Preconditioning Strategies for Models of Incompressible Flow

> Howard Elman University of Maryland

Contributors

- Vicki Howles
- David Kay
- Daniel Loghin
- Alison Ramage

- John Shadid
- David Silvester
- Ray Tuminaro
- Andy Wathen

Incompressible Navier-Stokes Equations $\alpha u_t - \nu \nabla^2 u + (u \cdot \text{grad})u + \text{grad} p = f$ $- \operatorname{div} u = 0$

- $\alpha = 0!$ steady state problem
- $\alpha = 1$! evolutionary problem

Discretization and linearization

Matrix equation

$$\begin{array}{cc} \mathcal{A}x=b\\ \left(F & B^{T}\\ B & -C\end{array}\right) \left(\begin{matrix} u\\ p\end{matrix}\right) = \left(\begin{matrix} f\\ 0\end{matrix}\right)$$

Goal: Robust general solution algorithms
Easy to implement
Derived from subsidiary building blocks
Adaptible to a variety of scenarios
(steady / evolutionary / Stokes / Boussinesq)

Outline

- 1. General approach preconditioning for saddle point problems
- 2. Relation to traditional approaches projection methods SIMPLE
- 3. Details for Navier-Stokes equations
- 4. Analytic / experimental results
- 5. Potential for more general problems

Preliminary: Steady Stokes Equations

$$-\nabla^2 u + \operatorname{grad} p = f$$

$$-\operatorname{div} u = 0$$
Rusten & Winther, 1992
Silvester & Wathen, 1993

Algebraic equation:

$$\begin{array}{c} A & B^{T} \\ B & -C \end{array} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix} \quad \begin{array}{c} A = \text{discrete vector} \\ \text{Laplacian} \end{array}$$

Symmetric indefinite ! MINRES algorithm is applicable

Preconditioning operator: $\begin{pmatrix} A & 0 \\ 0 & Q_s \end{pmatrix}$

Generalized eigenvalue problem:

$$\begin{pmatrix} A & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \lambda \begin{pmatrix} A & 0 \\ 0 & Q_s \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix}$$

Case C=0: Au+B^Tp = λ Au, $\lambda \neq 1$) $\mathbf{u} = \mathbf{\lambda} \cdot \mathbf{A} \mathbf{Q} \cdot \mathbf{A}^{-1} \mathbf{B}^{T} \mathbf{p}$ Bu = $\lambda \cdot \mathbf{Q}_{S} \mathbf{p}$ BA⁻¹B^Tp= $\lambda(\lambda-1) \cdot \mathbf{Q}_{S} \mathbf{p}$

Generalize to Navier-Stokes Equations

Linearization via Picard iteration (slightly inaccurate notation):

$$\frac{\alpha}{\Delta t} u^{(m+1)} - v \nabla^2 u^{(m+1)} + (u^{(m)} \cdot \operatorname{grad}) u^{(m+1)} + \operatorname{grad} p^{(m+1)} = f^{(m)} - \operatorname{div} u^{(m+1)} = 0$$

Discretization
$$\longrightarrow \begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

Analogue of Stokes strategy: preconditioner $\begin{pmatrix} F & 0 \\ 0 & Q_s \end{pmatrix}$

Same analysis ! $BF^{-1}B^{T}p=\mu Q_{s}p, \quad \mu=\lambda(\lambda-1)$) seek approximation Q_s to Schur complement

N.B. Same question arises for other strategies for linearization

Suppose $Q_S \ \ BF^{-1}B^T$ so that eigenvalues of

$$BF^{-1}B^{T}p = \mu Q_{S}p$$

are tightly clustered.

