

## Preconditioning Strategies for Models of Incompressible Flow

Howard Elman
University of Maryland


## Contributors

- Vicki Howles
- David Kay
- Daniel Loghin
- Alison Ramage
- John Shadid
- David Silvester
- Ray Tuminaro
- Andy Wathen


## Incompressible Navier-Stokes Equations

$$
\begin{aligned}
& \begin{array}{l}
\alpha u_{\mathrm{t}}-v \nabla^{2} u+(u \cdot \operatorname{grad}) u+\operatorname{grad} p=f \\
\\
\begin{array}{l}
\alpha=0! \\
\operatorname{div} u=0 \\
\alpha=1!
\end{array} \\
\text { steady state problem }
\end{array} \\
& \text { evolionary problem }
\end{aligned}
$$

Discretization and linearization $\longrightarrow$ Matrix equation

$$
\begin{aligned}
& \mathcal{A x}=b \\
& \left(\begin{array}{cc}
F & B^{T} \\
B & -C
\end{array}\right)\binom{u}{p}=\binom{f}{0}
\end{aligned}
$$

Goal: Robust general solution algorithms
Easy to implement
Derived from subsidiary building blocks
Adaptible to a variety of scenarios (steady / evolutionary / Stokes / Boussinesq)

## Outline

1. General approach preconditioning for saddle point problems
2. Relation to traditional approaches projection methods SIMPLE
3. Details for Navier-Stokes equations
4. Analytic / experimental results
5. Potential for more general problems

## Preliminary: Steady Stokes Equations

$$
\begin{array}{r}
-\nabla^{2} u+\operatorname{grad} p=f \\
-\operatorname{div} u=0
\end{array}
$$

Rusten \&Winther, 1992
Silvester \& Wathen, 1993

Algebraic equation: $\left(\begin{array}{cc}A & B^{T} \\ B & -C\end{array}\right)\binom{u}{p}=\binom{f}{0} \quad \begin{gathered}\left.A=\begin{array}{l}\text { discrete vector } \\ \text { Laplacian }\end{array}\right]\end{gathered}$
Symmetric indefinite! MINRES algorithm is applicable
Preconditioning operator: $\left(\begin{array}{cc}A & 0 \\ 0 & Q_{S}\end{array}\right)$
Generalized eigenvalue problem: $\left(\begin{array}{cc}A & B^{T} \\ B & -C\end{array}\right)\binom{u}{p}=\lambda\left(\begin{array}{cc}A & 0 \\ 0 & Q_{S}\end{array}\right)\binom{u}{p}$
Case $\left.\mathrm{C}=0: \mathrm{Au}+\mathrm{B}^{\mathrm{T}} \mathrm{p}=\lambda \mathrm{Au}, \quad \lambda \neq 1\right) \quad \mathbf{u}=\boldsymbol{\lambda}-1 \mathrm{Q} \mathrm{A}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{p}$

$$
\mathrm{Bu} \quad=\lambda \mathrm{Q}_{\mathrm{s}} \mathrm{p} \quad \mathrm{BA}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{p}=\lambda(\lambda-1) \mathrm{Q}_{\mathrm{s}} \mathrm{p}
$$

$$
\mathrm{BA}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{p}=\mu \mathrm{Q}_{\mathrm{S}} \mathrm{p}, \quad \mu=\lambda(\lambda-1)
$$

Verfürth, 1984: For $\mathrm{Q}_{\mathrm{S}}=$ pressure mass matrix,

$$
\mu 2\left[\mathrm{a}_{\mathrm{s}}, \mathrm{~b}_{\mathrm{s}}\right]
$$

independent of discretization parameter $h$
Under mapping

$$
\mu \mapsto \lambda=1 \S(1+4 \mu)^{1 / 2}
$$



Convergence bound for MINRES: $\quad\left\|r_{k}\right\| \leq 2\left(\frac{1-\sqrt{(b c) /(a d)}}{1+\sqrt{(b c) /(a d)}}\right)^{k / 2}\left\|r_{0}\right\|$
Computational requirements, for $\left(\begin{array}{cc}A & 0 \\ 0 & Q_{S}\end{array}\right)^{-1}$ times a vector
Poisson solve: can be approximated, e.g. with multigrid Mass matrix solve: cheap

