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Incompressible Navier-Stokes Equations
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α=0 ! steady state problem
α=1 ! evolutionary problem
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Discretization and linearization                  Matrix equation

x=b

Goal:  Robust general solution algorithms
Easy to implement
Derived from subsidiary building blocks
Adaptible to a variety of scenarios 

(steady / evolutionary / Stokes / Boussinesq)
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Outline

1. General approach
preconditioning for saddle point problems

2. Relation to traditional approaches
projection methods
SIMPLE

3. Details for Navier-Stokes equations

4. Analytic / experimental results

5. Potential for more general problems



Preliminary: Steady Stokes Equations
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Symmetric indefinite ! MINRES algorithm is applicable

Preconditioning operator:
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Generalized eigenvalue problem:
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A = discrete vector
Laplacian

Au+BTp = λ Au ,        λ ≠ 1 )  u= 1/(λ-1) A-1BTp 
Bu          = λ QSp                         BA-1BTp=λ(λ-1) QSp

Case C=0:

Rusten &Winther, 1992
Silvester & Wathen, 1993
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BA-1BTp=µ QSp, µ=λ(λ-1)
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Convergence bound for MINRES:

Verfürth, 1984:   For QS=pressure mass matrix,
µ2 [as,bs] 

independent of discretization parameter h

Under mapping µ λ=1§ (1+4µ)1/2, 

Computational requirements, for                          times a vector                         

Poisson solve:          can be approximated, e.g. with multigrid
Mass matrix solve: cheap

λ ½

1

0

0
−








SQ

A



7

Generalize to Navier-Stokes Equations
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Linearization via Picard iteration (slightly inaccurate notation):
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Discretization

Analogue of Stokes strategy: preconditioner 
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Same analysis ! BF-1BTp=µ QSp,      µ=λ(λ-1)
) seek approximation QS to Schur complement

N.B.  Same question arises for other strategies for linearization
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Under mapping µ λ=1§ (1+4µ)1/2,
eigenvalues λ are clustered in two regions,
one on each side of imaginary axis

Suppose QS ¼ BF-1BT so that eigenvalues of 

BF-1BTp = µ QSp

are tightly clustered. 

Can improve this: 

Observation:  symmetry is important for Stokes solver 
MINRES:  optimal with fixed cost per step
) need block diagonal preconditioner

For Navier-Stokes:  don’t have symmetry
need Krylov subspace method for nonsymmetric
matrices (e.g. GMRES)
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Alternative: block triangular preconditioner 
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! Generalized eigenvalue problem

Fu+BTp = µ Fu ,        µ ≠ 1 )  u= -F-1BTp 
Bu          = - µ QSp                     BF-1BTp=µ QSp

µ ½ {1}[

Theorem (Fischer, Ramage, Silvester, Wathen):  
For preconditioned GMRES iteration, let 

p0 be arbitrary and u0 = F-1(f-BTu0) () r0=(0,w0))  
(uk,pk)T be generated with block triangular preconditioner,
(uk,pk)D be generated with block diagonal preconditioner.

Then (u2k,p2k)D = (u2k+1,p2k+1)D = (uk,pk)T .
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Computational requirements, to implement block triangular  
preconditioner:                           

Solve Qs r = -q, then solve Fw = v-BTr

The only difference from block diagonal solve:
matrix-vector product BT r   (negligible)

For second step: convection-diffusion solve: 
can be approximated, e.g. with multigrid

For first step: something new needed: QS
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Shows what is needed for stabilized discretization:

QS ¼ BF-1BT + C
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Relation to Projection Methods

“Classical” O(∆t) projection method (Chorin 1967, Temam 1969):

Step 1: 
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Step 2: 

In matrix form:







=











∇−

∇ ∆
+

+
∆

00

*1

)1(

)1(1 u

p

uI
t

m

m
t







=










 ∆
+

+
∆

00

*1

)1(

)1(1 Mu

p

u

B

BM t
m

mT

t

Performed via pressure-Poisson solve
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Substitute u* from Step 1 into Step 2 :
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Contrast: update derived purely from linearization & discretization: 
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Dukowicz & Dvinsky 1992

