n positive unit charges on $(-1,1)$ to move freely
- Fix positive charges of magnitude $1 / 4$ on -1 and 1
- Equilibrium position of unit charges corresponds to zeros of T_{n}

Chebyshev rational functions
Denote by $\tilde{\alpha}_{k}$ the m eigenvalues of the matrix

$$
\left[\begin{array}{ccc}
\alpha_{1} & & \\
& \ddots & \\
& & \alpha_{m}
\end{array}\right]+\frac{1}{n-m} \mathbf{w} \mathbf{w}^{T}
$$

where $\mathbf{w}=\left[\sqrt{w_{1}}, \cdots, \sqrt{w_{m}}\right]^{T}$ and $w_{k}=\left(1-\beta_{k}^{2}\right) /\left(2 \beta_{k}\right)$
These $\tilde{\alpha}_{k}$ are ghost poles
If m fixed and $n \rightarrow \infty$, then they converge to the real poles

Chebyshev rational functions

- Put n positive unit charges on $(-1,1)$ to move freely
- Fix positive charges of magnitude $1 / 4$ at -1 and 1
- Fix negative charges of magnitude $1 / 2$ at each α_{k} and $\tilde{\alpha}_{k}$
- Equilibrium position of unit charges corresponds to zeros of \mathcal{T}_{n}

Part III

Spectral collocation methods

Approximating the derivative

Example

Uniform grid x_{0}, \ldots, x_{n} with $x_{j+1}-x_{j}=h$ and function values $f\left(x_{j}\right)=f_{j}$

Finite difference approximation

$$
f^{\prime}\left(x_{j}\right) \approx \frac{f_{j+1}-f_{j-1}}{2 h}
$$

Approximating the derivative

Example

Uniform grid x_{0}, \ldots, x_{n} with $x_{j+1}-x_{j}=h$ and function values $f\left(x_{j}\right)=f_{j}$

Finite difference approximation

$$
f^{\prime}\left(x_{j}\right) \approx \frac{f_{j+1}-f_{j-1}}{2 h}
$$

Differentiation matrix

Writing down this approximation for each j gives

$$
\left[\begin{array}{c}
f_{0}^{\prime} \\
\vdots \\
f_{n}^{\prime}
\end{array}\right] \approx h^{-1}\left[\begin{array}{ccccc}
0 & \frac{1}{2} & & & -\frac{1}{2} \\
-\frac{1}{2} & 0 & \ddots & & \\
& & \ddots & & \\
& & \ddots & 0 & \frac{1}{2} \\
\frac{1}{2} & & & -\frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{c}
f_{0} \\
\\
\vdots \\
f_{n}
\end{array}\right]
$$

Differentiation becomes sparse matrix-vector multiplication

$$
\mathbf{f}^{\prime} \approx D \mathbf{f}
$$

Differential equation

$$
f^{\prime}(x)+f(x)=g(x)
$$

becomes linear system

$$
(D+I) \mathbf{f}=\mathbf{g}
$$

Spectral collocation

- Use global interpolant (polynomial or rational function) instead of local
- Dense differentiation matrices instead of sparse
- $O\left(e^{-c n}\right)$ convergence instead of $O\left(n^{-2}\right)$ or $O\left(n^{-4}\right)$

Boundary value problems

Boundary conditions

If boundary conditions are given in 1 and -1 , then we need those points as interpolation points

- either use zeros of T_{n} or \mathcal{T}_{n}, and include -1 and 1
- or use the extrema (which already include -1 and 1)

Polynomial case

Extrema of T_{n} are given by the zeros of U_{n-1} together with the points -1 and 1 , where U_{n-1} is a Chebyshev polynomial of the second kind

Rational case

Extrema of \mathcal{T}_{n} are given by the zeros of \mathcal{U}_{n-1} together with the points -1 and 1 , where \mathcal{U}_{n-1} is a Chebyshev rational function of the second kind

Solution with boundary/interior layer

If the solution $f(x)$ changes abruptly (almost discontinuously) in a small region of $[-1,1]$, then

- polynomial interpolation converges too slowly
- rational interpolation is appropriate

How do we choose the poles?
Obtain rough approximation of $f(x)$ using

- boundary layer analysis, or
- polynomial interpolation, or
and extract poles doing some kind of Padé approximation

Interior layer problem

Solve the boundary value problem

$$
\epsilon \frac{d^{2} f}{d x^{2}}+x \frac{d f}{d x}+x f=0, \quad-1<x<1
$$

with boundary values $f(-1)=e$ and $f(1)=2 / e$ where $0<\epsilon \ll 1$ Asymptotic estimate for $\epsilon \rightarrow 0$ gives

$$
f(x) \approx\left(\frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2 \epsilon}}\right)+\frac{3}{2}\right) e^{-x}
$$

Padé approximation of erf function provides poles

Solution for $\epsilon=0.0002$

Spectral method with $n=50$ and $m=10$

Using

- Polynomial interpolant in zeros of T_{n}
- Rational interpolant in zeros of T_{n}
- Rational interpolant in zeros of \mathcal{T}_{n}

Using the extrema

Chebyshev-Padé instead of asymptotic

Chebyshev-Padé instead of asymptotic

Boundary layer problem

Solve the boundary value problem

$$
4 \epsilon \frac{d^{2} f}{d x^{2}}-2\left(\frac{x+1}{2}-a\right)^{2} \frac{d f}{d x}-\frac{x+1}{2} f=0, \quad-1<x<1
$$

with boundary values $f(-1)=-3$ and $f(1)=1$ where $0<\epsilon \ll 1$ Example: $\epsilon=0.01, a=0.4$

$\epsilon=0.0001$, zeros, asymptotic, $n=80, m=20$

Same with extrema instead of poles

Same with Padé instead of asymptotic

THE END