## Generalize to Navier-Stokes Equations

Linearization via Picard iteration (slightly inaccurate notation):

$$
\begin{aligned}
\frac{\alpha}{\Delta t} u^{(m+1)}-v \nabla^{2} u^{(m+1)}+\left(u^{(m)} \cdot \operatorname{grad}\right) u^{(m+1)}+\operatorname{grad} p^{(m+1)} & =f^{(m)} \\
-\operatorname{div} u^{(m+1)} & =0
\end{aligned}
$$

Discretization $\longrightarrow\left(\begin{array}{ll}F & B^{T} \\ B & 0\end{array}\right)\binom{u}{p}=\binom{f}{0}$
Analogue of Stokes strategy: preconditioner $\left(\begin{array}{cc}F & 0 \\ 0 & Q_{S}\end{array}\right)$
Same analysis !
$\mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{p}=\mu \mathrm{Q}_{\mathrm{S}} \mathrm{p}, \quad \mu=\lambda(\lambda-1)$
) seek approximation $Q_{S}$ to Schur complement
N.B. Same question arises for other strategies for linearization

Suppose $\mathrm{Q}_{\mathrm{S}} 1 / 4 \mathrm{BF}^{-1} \mathrm{~B}^{T}$ so that eigenvalues of

$$
\mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{p}=\mu \mathrm{Q}_{\mathrm{s}} \mathrm{p}
$$

are tightly clustered.
Under mapping $\mu \mapsto \lambda=1 \S(1+4 \mu)^{1 / 2}$, eigenvalues $\lambda$ are clustered in two regions, one on each side of imaginary axis


## Can improve this:

Observation: symmetry is important for Stokes solver MINRES: optimal with fixed cost per step
) need block diagonal preconditioner
For Navier-Stokes: don't have symmetry need Krylov subspace method for nonsymmetric matrices (e.g. GMRES)

Alternative: block triangular preconditioner

$$
\left(\begin{array}{cc}
F & B^{T} \\
0 & -Q_{S}
\end{array}\right)
$$

! Generalized eigenvalue problem $\left(\begin{array}{ll}F & B^{T} \\ B & 0\end{array}\right)\binom{u}{p}=\mu\left(\begin{array}{cc}F & B^{T} \\ 0 & -Q_{S}\end{array}\right)\binom{u}{p}$

$$
\begin{array}{lll}
\mathrm{Fu}+\mathrm{B}^{\mathrm{T}} \mathrm{p} & =\mu \mathrm{Fu}, & \mu \neq 1) \\
\mathrm{Bu} & =-\mu \mathrm{Q}_{\mathrm{s}} \mathrm{p} & \\
\mathrm{u}=-\mathrm{F}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{p} \\
\mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{p}=\mu \mathrm{Q}_{\mathrm{s}} \mathrm{p}
\end{array}
$$



Theorem (Fischer, Ramage, Silvester, Wathen):
For preconditioned GMRES iteration, let
$\mathrm{p}_{0}$ be arbitrary and $\left.\mathrm{u}_{0}=\mathrm{F}^{-1}\left(\mathrm{f}-\mathrm{B}^{\mathrm{T}} \mathrm{u}_{0}\right)() \mathrm{r}_{0}=\left(0, \mathrm{w}_{0}\right)\right)$
$\left(u_{k}, p_{k}\right)_{T}$ be generated with block triangular preconditioner,
$\left(\mathrm{u}_{\mathrm{k}}, \mathrm{p}_{\mathrm{k}}\right)_{\mathrm{D}}$ be generated with block diagonal preconditioner.
Then $\left(\mathrm{u}_{2 \mathrm{k}}, \mathrm{p}_{2 \mathrm{k}}\right)_{\mathrm{D}}=\left(\mathrm{u}_{2 \mathrm{k}+1}, \mathrm{p}_{2 \mathrm{k}+1}\right)_{\mathrm{D}}=\left(\mathrm{u}_{\mathrm{k}}, \mathrm{p}_{\mathrm{k}}\right)_{\mathrm{T}}$.