Perot 1993

Quarteroni, Saleri &Veneziani 2000

Henriksen & Holman 2002

For higher order accuracy in time and related approaches:
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Relation to SIMPLE
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QF:  approximate convection-diffusion solve

F:  diagonal part of F

Many variants

^

Patankar & Spaulding, 1972
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Perspective of New Approach

•Take on Schur complement directly

•Separate time discretization from algebraic algorithm

•Enable flexible treatment of time discretization, linearization
Allow choice of linearization
Allow large time steps / CFL numbers if circumstances warrant
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Approximation for the Schur Complement (I)

Suppose the gradient and convection-diffusion operators 
approximately commute (w=u(m)):

Kay,Loghin,
Wathen 2002
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In practice:  don’t have equality, instead pppS MFAQ 1−≡

Requirements:  Poisson solve 1−
pA

Mass matrix solve 1−
pM

+ Convection-diffusion solve 1−F

1for  −
SQ
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Evolutionary Equations
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Backward Euler:
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Matrix structure after discretization
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Approximation for the Schur Complement (II) Elman 1999

Consider simple observation in linear algebra:
let G, H be rectangular matrices

Consider  HT (GHT)-1G , maps R to range(HT)
fixes range(HT)

Gn1

n2

1n

HT (GHT)-1GT = I  on range(HT)

Take G=BF-1, H=B ) BT (BF-1BT)-1BF-1 = I  on range(BT)
BT (BF-1BT)-1B      = F on range(F-1BT)

Hn1

n2

Suppose range(BT) ½ range(F-1BT)

) BT (BF-1BT)-1B = F on range(BT)

(BBT) (BF-1BT)-1 (BBT)= BFBT

(BF-1BT)-1¼ (BBT)-1(BFBT) (BBT)-1 ´ QS
-1
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Recapitulating: Two ideas under consideration

Preconditioners  
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1.  Fp preconditioner:       QS = Ap Fp
-1Mp

Requirements:  Poisson solve, mass matrix solve, 
Fp on pressure space
Decisions on boundary conditions

2. BFBt preconditioner: QS = (BBT) (BFBT)-1 (BBT) 
Requirements:  Two Poisson solves

C=0
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Requirement common to both:  approximation of action of  F-1

Overarching philosophy: subsidiary operations 
Poisson solve 
convection-diffusion solve

are manageable
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Benchmark problems

1. 2D Driven Cavity Problem 2. 2D Backward Facing Step

3. 3D Driven Cavity Problem

Various finite element / finite difference discretizations in space
Backward Euler or Crank-Nicolson in time

u1=u2=0, except u1=1 at top u1=u2=0, except
u1=1-y2 at inflow 
ν ∂u1/∂x=p
∂u2/∂x=0   at outflow
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Experiment 1:  2D driven cavity problem on [0,1]£[0,1]

Integrate from t=0 to t=1
Solve implicit systems with Fp-preconditioned GMRES

Average iteration counts per linear solve

t∆
1/8
1/16
1/32
1/64

6.9
5.6
4.0
2.9

8.4
6.9
5.1
3.6

9.3
8.1
6.2
4.3

9.9
8.6
6.9
5.0

1/40 1/80 1/160 1/320
ν

Discretization in space:  
marker-and-cell finite differences (Harlow & Welch), h=1/128

Discretization in time:  
backward Euler with various time steps

1/5000
ν

4-5
3-4
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For same problem: GMRES behavior at t=1/4, 1/2, 3/4
h=1/64,   ν = 1/160, 1/320
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Experiment 2: 2D driven cavity flow on [-1,1]£[-1,1], Re=200

Discretization in space: Q2-Q1 finite elements
Discretization in time:   backward Euler with various time steps

Iterations of GMRES at sample time / Picard step
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Experiment 2, continued: Re=1000
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Experiment 2, continued: Re=1000
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Experiment 3:  backward facing step, Re=200