Under mapping $\mu \mapsto \lambda = 1$ (1+4 μ)^{1/2}, eigenvalues λ are clustered in two regions, one on each side of imaginary axis

Can improve this:

Observation: symmetry is important for Stokes solver **MINRES:** optimal with fixed cost per step) need block diagonal preconditioner

For Navier-Stokes: don't have symmetry need Krylov subspace method for nonsymmetric matrices (e.g. **GMRES**)

Alternative: block triangular preconditioner

Generalized eigenvalue problem
$$\begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \mu \begin{pmatrix} F & B^T \\ 0 & -Q_s \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix}$$

Fu+B^Tp = μ Fu, $\mu \neq 1$) $u = -F^{-1}B^{T}p$
Bu $= -\mu Q_{S}p$ $BF^{-1}B^{T}p = \mu Q_{S}p$

 $\begin{pmatrix} F & B^{*} \\ 0 & -Q_{S} \end{pmatrix}$

Theorem (Fischer, Ramage, Silvester, Wathen): For preconditioned GMRES iteration, let p_0 be arbitrary and $u_0 = F^{-1}(f - B^T u_0)$ () $r_0 = (0, w_0)$) $(u_k,p_k)_T$ be generated with block triangular preconditioner, $(u_k,p_k)_D$ be generated with block diagonal preconditioner. Then $(u_{2k}, p_{2k})_D = (u_{2k+1}, p_{2k+1})_D = (u_k, p_k)_T$. 9 Computational requirements, to implement block triangular preconditioner:

Compute
$$\begin{pmatrix} w \\ r \end{pmatrix} = \begin{pmatrix} F & B^T \\ 0 & -Q_s \end{pmatrix}^{-1} \begin{pmatrix} v \\ q \end{pmatrix}$$

Solve $Q_s r = -q$, then solve $Fw = v - B^T r$

The only difference from block diagonal solve: matrix-vector product B^T r (negligible)

For second step: convection-diffusion solve: can be approximated, e.g. with multigrid

For first step: something new needed: Q_s

One more interpretation:

$$\begin{pmatrix} F & B^{T} \\ B & -C \end{pmatrix} = \begin{pmatrix} I & 0 \\ BF^{-1} & I \end{pmatrix} \begin{pmatrix} F & B^{T} \\ 0 & -(BF^{-1}B^{T} + C) \end{pmatrix}$$
$$\begin{pmatrix} F & B^{T} \\ B & -C \end{pmatrix} \begin{pmatrix} F & B^{T} \\ 0 & -(BF^{-1}B^{T} + C) \end{pmatrix}^{-1} = \begin{pmatrix} I & 0 \\ BF^{-1} & I \end{pmatrix}$$

Relation to Projection Methods

"Classical" $O(\Delta t)$ projection method (Chorin 1967, Temam 1969):

Step 1:
$$\frac{u^{(*)} - u^{(m)}}{\Delta t} - v \nabla^2 u^* + (u^{(m)} \cdot \operatorname{grad}) u^{(m)} = f$$
$$\left(\frac{1}{\Delta t} I - v \nabla^2\right) u^* = f - (u^{(m)} \cdot \operatorname{grad}) u^{(m)} + \frac{1}{\Delta t} u^{(m)}$$
In matrix form:
$$\left(\frac{1}{\Delta t} M + v A\right) u^* = f - N u^{(m)} + \frac{1}{\Delta t} M u^{(m)}$$
Step 2:
$$\left(\frac{1}{\Delta t} I - \nabla \right) \left(\frac{u^{(m+1)}}{p^{(m+1)}}\right) = \left(\frac{1}{\Delta t} u^*\right)$$
$$0$$
In matrix form:
$$\left(\frac{1}{\Delta t} M - B^T - U^{(m+1)}\right) = \left(\frac{1}{\Delta t} M - U^{(m+1)}\right) = \left(\frac{1}{\Delta t} M - U^{(m+1)}\right)$$

