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U' Introduction

A very old and very classical problem. . .

Given a real, continuous function f(x) on [—1, 1], find a good
polynomial approximation

Possible solutions

» Best (minimax) polynomial approximation according to the
norm

A= A lloo = max[f(x)]

—1<x<1
» Polynomial least squares approximation
» Interpolating polynomial
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U’ Linear minimax approximation

Problem
Given linearly independent functions {¢y} find

P Z agpr(x

mm

Solution
ar such that f — > axpr equi-oscillates, i.e. n + 2 extremal points
of equal magnitude and alternating sign

Example: minimax polynomial approximation
Take @(x) =xFfork =0,1,...,n
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U’ Interpolating polynomial

Take n + 1 points xo, x1, . . ., x, and construct polynomial p,(x)
such that

flx) =palx), i=1,2,...n

Choice of interpolation points?
It is well-known that

(n+1)
709 =) =L ) )
where ¢ depends on x and xg, xq, ..., x, and f

Try to choose xy, ..., x, such that f — p, equi-oscillates ...
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U’ Equi-oscillating polynomial on [—1, 1]

Find points xo, ..., x, such that (x — xp) - - - (x — xp)
equi-oscillates on [—1, 1]

» Chebyshev polynomial

Ty+1(x) = cos((n+1) arccos x) 05

» Zeros are given by 02

cos 71'(2]( + 1) 02|

Xr = —_—

¢ 2(n+1)

fork=0,...,n 8
> Interpolation in Xk iS near 4—1 -0‘.5 -u‘.s -04 -0‘2 6 0.‘2 04 0‘.6 D‘B 1

best
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U' Alternative interpretation

From

it follows that

max,lgtglf(”“) (l‘)
(n+1)!

I = pall < (¥ = x0) - - (x = 2|

Minimising |[(x — xo) - - - (x — x)|| over xo, ..., x, leads to the
Chebyshev zeros

The unique monic polynomial of degree n + 1 which deviates

least from zero in the infinity norm, is a scaled Chebyshev
polynomial
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U’ How good is near best?

Let f be a continuous function on [—1, 1], p, its polynomial
interpolant in the Chebyshev zeros, and p} its best
approximation on [—1, 1] according to the infinity norm. Then

2 *
I =pal < (2+ 21ogn) I - 53]

» If n < 10° we loose at most 1 digit
» If n < 10°° we loose at most 2 digits

If / is analytic in an ellipse with foci -1 and semimajor/minor
axis lengths a > 1 and b > 0, then

If —pull =0(a+b)""), n— oo
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U’ Rational generalisation

What if f has singularities close to [—1,1]?

Example

Take
1

= 0O<exl
€2+x2

f(x)

with poles at +ie
Then [|f — pa|| = O((1 +)™")

Polynomial interpolation converges too slowly!
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U’ Near best fixed pole rational interpolation

Let poles ay, ..., a,, be given (real or complex conjugate) and
put
Tm(x) = (x — 1) -+ (x — o)
Then
Pa®) _ [ (F I (x = xp) - - (x — x)
= = r 1) )
when
f('xi): p"(xi) 1*0717 n




U’ Linear minimax approximation

Problem
Given linearly independent functions {¢y} find

P Z i (x

m1n

Solution
ar such that f — > axpr equi-oscillates, i.e. n + 2 extremal points
of equal magnitude and alternating sign

Example: minimax rational approximation
Take @i (x) = x*/mu(x) fork=0,1,...,n
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U’ Near best fixed pole rational interpolation

Problem statement

Given m,, find xo, ..., x, with n + 1 > m such that ||g,+1 /7] is
minimal, where g,+1(x) = (x —xo) - - - (x — x,)

(equivalently: such that g,+1 /7, equi-oscillates)

History

» Special case studied by Markoff, 1884
» General case solved by Bernstein, 1937

» Discussed in Appendix A of Achieser’s “Theory of
Approximation”, 1956

» Only theoretical solution, no properties, computational
aspects, ...
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U’ Joukowski transformation