Iterations of GMRES at sample time / Picard step

Q2-Q1 fem spatial discretization
Backward Euler time discretization

Residual reduction, ν=1/100, 32£96 grid Residual reduction, ν=1/100, 64£192 grid

dt=1

dt=.1 ! CFL~  83.2dt=.1 ! CFL~  41.6

For CFL=||u|| dt/h, ||u||¼26 )
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Experiment 3, continued: backward facing step, Re=1000

dt=1  ! CFL~928
dt=.1 ! CFL~  92.8

dt=1  ! CFL~464
dt=.1 ! CFL~  46.4

For CFL = ||u||dt/h, ||u||¼29 )
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Experiment 4:  3D driven cavity problem on [0,1]3

Marker-and-cell finite differences
Pseudo-transient iteration:  

ten time steps at various CFL nos. and Re, h=1/64
Average iteration counts with Fp preconditioning to satisfy
mild stopping criterion || rk|| · 10-2 ||f||,  f=nonlinear residual  

CFL #

.1,  .5, 1, 10, 50, 100
5000

10,000
50,000

2
5
6
9

Re

500

1000 5000
10,000
50,000

5
6
10

Iterations



31

Key aspect of computations:

Poisson solves: q = Ap
-1p

Convection-diffusion solves:   w = F-1v

Each can be approximated using existing technology
• multigrid

• domain decomposition
• fast direct methods
• other iterative methods

required at each step
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Experiment 4, continued:  

Replace convection-diffusion solve and Poisson solve with
multigrid approximations

CFL #

50,000 9

Re

500

1000 50,000

Iterations

Exact Inexact

12
3 Poisson
8 Conv-diff

10 13
3 Poisson
8 Conv-diff
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Boundary conditions for preconditioners

To define operators Fp and Ap:
need to “specify” boundary conditions on pressure space 

Derivation of preconditioners does not offer guidance

Formulation of problem does: have convection-diffusion operator 
(-νr 2+(w¢r))

defined on pressure space, w=current velocity iterate

No specific b.c. on pressures suggests  “natural” condition 
∂ p / ∂ n =0

But:  flow problems require Dirichlet conditions on inflow boundary,
where  w¢n < 0
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Therefore:  formulate Fp using

Dirichlet conditions   p=0         on ∂ Ω- (inflow, w¢n<0)

Neumann conditions ∂ p/∂ n =0 on ∂ Ω0 (characteristic, w¢n=0)
∂ Ω+ (outflow, w¢n>0)

Comments:  

1. Not really specifying values, just defining matrix Fp

2. Formulate Ap in compatible manner

3. This issue is important

but

it only affects performance of solvers, not accuracy
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For benchmark problems

1. 2D Driven Cavity Problem 2. 2D Backward Facing Step

u1=u2=0, except u1=1 at top u1=u2=0, except
u1=1-y2 at inflow 
ν ∂u1/∂x=p
∂u2/∂x=0   at outflowu¢n´ 0 ) Fp defined using 

Neumann b.c

u¢n < 0 at inflow )
Dirichlet b.c. there

Otherwise Neumann 
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Analysis:  
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For solving AQA
-1x = b using GMRES, assuming  
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) asymptotic convergence rate   (||rk||/||r0||)1/k , k!1, 
independent of (small) h, ∆t 
pessimistic wrt ν

(Loghin)
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Generalizations:  

Boussinesq equations:

! coefficient matrix

“Ideal” preconditioner is

For Picard iteration, H=0 and Schur complement is

the same as for the Navier-Stokes equations
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Add chemistry:  molecular species with concentration Y 

Add equation of form 

Coupled with

! coefficient matrix
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Concluding remarks 

Goal:  develop strategies to handle linearized Navier-Stokes
equations in a flexible manner

•Allow large time steps if stiffness is not critical
•Respect coupling of velocities and pressures
•Automatically adapt to handle different scenarios

(creeping flow, stiff systems, steady problems)

Technical approach:  
•Take advantage of saddle point structure of problem
•Develop preconditioners for Schur complement and

accompanying systems
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