Performed via pressure-Poisson solve

Substitute u^{*} from Step 1 into Step 2 :

$$\begin{pmatrix} \left(\frac{1}{\Delta t}M + vA \right) \left(\frac{1}{\Delta t}M + vA\right) \left(\frac{1}{\Delta t}M\right)^{-1}B^{T} \\ B & 0 \end{pmatrix} \begin{pmatrix} u^{(m+1)} \\ p^{(m+1)} \end{pmatrix} = \begin{pmatrix} f - Nu^{(m)} + \frac{1}{\Delta t}Mu^{(m)} \\ 0 \end{pmatrix} \\ \begin{pmatrix} \frac{1}{\Delta t}M + vA & 0 \\ B & -B\left(\frac{1}{\Delta t}M\right)^{-1}B^{T} \end{pmatrix} \begin{pmatrix} I & \left(\frac{1}{\Delta t}M\right)^{-1}B^{T} \\ 0 & I \end{pmatrix} Perot, 1993 \end{pmatrix}$$

Contrast: update derived purely from linearization & discretization:

$$\begin{pmatrix} \frac{1}{\Delta t}M + vA & B^{T} \\ B & 0 \end{pmatrix} \begin{pmatrix} u^{(m+1)} \\ p^{(m+1)} \end{pmatrix} = \begin{pmatrix} f - Nu^{(m)} + \frac{1}{\Delta t}Mu^{(m)} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{\Delta t}M + vA & 0 \\ B & -B\left(\frac{1}{\Delta t}M + vA\right)^{-1}B^{T} \end{pmatrix} \begin{pmatrix} I & \left(\frac{1}{\Delta t}M + vA\right)^{-1}B^{T} \\ 0 & I \end{pmatrix}$$
Error: $B^{T} - \left(\frac{1}{\Delta t}M + vA\right) \left(\frac{1}{\Delta t}M\right)^{-1}B^{T} = -(\Delta t)v M^{-1}AB^{T} = O(\Delta t)$

13

For higher order accuracy in time and related approaches:

Dukowicz & Dvinsky 1992

Perot 1993

Quarteroni, Saleri & Veneziani 2000

Henriksen & Holman 2002

Relation to SIMPLEPatankar & Spaulding, 1972

$$\begin{pmatrix} F & B^{T} \\ B & 0 \end{pmatrix} = \begin{pmatrix} F & 0 \\ B & -BF^{-1}B^{T} \end{pmatrix} \begin{pmatrix} I & F^{-1}B^{T} \\ 0 & I \end{pmatrix}$$

$$\begin{pmatrix} \gamma_{4} \\ B & -B\hat{F}^{-1}B^{T} \end{pmatrix} \begin{pmatrix} I & \hat{F}^{-1}B^{T} \\ 0 & I \end{pmatrix}$$

 Q_F : approximate convection-diffusion solve \hat{F} : diagonal part of F

Many variants

Perspective of New Approach

•Take on Schur complement directly

•Separate time discretization from algebraic algorithm

•Enable flexible treatment of time discretization, linearization Allow choice of linearization Allow large time steps / CFL numbers if circumstances warrant

Approximation for the Schur Complement (I) Kay,Loghin, Wathen 2002

Suppose the gradient and convection-diffusion operators approximately commute (w=u^(m)):

$$\nabla (-v \nabla^2 + w \cdot \nabla)_p \approx (-v \nabla^2 + w \cdot \nabla)_u \nabla$$

Require pressure convection-diffusion operator

Discrete analogue:
$$M_u^{-1}B^T M_p^{-1}F_p = M_u^{-1}F M_u^{-1}B^T$$

 $\Rightarrow BF^{-1}B^T = BM_u^{-1}B^T F_p^{-1}M_p$
 $\leftarrow A_p \Rightarrow$
In practice: don't have equality, instead $Q_s \equiv A_p F_p^{-1}M_p$

Requirements: Poisson solve Mass matrix solve + Convection-diffusion solve

Evolutionary Equations $u_t - v \nabla^2 u + (u \cdot \text{grad})u + \text{grad} p = f$ $- \operatorname{div} u = 0$

Backward Euler:

$$\frac{u^{(m+1)} - u^{(m)}}{\Delta t} - v \nabla^2 u^{(m+1)} + (u^{(m)} \cdot \operatorname{grad})u^{(m+1)} + \operatorname{grad} p^{(m+1)} = f$$
$$-\operatorname{div} u^{(m+1)} = 0$$