Computational requirements, to implement block triangular preconditioner:

$$
\text { Compute }\binom{w}{r}=\left(\begin{array}{cc}
F & B^{T} \\
0 & -Q_{S}
\end{array}\right)^{-1}\binom{v}{q}
$$

Solve $Q_{s} r=-q$, then solve $F w=v-B^{T} r$
The only difference from block diagonal solve: matrix-vector product $\mathrm{B}^{\mathrm{T}} \mathrm{r}$ (negligible)

For second step: convection-diffusion solve: can be approximated, e.g. with multigrid

For first step: something new needed: $\mathrm{Q}_{\mathrm{S}}$

One more interpretation:

$$
\begin{aligned}
& \left(\begin{array}{cc}
F & B^{T} \\
B & -C
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
B F^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
F & B^{T} \\
0 & -\left(B F^{-1} B^{T}+C\right)
\end{array}\right) \\
& \left(\begin{array}{cc}
F & B^{T} \\
B & -C
\end{array}\right)\left(\begin{array}{cc}
F & B^{T} \\
0 & -\left(B F^{-1} B^{T}+C\right)
\end{array}\right)^{-1}=\left(\begin{array}{cc}
I & 0 \\
B F^{-1} & I
\end{array}\right) \\
& \underbrace{1 / 4}\left(\begin{array}{ll}
Q_{F} & B^{T} \\
0 & -Q_{S}
\end{array}\right)^{-1}
\end{aligned}
$$

Shows what is needed for stabilized discretization:

$$
\mathrm{Q}_{\mathrm{S}} 1 / 4 \mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}}+\mathrm{C}
$$

## Relation to Projection Methods

"Classical" O( $\Delta \mathrm{t})$ projection method (Chorin 1967, Temam 1969):
Step 1: $\frac{u^{(*)}-u^{(m)}}{\Delta t}-v \nabla^{2} u^{*}+\left(u^{(m)} \cdot \operatorname{grad}\right) u^{(m)}=f$
$\left(\frac{1}{\Delta t} I-v \nabla^{2}\right) u^{*}=f-\left(u^{(m)} \cdot \operatorname{grad}\right) u^{(m)}+\frac{1}{\Delta t} u^{(m)}$
In matrix form: $\left(\frac{1}{\Delta t} M+v A\right) u^{*}=f-N u^{(m)}+\frac{1}{\Delta t} M u^{(m)}$
Step 2: $\left(\begin{array}{cc}\frac{1}{\Delta t} I & \nabla \\ -\nabla & 0\end{array}\right)\binom{u^{(m+1)}}{p^{(m+1)}}=\binom{\frac{1}{\Delta t} u^{*}}{0}$
In matrix form: $\left(\begin{array}{cc}\frac{1}{\Delta t} M & B^{T} \\ B & 0\end{array}\right)\binom{u^{(m+1)}}{p^{(m+1)}}=\binom{\frac{1}{\Delta t} M u^{*}}{0}$
Performed via pressure-Poisson solve

Substitute $\mathrm{u}^{*}$ from Step 1 into Step 2 :
$\left(\begin{array}{c}\left(\begin{array}{c}\frac{1}{\Delta t} M+v A \\ B\end{array} \frac{\left(\frac{1}{\Delta t} M+v A\right)\left(\frac{1}{\Delta t} M\right)^{-1} B^{T}}{}\right.\end{array}\right)\binom{u^{(m+1)}}{p^{(m+1)}}=\binom{f-N u^{(m)}+\frac{1}{\Delta t} M u^{(m)}}{0}$
Contrast: update derived purely from linearization \& discretization:
$\left(\begin{array}{cc}\left(\begin{array}{cc}\frac{1}{\Delta t} M+\nu A & B^{T} \\ B & 0\end{array}\right)\binom{u^{(m+1)}}{p^{(m+1)}}=\binom{f-N u^{(m)}+\frac{1}{\Delta t} M u^{(m)}}{0} .\end{array}\right.$
$\left(\begin{array}{cc}\frac{1}{\Delta t} M+v A & 0 \\ B & -B\binom{0}{\left.\frac{1}{\Delta t} M+v A\right)^{-1} B^{T}}\left(\begin{array}{cc}I & \left(\frac{1}{\Delta t} M+v A\right)^{-1} B^{T} \\ 0 & I\end{array}\right)\end{array}\right.$
Error: $B^{T}-\left(\frac{1}{\Delta t} M+v A\right)\left(\frac{1}{\Delta t} M\right)^{-1} B^{T}=-(\Delta t) \nu M^{-1} A B^{T}=O(\Delta t)$