Al =
ik




U’ Near best fixed pole rational interpolation

Solution
» Let {aj,...,an} denote zeros of
» Put o =J Y(y) fork=1,....m
» Define B, by

_Z_ﬁl Z— Bn
Bne) = 1=piz 1= Bz

Then | .
T,(x) = 5 (27"Bul2) + S
0 =5 (2Bl + g )
is a rational function in x of the form g, (x) /7 (x).
The interpolation points x, . . ., x, are the zeros of 7, (x).
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U’ Equi-oscillating rational function on [—1, 1]

Example
Tm(x) = kmﬁ(x2 + kK*w?) where w = 0.1

Tn(x) Poles & zeros
Note

Poles attract zeros (see later: electrostatic interpretation)
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L3 why bother?

Can we not just do rational interpolation in the (polynomial)
Chebyshev points (zeros of Chebyshev polynomial 7,,)?

» If ay,...,a, correspond to poles of f close to the interval,
then ||m,f — px|| will be small (enlarging the ellipse of
analyticity)

» However, dividing by 7, can destroy this advantage and
If — pn/Tm|| may not be small

» If poles gather near the interior of the interval, Chebyshev
zeros are useless

» Application: differential equations with interior layers
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U’ Example

Let
i p—"

~ sinh(mx/w)

This function has simple poles at +ikw fork = 1,2, ...
» Interpolate by p,_ in zeros of T,
» Interpolate by p,,—1/mn—2

» in zeros of T,
» in zeros of 7,

Plot interpolation error ||f — p,—1|| and ||f — pp—1/7,—2]| for the
case w = 0.01
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U’ Graph of f(x)

0.75 i

0.25 4




U' Interpolation error as function of n
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U' Interpolation error as function of n
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U' Interpolation error as function of n
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U' Properties of T;,, and 7,

Definition

Orthogonality property

1 X
[ meome S <ok

1
1

[ 0TS =0 Ak jkzm
. Viee
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U' Properties of T;,, and 7,

Three term recurrence
It is well known that

Tyt1(x) = 2xT,(x) — Tp—1 (x)

forn=1,2,...
Writing
qn(x)
,]71()6) - ﬂ'n(X)
where

mx)=x—a)) - (x—a,), n<m

=mm(x), n>m

we can extend the definition for 7, to n < m using the theory of
orthogonal rational functions




They satisfy the recurrence relation

7;<x>=<A a +Bn1x/o‘“>7;_1<x>

"1 —x/ay 1 —x/ay

1— X/(jén_z

+Cy T (X)

1 —x/ay
forn=1,2,...with7p=1and7_; =0

The recurrence coefficients A,, B, and C, are known explicitly
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U' Explicit formulas for the recurrence coefficients

(1 - ﬂnﬂn—l)(l - ’/Bn—1|2)
(1 + )+ 67)

n —

(1 - |/8n—1 |2)(/8n + Bn—Z) + (Bn—l + Bn—l)(l - 6an—2)

B" T (1 + 5%)(1 - ﬁnflgan)

C. — — (1 - ﬁan—l)(l +B§-2)
! (1 _5n—15n—2)(1 +/37%)
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U' Interpolation points as eigenvalues

From the three term recurrence it follows immediately that the
zeros of T,(x) are the eigenvalues of

S ]
1 1
2 0 3

(e} ST

Explicitly:




U' Interpolation points as eigenvalues

The zeros of 7,(x) are also the generalised eigenvalues of the
matrix pencil (J,,,J,D, — S, + I,,), where

_B 1
Al A 0
_G _bz € 1
Aj As As (€3]
J, = ’Dn =
_G  _B 1
Ap Ap Qp—1
0
S(e)Cs
Sy =21 o1 [243
%(an—z)cﬂ
L Ian—2|2An
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U' Electrostatic interpretation of the zeros

Chebyshev polynomials

» Put n positive unit charges on (—1, 1) to move freely
» Fix positive charges of magnitude 1/4 on —1 and 1

