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Outline

1. Kinetic Monte Carlo (KMC) & KMC algorithms
2. Burton-Cabrera-Frank (BCF) model & hybrid scheme
3. Off lattice KMC
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Kinetic Monte-Carlo

Early work:

— F.F. Abraham and G.W. White (1970)
— G.H. Gilmer and P. Bennema (1972)
Stochastic adatom deposition.

Hopping rate k(A¢,T) = koexp (—A¢/kpT)

Barriers can be measured, calculated or modeled...
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Example:

A¢ = Es +mEN + max[(m; —my),0]Ep

(Smilauer & Vvdensky 1995)



Poisson Processes

The Poisson process assumes discrete events with ex-
ponentially distributed waiting times:
p(t) =rexp(rt), t>0,

where r is the rate at which the process occurs, i.e.
the average frequency per unit time.

The expected waiting time is

o

(tp(1)) = /O (it =~

The CDF, probability of waiting less than time ¢, is

T

PHt<T}) = /o p(t)dt =1 —exp (—rT).



Multiple Processes

For two independent processes occurring with rates ri
and r,, the probability of at least one event occurring
before time T is

P({ti1 <Torto<T}) = Pi(T) + P(T) — P.(T)P>(T)
=1-—- exp [—(7“1 —|— TQ)T]

The corresponding distribution of waiting times re-
mains exponential with a rate that is the sum of the
rates of the individual processes:

p(t) = (r1 +r2) exp [—(r1 + r2)t].

This generalizes to an arbitrary number of processes.



Kinetic Monte-Carlo algorithms

Principal algorithm: Bortz, Kalos &. Lebowitz (1975)

1. Randomly select the time it takes for the next
event to occur

2. Decide which event it is using relative rates

This simulates M independent Poisson processes with
rates r,, that sum to give an overall rate R.

Performance of KMC algorithms:

e Rejection algorithm: usually not good for KMC
e Vanilla BKL with linear search: O(M)
e Binning technique: O(M/2) (Mayksum 1988)

e Binary search: O(log(M))
(Blue, Beichl & Sullivan 1995)

e Maintaining inverse list can eliminate this cost:
(Schulze 2002)

Enm @ (n,m) — (4,5, k)



Minimal search KMC algorithm:

. Compute the overall rate R = Sy = Zﬁf:l TnCh;
retain the partial sums S,

. Select a random number r € [0, R).

. Search through the list of partial sums S, until
S, >

. Select an event from the set of events that occur
at this rate by computing

m = Int <M> + 1.

T'n

. Execute that event and update the configuration

{hij}-

. For the (local) events that have their rates changed
from ry,, to ry,:

(a) Move them to the end of column ny; add one

. -1
to Cn,; update £, .

(b) Move the event listed as E, ¢, into the vacated
position in column n;; reduce C), by one; up-
date E; .



Performance
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Computation time for 10° events of a 2P x 2P
simulation for binary search (upper curve) and
minimal-search KMC (lower curve).

e If necessary, event lists can be packed into
a flat array of length M

e For arbitrary rates, this can be combined
with the rejection algorithm.



Other facets of film-growth modelling
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Terrace/Step models

Reference: Burton, Cabrera and Frank (1954)
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Hybrid Scheme

Collaborators: P. Smereka (Mich.), W. E (Princeton)

e Diffusion equation on terraces:
Pt — me: + F c QBCF
e KMC simulation near step edges:

Q = QpcrUQxrmc




Two-grid system

e N X N sites partitioned into N, x N, cells
e Cell-width M x M (N = M N¢)
o Cellis € Qe if

— it contains an edge
— its neighbors contain an edge




KMC region

e Adatoms are defined as sites where h;;

— is one greater than at lateral nearest neighbors,
— all of which have the same height.

e For Hybrid simulation, we add events correspond-
ing to:

— hops out of the continuum with rate ~ Dp
— nucleation ~ p?7?
— oOther processes as desired...