## For higher order accuracy in time and related approaches:

Dukowicz \& Dvinsky 1992
Perot 1993
Quarteroni, Saleri \&Veneziani 2000
Henriksen \& Holman 2002

## Relation to SIMPLE

Patankar \& Spaulding, 1972

$$
\begin{aligned}
& \left(\begin{array}{ll}
F & B^{T} \\
B & 0
\end{array}\right)=\left(\begin{array}{lll}
F & 0 \\
B-B F^{-1} B^{T}
\end{array}\right)\left(\begin{array}{ll}
I & F^{-1} B^{T} \\
0 & I
\end{array}\right) \\
& \underbrace{1 / 4}\left(\begin{array}{ll}
Q_{F} & 0 \\
B & -B \hat{F}^{-1} B^{T}
\end{array}\right)\left(\begin{array}{cc}
I & \hat{F}^{-1} B^{T} \\
0 & I
\end{array}\right)
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{F}}$ : approximate convection-diffusion solve $\hat{F}$ : diagonal part of $F$
Many variants

## Perspective of New Approach

-Take on Schur complement directly
-Separate time discretization from algebraic algorithm
-Enable flexible treatment of time discretization, linearization Allow choice of linearization
Allow large time steps / CFL numbers if circumstances warrant

## Approximation for the Schur Complement (I) Kay,Loghin,

 Wathen 2002Suppose the gradient and convection-diffusion operators approximately commute $\left(\mathrm{w}=\mathrm{u}^{(\mathrm{m})}\right)$ :

$$
\nabla\left(-\vee \nabla^{2}+w \cdot \nabla\right)_{p} \approx\left(-\vee \nabla^{2}+w \cdot \nabla\right)_{u} \nabla
$$

$\uparrow$ Require pressure convection-diffusion operator
Discrete analogue: $M_{u}^{-1} B^{T} M_{p}^{-1} F_{p}=M_{u}^{-1} F M_{u}^{-1} B^{T}$

$$
\begin{aligned}
\Rightarrow B F^{-1} B^{T}= & B M_{u}^{-1} B^{T} F_{p}^{-1} M_{p} \\
& \leftarrow A_{p} \rightarrow
\end{aligned}
$$

In practice: don't have equality, instead $Q_{S} \equiv A_{p} F_{p}^{-1} M_{p}$
Requirements: Poisson solve

Mass matrix solve
$\left.\begin{array}{c}A_{p}^{-1} \\ M_{p}^{-1}\end{array}\right\}$ for $Q_{S}^{-1}$

+ Convection-diffusion solve $F^{-1}$


## Evolutionary Equations

$$
\begin{aligned}
u_{\mathrm{t}}-v \nabla^{2} u+(u \cdot \mathrm{grad}) u+\operatorname{grad} p & =f \\
-\operatorname{div} u & =0
\end{aligned}
$$

Backward Euler:

$$
\begin{aligned}
& \frac{u^{(m+1)}-u^{(m)}}{\Delta t}-v \nabla^{2} u^{(m+1)}+\left(u^{(m)} \cdot \operatorname{grad}\right) u^{(m+1)}+ \operatorname{grad} p^{(m+1)}=f \\
&-\operatorname{div} u^{(m+1)}=0
\end{aligned}
$$

Linearized 2nd order Crank-Nicolson (Simo \& Armero):

$$
\begin{aligned}
& \frac{u^{(m+1)}-u^{(m)}}{\Delta t}+\frac{1}{2}\left(-v \nabla^{2} u^{(m+1)}+\left(w^{(m)} \cdot \operatorname{grad}\right) u^{(m+1)}\right)+\operatorname{grad} p^{(m+1)}= \\
& \\
& -\operatorname{fiv} u^{(m+1)}=0 \\
& \left.w^{(m)}=1.5 u^{(m)}-.5 u^{(m-1)} u^{(m)}+\left(w^{(m)} \cdot \operatorname{grad}\right) u^{(m)}\right)
\end{aligned}
$$

## Matrix structure after discretization

$$
\left(\begin{array}{ll}
F & B^{T} \\
B & 0
\end{array}\right) \quad F=\alpha M_{v}+v A+N \quad \alpha\left\{\begin{array}{l}
\text { larger for } \mathrm{CN} \\
\text { than for } \mathrm{BE}
\end{array}\right.
$$