» Equilibrium position of unit charges corresponds to zeros
of T,

-1 -08 -06 -04 -02 O 02 04 06 0.8 1




Chebyshev rational functions
Denote by &, the m eigenvalues of the matrix

o

n—m
Qi

where w = [\/wi, -+, y/wn]" and we = (1 — 37)/(26)

These &y are ghost poles

If m fixed and n — oo, then they converge to the real poles
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Chebyshev rational functions

» Put n positive unit charges on (—1, 1) to move freely
» Fix positive charges of magnitude 1/4 at —1 and 1
» Fix negative charges of magnitude 1/2 at each «; and &y

» Equilibrium position of unit charges corresponds to zeros
of 7,

0.4 T T T T T T T T T

-1 -08 -06 —-04 —-02 O 02 04 06 08 1
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Spectral collocation methods



U’ Approximating the derivative

Example
Uniform grid xo, . . ., x, with xj1 — x; = h and function values

fx) =1

T .
3 +
+
9 +
+ 1
+ + B
1
0 s
0 2 4 6 8 10
Finite difference approximation
S i1
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U’ Approximating the derivative

Example
Uniform grid xo, . . ., x, with xj1 — x; = h and function values

fx) =1

+ 1
+ + B
1
0 "
0 2 4 6 8 10
Finite difference approximation
S i1
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U’ Differentiation matrix

Writing down this approximation for each j gives

- o L S R

fo 1 2 2 fo

-5 0
~h!

I 1 g f

. ) -2 0 ]
Differentiation becomes sparse matrix-vector multiplication
f ~ Df

Differential equation
fx) +f(x) = g(x)
becomes linear system
(D+DNf=g

4‘



U’ Spectral collocation

» Use global interpolant (polynomial or rational function)
instead of local

» Dense differentiation matrices instead of sparse
» O(e ") convergence instead of O(n2) or O(n=*)




U' Boundary value problems

Boundary conditions
If boundary conditions are given in 1 and —1, then we need
those points as interpolation points

» either use zeros of T, or 7,, and include —1 and 1

» or use the extrema (which already include —1 and 1)

Polynomial case

Extrema of T, are given by the zeros of U,_; together with the
points —1 and 1, where U,,_; is a Chebyshev polynomial of the
second kind

Rational case

Extrema of 7, are given by the zeros of U,_; together with the
points —1 and 1, where U, _; is a Chebyshev rational function of
the second kind
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U’ Solution with boundary/interior layer

If the solution f(x) changes abruptly (almost discontinuously) in
a small region of [—1, 1], then

» polynomial interpolation converges too slowly
» rational interpolation is appropriate

How do we choose the poles?
Obtain rough approximation of f(x) using

» boundary layer analysis, or
» polynomial interpolation, or
> ...
and extract poles doing some kind of Padé approximation

4‘



U’ Interior layer problem

Solve the boundary value problem

af df
EE'FXa‘i‘Xf:O, —1<x<1

with boundary values f(—1) = eand f(1) =2/ewhere 0 < e < 1
Asymptotic estimate for ¢ — 0 gives

fx) ~ (; erf <\/xz?> + ;) -

Padé approximation of erf function provides poles

‘



L9 solution for e = 0.0002

Spectral method with n = 50 and m = 10
Using

» Polynomial interpolant in zeros of 7,

» Rational interpolant in zeros of 7,

» Rational interpolant in zeros of 7,
' ' 10°

1073

1076
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U’ Using the extrema




U' Chebyshev-Padé instead of asymptotic




U' Chebyshev-Padé instead of asymptotic

I L
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U’ Boundary layer problem

Solve the boundary value problem
W (D Pdf x+1
‘a2 2 Y a2
with boundary values f(—1) = =3 and f(1) = 1 where 0 < e < 1
Example: ¢ =0.01,a =0.4
1 T T —T

f=0, —-1l<x<l




L3 = 0.0001, zeros, asymptotic, » = 80, m = 20

1




U’ Same with extrema instead of poles

1 T T T T T T

0 AN ANAAAAAR
\%
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U’ Same with Padé instead of asymptotic

1 T T T T T T




THE END
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