Linearized 2nd order Crank-Nicolson (Simo & Armero): $\frac{u^{(m+1)} - u^{(m)}}{\Delta t} + \frac{1}{2} (\neg \nabla^2 u^{(m+1)} + (w^{(m)} \cdot \operatorname{grad})u^{(m+1)}) + \operatorname{grad} p^{(m+1)} = f - \frac{1}{2} (\neg \nabla^2 u^{(m)} + (w^{(m)} \cdot \operatorname{grad})u^{(m)}) - \operatorname{div} u^{(m+1)} = 0$

 $w^{(m)} = 1.5 u^{(m)} - .5 u^{(m-1)}$

18

Matrix structure after discretization

$$\begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix}, \quad F = \alpha M_v + vA + N \qquad \alpha \begin{cases} \text{larger for CN} \\ \text{than for BE} \end{cases}$$

Considerations are the same

Preconditioner
$$\begin{pmatrix} Q_F & B^T \\ 0 & Q_S \end{pmatrix}$$
, $Q_F \approx F$, $Q_S \approx S$
 $F_p = \alpha M_p + vA_p + N_p$
 $Q_S^{-1} = M_p^{-1}F_pA_p \approx S^{-1}$

Convection-diffusion solve easier than for steady state

For large α (small Δt): $F = \alpha M_{\nu} + \nu A_{p} + N \sim \frac{h^{d}}{\Delta t} I \Rightarrow BF^{-1}B^{T} \approx \begin{bmatrix} \Delta t \\ h^{d} \end{bmatrix} BB^{T}$ $Q_{s} = A_{p}F_{p}^{-1}M_{p} \sim (BM_{u}^{-1}B^{T})(\Delta t \\ h^{d} I)(h^{d} I) = \begin{bmatrix} \Delta t \\ h^{d} \end{bmatrix} BB^{T}$

19

Consider simple observation in linear algebra: let G, H be rectangular matrices

Consider $H^T (GH^T)^{-1}G$, maps R^{n_1} to $range(H^T)$ fixes $range(H^T)$

 $H^T (GH^T)^{-1}G^T = I$ on $range(H^T)$

Take G=BF⁻¹, H=B) $B^{T} (BF^{-1}B^{T})^{-1}BF^{-1} = I$ on $range(B^{T})$ $B^{T} (BF^{-1}B^{T})^{-1}B = F$ on $range(F^{-1}B^{T})$

Suppose $range(B^T) \frac{1}{2} range(F^{-1}B^T)$

) $B^{T} (BF^{-1}B^{T})^{-1}B = F \text{ on } range(B^{T})$ (BB^T) (BF⁻¹B^T)⁻¹ (BB^T)= BFB^T

 $(BF^{-1}B^{T})^{-1}$ (BB^{T})^{-1} (BFB^{T}) (BB^{T})^{-1} ' Q_{S}^{-1}

Recapitulating: Two ideas under consideration

Preconditioners
$$\begin{pmatrix} Q_F & B^T \\ 0 & -Q_S \end{pmatrix}$$
 for $\begin{pmatrix} F & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$

- 1. F_p preconditioner: $Q_s = A_p F_p^{-1} M_p$ Requirements: Poisson solve, mass matrix solve, F_p on pressure space Decisions on boundary conditions
- 2. BFBt preconditioner: $Q_S = (BB^T) (BFB^T)^{-1} (BB^T)$ Requirements: Two Poisson solves C=0

Requirement common to both: approximation of action of F^{-1}

Overarching philosophy: subsidiary operations Poisson solve convection-diffusion solve are manageable

Benchmark problems

1. 2D Driven Cavity Problem

 $u_1 = u_2 = 0$, except $u_1 = 1$ at top

2. 2D Backward Facing Step

 $\begin{array}{c} u_1 = u_2 = 0, \text{ except} \\ u_1 = 1 - y^2 \text{ at inflow} \\ v \partial u_1 / \partial x = p \\ \partial u_2 / \partial x = 0 \end{array} } \text{ at outflow} \end{array}$