Considerations are the same
Preconditioner $\left(\begin{array}{ll}Q_{F} & B^{T} \\ 0 & Q_{S}\end{array}\right)$,

$$
\begin{aligned}
& Q_{F} \approx F, \quad Q_{S} \approx S \\
& F_{p}=\alpha M_{p}+v A_{p}+N_{p} \\
& Q_{S}^{-1}=M_{p}^{-1} F_{p} A_{p} \approx S^{-1}
\end{aligned}
$$

Convection-diffusion solve easier than for steady state

For large $\alpha$ (small $\Delta \mathrm{t}$ ):

$$
\begin{aligned}
& F=\alpha M_{v}+v A_{p}+N \sim \frac{h^{d}}{\Delta t} I \Rightarrow \quad B F^{-1} B^{T} \approx \frac{\Delta t}{h^{T}} B B^{T} \\
& Q_{S}=A_{p} F_{p}^{-1} M_{p} \sim\left(B M_{u}^{-1} B^{T}\right)\left(\frac{\Delta t}{h^{I}} I\right)\left(h^{d} I\right)=\frac{\Delta t}{h^{T}} B B^{T}
\end{aligned}
$$

## Approximation for the Schur Complement (II) Elman 1999

Consider simple observation in linear algebra: let $\mathrm{G}, \mathrm{H}$ be rectangular matrices


Consider $H^{T}\left(\mathrm{GH}^{\mathrm{T}}\right)^{-1} \mathrm{G}$, maps $\mathrm{R}^{n_{1}}$ to $\operatorname{range}\left(\mathrm{H}^{\mathrm{T}}\right)$ fixes range $\left(\mathrm{H}^{\mathrm{T}}\right)$

$$
\mathrm{H}^{\mathrm{T}}\left(\mathrm{GH}^{\mathrm{T}}\right)^{-1} \mathrm{G}^{\mathrm{T}}=\mathrm{I} \text { on } \operatorname{range}\left(\mathrm{H}^{\mathrm{T}}\right)
$$

Take $\left.\mathrm{G}=\mathrm{BF}^{-1}, \mathrm{H}=\mathrm{B}\right) \quad \mathrm{B}^{\mathrm{T}}\left(\mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}}\right)^{-1} \mathrm{BF}^{-1}=\mathrm{I}$ on $\operatorname{range}\left(\mathrm{B}^{\mathrm{T}}\right)$

$$
\mathrm{B}^{\mathrm{T}}\left(\mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}}\right)^{-1} \mathrm{~B} \quad=\mathrm{F} \text { on } \operatorname{range}\left(\mathrm{F}^{-1} \mathrm{~B}^{\mathrm{T}}\right)
$$

Suppose $\operatorname{range}\left(\mathrm{B}^{\mathrm{T}}\right)^{1 / 2} \operatorname{range}\left(\mathrm{~F}^{-1} \mathrm{~B}^{\mathrm{T}}\right)$

$$
\begin{aligned}
& \text { ) } \mathrm{B}^{\mathrm{T}}\left(\mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}}\right)^{-1} \mathrm{~B}=\mathrm{F} \text { on range }\left(\mathrm{B}^{\mathrm{T}}\right) \\
& \left(\mathrm{BB}^{\mathrm{T}}\right)\left(\mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}}\right)^{-1}\left(\mathrm{BB}^{\mathrm{T}}\right)=\mathrm{BFB}^{\mathrm{T}}
\end{aligned}
$$

$\left(\mathrm{BF}^{-1} \mathrm{~B}^{\mathrm{T}}\right)^{-11 / 4}\left(\mathrm{BB}^{T}\right)^{-1}\left(\mathrm{BFB}^{T}\right)\left(\mathrm{BB}^{T}\right)^{-1} \quad \mathrm{Q}_{\mathrm{S}}{ }^{-1}$

## Recapitulating: Two ideas under consideration

Preconditioners $\left(\begin{array}{cc}Q_{F} & B^{T} \\ 0 & -Q_{S}\end{array}\right)$ for $\left(\begin{array}{cc}F & B^{T} \\ B & -C\end{array}\right)\binom{u}{p}=\binom{f}{0}$

1. $\mathrm{F}_{\mathrm{p}}$ preconditioner: $\mathrm{Q}_{\mathrm{S}}=\mathrm{A}_{\mathrm{p}} \mathrm{F}_{\mathrm{p}}^{-1} \mathrm{M}_{\mathrm{p}}$