e T his requires a list of boundary segments



Continuum region

At
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(P2 = 20] + pl1) + P AL

p;? is average ‘‘adatom’’ density in cell j
Discrete time step At,

Coarse grid Az = aM,

There are many KMC events per At
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Interface

e If adatom Qryc — Rpor

— remove the adatom from list
— n+v __
set p;"" = p] +1/M
— mass is immediately spread over cell

e If adatom Qpcr — QUi yc

— add adatom to list
— set pl T =p? — 1/M
— rate for this event type is Dp;

— event not added to list if p; < 1/M

e v indicates fractional timestep (one event)



Moving boundary

e If a cell changes type, a local conversion process
takes place:

— To change KMC-cell — BCF-cell
x Locate adatoms using inverse list
x Remove hopping events from list
x Update cell-list
— To change BCF-cell — KMC-cell
* Randomly position Int(Mp;) adatoms in cell
x Add hopping events to list
x Update cell-list



Nucleation, etc.

To nucleate islands within the BCF region

— Add nucleation events with rate ~ (Mp;)??
— If event is chosen, convert cell and its neighbors

This approach has proven useful in level-set simu-
lations of BCF model

A similar procedure applies to vacancy formation,
chemical reactions, etc.

Deposition and evaporation can be handled at the
continuum level.



1D Hybrid Simulations

Adatoms per cell
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e Continuum regions tend toward parabolic adatom
density profile

e Step velocities, step widths and number of adatoms
on surface fluctuate



Average density and fluctuations
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Computational cost (1D)

e For 1D KMC:

— N net attachment events per layer
— Each adatom performs O(L?) hops
— Total cost is O(NL?) (or O(Nlog N L?))

e For 1D hybrid scheme:
— Total cost = KMC-cost + BCF-cost
— KMC-cost reduced to = O(NM?)
— BCF-cost is: O ((NM?)(+55)(27)(39))

NMD

(events/layer)(time/event)(calls/time)(operations/call)

2
— CFL condition requires At < 25

— Total cost is O(NM?2) + O(35



AcCcuracy

e Errors inherent to BCF model:

— Errors resulting from interactions
— Errors from neglected events

e Errors relative to “adatom” KMC:

— Discretization error ~ M? = (Azx)?
— Variance reduction
— Coupling error

pl

\ I |

cell scale



Step edge instability

Experiment: Behm, et. al. Phys. Rev. Lett.(1994)

Theory: Bales & Zangwill, Phys. Rev. B
(1990)

Simulation: Rost, Smilauer & Krug, Surf. Sci-
ence (1996).



KMC and Hybrid surface
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e KMC (left) took about 12 days to simiulate.

e Hybrid (right) took about 56 hours with cell width
10



KMC and Hybrid surface
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e KMC (left) took about 12 days to simiulate.

e Hybrid (right) took about 70 hours with cell width
15



Hybrid and Adaptive

KMC surface
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The simulaion on the right uses a crude, coarse-grained
KMC instead of solving a discretized diffusion equation.

It was slightly faster.



Off-lattice KMC

Collaborators:

Weidong Guo (post-doc, UTK)
Weinan E (Princeton)

e In all KMC models, transition state theory predicts
rates of the form R ~ exp[—Ad]

e In lattice-based models, the energy landscape & is
prescribed.

e In off-lattice KMC, we wish to allow an arbitrary
set of atom positions {r;}.

e T he potential energy of such a collection is often
modeled as a sum of pair-wise interactions, e.g.
the Lennard-Jones potential:

® = %:cbij = [(’%)12 B <%>6]

ij



Off-lattice KMC Algorithm

. Identify the set of likely transitions x;, (i.e. new
local minima) for each particle

i = min , g
Xik min (x, {rji})

. Identify the barrier Ad = o, — Py for each transi-
tion, where

P, = min max P(r;, {r;=;
r;(s)eP sc[0,1] ( ! { 7 })

. Use the BKL algorithm to randomly select and
execute an event

. Locally relax new configuration, with occasional
global relaxation



Off-lattice KMC

e T his is rather slow.

e Applications might include nano-tubes, wires, pipeflow,
gears, levers...



Summary

e Cross-indexed lists
— provides a minimal-search KMC algorithm

— combine with rejection for arbitrary rate sets

e Hybrid scheme
— significantly faster than KMC

— many complications with respect to accuracy

e Work in progress
— Off-lattice KMC
— Adaptive/multi-grid KMC
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