3. 3D Driven Cavity Problem

Various finite element / finite difference discretizations in space Backward Euler or Crank-Nicolson in time

Experiment 1: 2D driven cavity problem on [0,1]£[0,1]

Discretization in space:

marker-and-cell finite differences (Harlow & Welch), h=1/128 Discretization in time:

backward Euler with various time steps

Integrate from t=0 to t=1

Solve implicit systems with F_p-preconditioned GMRES

Average iteration counts per linear solve

		ν			
Δt	1/40	1/80	1/160	1/320	1/5000
1/8	6.9	8.4	9.3	9.9	
1/16	5.6	6.9	8.1	8.6	
1/32	4.0	5.1	6.2	6.9	4-5
1/64	2.9	3.6	4.3	5.0	3-4

For same problem: GMRES behavior at t=1/4, 1/2, 3/4 h=1/64, v = 1/160, 1/320

24

Experiment 2: 2D driven cavity flow on [-1,1]£[-1,1], Re=200

Discretization in space: Q_2 - Q_1 finite elements Discretization in time: backward Euler with various time steps

Iterations of GMRES at sample time / Picard step

Experiment 2, continued: Re=1000

Experiment 2, continued: Re=1000

Experiment 3: backward facing step, Re=200 Q_2 - Q_1 fem spatial discretization Backward Euler time discretization Iterations of GMRES at sample time / Picard step

Experiment 3, continued: backward facing step, Re=1000

Experiment 4: 3D driven cavity problem on [0,1]³

Marker-and-cell finite differences

Pseudo-transient iteration:

ten time steps at various CFL nos. and Re, h=1/64

Average iteration counts with F_p preconditioning to satisfy *mild* stopping criterion $||r_k|| \cdot 10^{-2} ||f||$, f=nonlinear residual

Re	CFL #	Iterations
500	.1, .5, 1, 10, 50, 100 5000 10,000 50,000	2 5 6 9
1000	5000 10,000 50,000	5 6 10

Key aspect of computations:

Poisson solves: $q = A_p^{-1}p$ required at each step Convection-diffusion solves: $w = F^{-1}v$

Each can be approximated using existing technology

- multigrid
- domain decomposition
- fast direct methods
- other iterative methods

Experiment 4, continued:

Replace convection-diffusion solve and Poisson solve with multigrid approximations

Re	CFL #	Exact	Inexact
500	50,000	9	12 3 Poisson 8 Conv-diff
1000	50,000	10	13 3 Poisson 8 Conv-diff

Iterations

Boundary conditions for preconditioners

To define operators F_p and A_p : need to "specify" boundary conditions on pressure space

Derivation of preconditioners does not offer guidance

Formulation of problem does: have convection-diffusion operator (-vr²+(w¢r)) defined on pressure space, w=current velocity iterate

No specific b.c. on pressures suggests "natural" condition $\partial p / \partial n = 0$

But: flow problems require Dirichlet conditions on inflow boundary, where wcn < 0

Therefore: formulate F_p using

Dirichlet conditions p=0 on $\partial \Omega_{-}$ (inflow, w¢n<0) Neumann conditions $\partial p/\partial n = 0$ on $\partial \Omega_{0}$ (characteristic, w¢n=0) $\partial \Omega_{+}$ (outflow, w¢n>0)

Comments:

- 1. Not really specifying values, just defining matrix F_p
- 2. Formulate A_p in compatible manner
- 3. This issue is important

but

it only affects performance of solvers, not accuracy

For benchmark problems

1. 2D Driven Cavity Problem

 $u_1 = u_2 = 0$, except $u_1 = 1$ at top

 $u\phi n' 0$) F_p defined using Neumann b.c

2. 2D Backward Facing Step

 $\begin{array}{c} u_1 = u_2 = 0, \text{ except} \\ u_1 = 1 - y^2 \text{ at inflow} \\ v \partial u_1 / \partial x = p \\ \partial u_2 / \partial x = 0 \end{array} \text{ at outflow}$