Requirements: Poisson solve, mass matrix solve,
$\mathrm{F}_{\mathrm{p}}$ on pressure space
Decisions on boundary conditions
2. BFBt preconditioner: $\mathrm{Q}_{\mathrm{S}}=\left(\mathrm{BB}^{\mathrm{T}}\right)\left(\mathrm{BFB}^{T}\right)^{-1}\left(\mathrm{BB}^{\mathrm{T}}\right)$

Requirements: Two Poisson solves
$\mathrm{C}=0$
Requirement common to both: approximation of action of $\mathrm{F}^{-1}$
Overarching philosophy: subsidiary operations $\left.\begin{array}{l}\begin{array}{l}\text { Poisson solve } \\ \text { convection-diffusion solve }\end{array}\end{array}\right\}$ are manageable

## Benchmark problems

1. 2D Driven Cavity Problem

$\mathrm{u}_{1}=\mathrm{u}_{2}=0$, except $\mathrm{u}_{1}=1$ at top
2. 2D Backward Facing Step


$$
\begin{aligned}
& \mathrm{u}_{1}=\mathrm{u}_{2}=0 \text {, except } \\
& \mathrm{u}_{1}=1-\mathrm{y}^{2} \text { at inflow } \\
& \left.v \partial u_{1} / \partial x=p\right\} \\
& \partial \mathrm{u}_{2} / \partial \mathrm{x}=0 \quad\{\text { at outflow }
\end{aligned}
$$

3. 3D Driven Cavity Problem

Various finite element / finite difference discretizations in space Backward Euler or Crank-Nicolson in time

## Experiment 1: 2D driven cavity problem on $[0,1] £[0,1]$

Discretization in space:
marker-and-cell finite differences (Harlow \& Welch), $\mathrm{h}=1 / 128$
Discretization in time:
backward Euler with various time steps
Integrate from $t=0$ to $t=1$
Solve implicit systems with $\mathrm{F}_{\mathrm{p}}$-preconditioned GMRES
Average iteration counts per linear solve

|  | $V$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\Delta t$ | $1 / 40$ | $1 / 80$ | $1 / 160$ | $1 / 320$ |
| $1 / 8$ | 6.9 | 8.4 | 9.3 | 9.9 |
| $1 / 16$ | 5.6 | 6.9 | 8.1 | 8.6 |
| $1 / 32$ | 4.0 | 5.1 | 6.2 | 6.9 |
| $1 / 64$ | 2.9 | 3.6 | 4.3 | 5.0 |


| $V$ |
| :---: |
| $1 / 5000$ |
|  |
|  |
| $4-5$ |
| $3-4$ |

For same problem: GMRES behavior at $\mathrm{t}=1 / 4,1 / 2,3 / 4$ $h=1 / 64, \quad v=1 / 160,1 / 320$


## Experiment 2: 2D driven cavity flow on [-1,1]£[-1,1], Re=200

Discretization in space: $\mathrm{Q}_{2}-\mathrm{Q}_{1}$ finite elements
Discretization in time: backward Euler with various time steps
Iterations of GMRES at sample time / Picard step



## Experiment 2, continued: $\mathrm{Re}=1000$




## Experiment 2, continued: $\mathrm{Re}=1000$




## Experiment 3: backward facing step, $\mathrm{Re}=200$

$\mathrm{Q}_{2}-\mathrm{Q}_{1}$ fem spatial discretization
Backward Euler time discretization
Iterations of GMRES at sample time / Picard step



For $\mathrm{CFL}=\|\mathrm{u}\| \mathrm{dt} / \mathrm{h},\|\mathrm{u}\| \frac{1}{4} / 46$ )

$$
\mathrm{dt}=.1!\quad \mathrm{CFL} \sim 41.6
$$

$$
\mathrm{dt}=.1!\quad \mathrm{CFL} \sim 83.2 \quad 28
$$

## Experiment 3, continued: backward facing step, $\mathrm{Re}=1000$




For CFL $\left.=\|u\| d t / h,\|u\|^{1} / 429\right)$

$$
\begin{array}{ll}
\mathrm{dt}=1 \quad & \mathrm{CFL} \sim 464 \\
\mathrm{dt}=.1! & \mathrm{CFL} \sim 46.4
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{dt}=1 \quad & \mathrm{CFL} \sim 928 \\
\mathrm{dt}=.1! & \mathrm{CFL} \sim 92.8
\end{array}
$$

## Experiment 4: 3D driven cavity problem on [0,1] ${ }^{3}$

Marker-and-cell finite differences
Pseudo-transient iteration:
ten time steps at various CFL nos. and $\mathrm{Re}, \mathrm{h}=1 / 64$
Average iteration counts with $\mathrm{F}_{\mathrm{p}}$ preconditioning to satisfy mild stopping criterion $\left\|\mathrm{r}_{\mathrm{k}}\right\| \cdot 10^{-2}\|\mathrm{f}\|, \mathrm{f}=$ nonlinear residual

| $\operatorname{Re}$ | CFL\# | Iterations |
| :---: | :---: | :---: |
| 500 | $.1, .5,1,10,50,100$ | 2 |
|  | 5000 | 5 |
|  | 10,000 | 6 |
|  | 50,000 | 9 |
| 1000 | 5000 | 5 |
|  | 10,000 | 6 |
|  | 50,000 | 10 |

## Key aspect of computations:

Poisson solves:
Convection-diffusion solves: $w=\mathrm{F}^{-1} \mathrm{v}$ \}

Each can be approximated using existing technology

- multigrid
- domain decomposition
- fast direct methods
- other iterative methods


## Experiment 4, continued:

Replace convection-diffusion solve and Poisson solve with multigrid approximations

Iterations

| $\operatorname{Re}$ | CFL \# | Exact | Inexact |
| :---: | :---: | :---: | :---: |
| 500 | 50,000 | 9 | 12 <br> 3 Poisson <br> 8 Conv-diff |
| 1000 | 50,000 | 10 | 13 <br> 3 Poissori <br> 8 Conv-diff |

## Boundary conditions for preconditioners

To define operators $\mathrm{F}_{\mathrm{p}}$ and $\mathrm{A}_{\mathrm{p}}$ :
need to "specify" boundary conditions on pressure space

## Derivation of preconditioners does not offer guidance

Formulation of problem does: have convection-diffusion operator

$$
\left(-\nu r^{2}+(w \phi r)\right)
$$

defined on pressure space, $w=$ current velocity iterate

No specific b.c. on pressures suggests "natural" condition

$$
\partial \mathrm{p} / \partial \mathrm{n}=0
$$

But: flow problems require Dirichlet conditions on inflow boundary, where $w<n<0$

## Therefore: formulate $\mathrm{F}_{\mathrm{p}}$ using

Dirichlet conditions $\mathrm{p}=0 \quad$ on $\partial \Omega_{-}$(inflow, wen<0)
Neumann conditions $\partial \mathrm{p} / \partial \mathrm{n}=0$ on $\partial \Omega_{0}$ (characteristic, $\mathrm{w} \subset \mathrm{n}=0$ ) $\partial \Omega_{+}$(outflow, w¢n>0)

Comments:

1. Not really specifying values, just defining matrix $F_{p}$
2. Formulate $A_{p}$ in compatible manner
3. This issue is important but
it only affects performance of solvers, not accuracy

## For benchmark problems

1. 2D Driven Cavity Problem

$\mathrm{u}_{1}=\mathrm{u}_{2}=0$, except $\mathrm{u}_{1}=1$ at top
ưn' 0 ) $F_{p}$ defined using
Neumann b.c
2. 2D Backward Facing Step


$$
\mathrm{u}_{1}=\mathrm{u}_{2}=0 \text {, except }
$$

$$
\mathrm{u}_{1}=1-\mathrm{y}^{2} \text { at inflow }
$$

$$
\left.\begin{array}{l}
v \partial \mathrm{u}_{1} / \partial \mathrm{x}=\mathrm{p} \\
\partial \mathrm{u}_{2} / \partial \mathrm{x}=0
\end{array}\right\} \text { at outflow }
$$