u¢n < 0 at inflow) Dirichlet b.c. there Otherwise Neumann

Analysis: For solving $AQ_{A}^{-1}x = b$ using GMRES, assuming $AQ_{\Lambda}^{-1} = V\Lambda V^{-1}$ is diagonalizable: $||r_{k}|| \leq \min_{p_{k}(0)=1} ||p_{k}(AQ_{A}^{-1})r_{0}||$ $\leq \kappa(V) \min_{p_k(0)=1} \max_{\lambda \in \sigma(AQ_A^{-1})} |p_k(\lambda)| ||r_0||$ Here: $A = \begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix}, \quad Q_A = \begin{pmatrix} F & B^T \\ 0 & -Q_S \end{pmatrix}$ For F_p preconditioning: $c_1 \frac{v\left(v + \frac{1}{\Delta t}\right)}{\|w\|^2} \le |\lambda(AQ_A^{-1})| \le c_2 \frac{1}{v} \left(\frac{1}{\Delta t} + \|w\|\right)$ (Loghin)

) asymptotic convergence rate $(||\mathbf{r}_k||/||\mathbf{r}_0||)^{1/k}$, k! 1, independent of (small) h, Δt pessimistic wrt v

Generalizations:

Boussinesq equations: $\alpha \mathbf{u}_t - \nabla \cdot (\nu_u \nabla \mathbf{u}) + (\mathbf{u} \cdot \text{grad})\mathbf{u} + \text{gradp} = \mathbf{f}(T)$ $\alpha T_t - \nabla \cdot (\nu_T \nabla T) + (\mathbf{u} \cdot \text{grad})T = g(T)$ $-\text{div } \mathbf{u} = 0$

coefficient matrix
$$\begin{pmatrix} F_u & G & B^T \\ H & F_T & 0 \\ B & 0 & 0 \end{pmatrix} = \begin{pmatrix} \widehat{F} & \widehat{B}^T \\ \widehat{B} & 0 \end{pmatrix}$$

"Ideal" preconditioner is $\hat{Q} = \begin{pmatrix} \hat{F} & \hat{B}^T \\ 0 & -\hat{S} \end{pmatrix}$, $\hat{S} = \hat{B}\hat{F}^{-1}\hat{B}$

For Picard iteration, H=0 and Schur complement is

$$\hat{S} = BF_u^{-1}B^T = S,$$

the same as for the Navier-Stokes equations

Add chemistry: molecular species with concentration Y

Add equation of form $\alpha Y_t - \nabla \cdot (D_Y \nabla Y) + (\mathbf{u} \cdot \mathsf{grad})Y = 0$

Coupled with $\alpha \mathbf{u}_t - \nabla$

$$\begin{aligned} &\alpha \mathbf{u}_t - \nabla \cdot (\nu_u \nabla \mathbf{u}) + (\mathbf{u} \cdot \operatorname{grad})\mathbf{u} + \operatorname{gradp} = \mathbf{f}(T) \\ &\alpha T_t - \nabla \cdot (\nu_T \nabla T) + (\mathbf{u} \cdot \operatorname{grad})T = g(T) \\ &-\operatorname{div} \mathbf{u} = \mathbf{0} \end{aligned}$$

! coefficient matrix

$$\begin{pmatrix} F_u & G & B^T \\ H & F_{T,Y} & 0 \\ B & 0 & 0 \end{pmatrix} = \begin{pmatrix} \hat{F} & \hat{B}^T \\ \hat{B} & 0 \end{pmatrix}$$

Concluding remarks

Goal: develop strategies to handle linearized Navier-Stokes equations in a flexible manner

- •Allow large time steps if stiffness is not critical
- •Respect coupling of velocities and pressures
- •Automatically adapt to handle different scenarios (creeping flow, stiff systems, steady problems)

Technical approach:

Take advantage of saddle point structure of problem
Develop preconditioners for Schur complement and accompanying systems

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.