ựn < 0 at inflow )
Dirichlet b.c. there
Otherwise Neumann

Analysis: For solving $A Q_{A}{ }^{-1} \mathrm{x}=\mathrm{b}$ using GMRES, assuming

$$
\mathrm{AQ}_{\mathrm{A}}^{-1}=\mathrm{V} \Lambda \mathrm{~V}^{-1}
$$

is diagonalizable:

$$
\begin{aligned}
\left\|r_{k}\right\| & \leq \min _{p_{k}(0)=1}\left\|p_{k}\left(A Q_{A}^{-1}\right) r_{0}\right\| \\
& \leq \kappa(V) \min _{p_{k}(0)=1} \max _{\lambda \in \sigma\left(A Q_{A}^{-1}\right)}\left|p_{k}(\lambda)\right|\left\|r_{0}\right\|
\end{aligned}
$$

Here: $\quad A=\left(\begin{array}{ll}F & B^{T} \\ B & 0\end{array}\right), \quad Q_{A}=\left(\begin{array}{cc}F & B^{T} \\ 0 & -Q_{S}\end{array}\right)$
$\underset{\text { (Loghin) }}{\text { For F_p preconditioning: }} c_{1} \frac{v\left(v+\frac{1}{\Delta t}\right)}{\|w\|^{2}} \leq\left|\lambda\left(A Q_{A}^{-1}\right)\right| \leq c_{2} \frac{1}{v}\left(\frac{1}{\Delta t}+\|w\|\right)$ (Loghin)
) asymptotic convergence rate $\left(\left\|r_{k}\right\| /\left\|r_{0}\right\|\right)^{1 / k}, k!\mathbf{T}$, independent of (small) h, $\Delta \mathrm{t}$ pessimistic wrt $V$

## Generalizations:

Boussinesq equations: $\alpha \mathbf{u}_{t}-\nabla \cdot\left(\nu_{u} \nabla \mathbf{u}\right)+(\mathbf{u} \cdot \mathrm{grad}) \mathbf{u}+\operatorname{gradp}=\mathrm{f}(T)$

$$
\begin{aligned}
& \alpha T_{t}-\nabla \cdot\left(\nu_{T} \nabla T\right)+(\mathbf{u} \cdot \mathrm{grad}) T=g(T) \\
& -\operatorname{div} \mathbf{u}=0
\end{aligned}
$$

! coefficient matrix $\left(\begin{array}{cc:c}F_{u} & G & B^{T} \\ H & F_{T} & 0 \\ \hline B & 0 & 0\end{array}\right)=\left(\begin{array}{cc}\widehat{F} & \hat{B}^{T} \\ \widehat{B} & 0\end{array}\right)$
"Ideal" preconditioner is $\hat{\mathcal{Q}}=\left(\begin{array}{cc}\hat{F} & \widehat{B}^{T} \\ 0 & -\widehat{S}\end{array}\right), \quad \widehat{S}=\widehat{B} \hat{F}^{-1} \widehat{B}$
For Picard iteration, $\mathrm{H}=0$ and Schur complement is

$$
\widehat{S}=B F_{u}^{-1} B^{T}=S,
$$

the same as for the Navier-Stokes equations

## Add chemistry: molecular species with concentration $Y$

Add equation of form $\quad \alpha Y_{t}-\nabla \cdot\left(D_{Y} \nabla Y\right)+(\mathbf{u} \cdot \mathrm{grad}) Y=0$

Coupled with

$$
\begin{aligned}
& \alpha \mathbf{u}_{t}-\nabla \cdot\left(\nu_{u} \nabla \mathbf{u}\right)+(\mathbf{u} \cdot \mathrm{grad}) \mathbf{u}+\operatorname{gradp}=\mathrm{f}(T) \\
& \alpha T_{t}-\nabla \cdot\left(\nu_{T} \nabla T\right)+(\mathbf{u} \cdot \operatorname{grad}) T=g(T) \\
& -\operatorname{div} \mathbf{u}=0
\end{aligned}
$$

! coefficient matrix

$$
\left(\begin{array}{ccc}
F_{u} & G & B^{T} \\
H & F_{T, Y} & 0 \\
B & 0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\hat{F} & \hat{B}^{T} \\
\hat{B} & 0
\end{array}\right)
$$

## Concluding remarks

Goal: develop strategies to handle linearized Navier-Stokes equations in a flexible manner

- Allow large time steps if stiffness is not critical
-Respect coupling of velocities and pressures
-Automatically adapt to handle different scenarios (creeping flow, stiff systems, steady problems)

Technical approach:
-Take advantage of saddle point structure of problem
-Develop preconditioners for Schur complement and accompanying systems

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

