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Disclaimer*

If you came to this seminar looking for answers, then
you came to the wrong place.

If you came to this seminar looking for questions, then
you came to the right place.

Normalized flow from domain i to domain j

B =% —my)/o;

Cross-correlation between time-averaged flow vectors

C(ij)(kl) - < fij (t) 1:kl (t)>
Principle Component Analysis of cross-correlation
Cw=Aw
Compute the ith domain’s contribution to kth domain
2
2 (W)* =1
I,k
Compute relative strength of flows to kth domain

*1 know you what some math, L
so | thought | should not make S = Z (w;)?
you walit too long (and | decided to omit this). i
4/30/2004 Kevin Mills



Seminar Overview

 What is emergence?

* Where (possibly) does emergence arise?
 How (maybe) does emergence arise?

 How (perhaps) can we recognize emergence?

« Emergence by Design vs. Emergence by Nature

« Searching for Emergent Behavior in Large-scale Networks
— Flat 2-D homogeneous Cellular Automata (CA) and 1/f noise
— Two-tiered homogeneous CA and wavelets

« Challenges of recognizing emergence in information systems
o Challengesininterpreting, exploiting, €iciting, and
controlling emergence
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What is emergence?

o Operational view: System-wide behavior results — emerges — from
Interactions among individual e ements, rather than from explicit
behaviors incorporated into individual elements

— For example, though each of the 10% cells in a human embryo possess the
same DNA, they differentiate (through gene activation and inhibition) into

256 different cell types (e.g., blood, bone, muscle, and neural cells) that
organize into the essential systems of the human body

— The specific role of each cell is not assigned, but rather emerges during
embryo development

 Empirical view: Systems self-organize into a complex state — poised
between predictable cyclic behavior and unpredictable chaos — leading to a
statistically predictable distribution of observed changesin system state

— For example, Earth’ s tectonic plates exist in acomplex state that leads to a
distribution of earthquakes with a frequency inversely related to magnitude

— Such distributions have also been observed in a number of physical and social
systems: variations in commodity prices, extinction rates in paleontology,
global temperature over time, and frequency of cities by size

— Measured behaviors lead to a power-law distribution that signifies a system
that has self-organized (or emerged) into a complex state
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Some traits (possibly) common to emergent systems’

e Autonomous action —individual elements act independently
without benefit of a master control element

* Local information —elements act based on (physically or
logically) local information without benefit of a global view

e Dynamic population — elements added and deleted naturally
without system survival depending on individual elements

o Collectiveinteraction — system behavior arises from
Interactions among many similar independent elements

e Adaptation —individual elements can adapt to changing
goals, information, or environmental conditions

e Evolution —individual elements possess the ability to evolve
their behavior over time

*K. N. Lodding, “Hitchhiker’s Guide to Biomorphic Software”’, Queue, June 2004, pp. 66-75.
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Some (possible) examples of (operational) emergence
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Some (possible) examples of (empirical) emergence

http:i/ahtoinfo.smartlink.net/quake/quake.htm

avalanches

U.S. News & World Report, Jan. 11, 1988, p. 51.

http://www.ics.uci.edu/relations/develop/rs2001/teitelbaum/sid012.htm
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How (maybe) does emergence arise?

Scale — requires critical mass in the number of system elements
(order emerges from many interactions over space and time)

Simplicity — requires that each element behave rather smply
(difficult to construct e ements to act on complete information)

L ocality — requires interaction among “ neighbors’
(limits speed of information dissemination)

Randomness — requires chance interactions among elements
(increases degree of information dissemination)

Feedback — requires ability to sense environmental conditions
(allows some estimation of global state)

Adaptation — reguires that each element can vary its behavior
(allows system state to change with time)
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How (perhaps) can we recognize emergence?

fractal patterns

http://www.mbfractals.com/usergal/dougowen.html

1/f noise

> 1
=

self-similarity

linear wavelets

______

Log SO

© J. Davidsen and H.G. Shuster 2000
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Emergence by Design vs. Emergence by Nature

By Design — some researchers view emergence as a property that
IS “designed” into systems

— Inspires research into techniques to generate desired emergent behaviors
By Nature — some researchers view emergence as an “innate”
property of natural systems

— Inspires research to discover and explain emergent behaviors

Possible implications for infor mation systems

— Some researchers think we should investigate models (such as artificial
life, cellular automata, swarms, biomorphic software, and intelligent
agents) to generate emergent behavior in information systems

— Some researchers suspect that large-scale information systems inherently
exhibit emergent properties
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Motivation for Our Work

Ur gency — growing dependence on large-scale information
systems (e.g., Internet, Web, Grid)

Suspicion —that inherently exhibit emergent properties
Fear —that we do not now understand at a macroscopic level

Hope — that we can eventually understand, predict, and control
macroscopic behavior in large-scale systems

4/30/2004 Kevin Mills

11



Our Research Agenda

e Do large-scale information systems (Internet, Web, Grid)
Inherently exhibit emergent behaviors?

— |If so, are the behaviors desirable, undesirable, or mixed?
— If so, can we explain, predict, and exploit the behaviors?

e Can we devise effective decentralized mechanisms to elicit
desired emergent properties in large-scale information systems?

4/30/2004 Kevin Mills
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Examples of Our Research

* Exploring implications of space and time in communications
networks
— Using aflat homogeneous Cellular Automata (CA) and 1/f noise

 |nvestigating current understanding of Internet behavior
— Using atwo-tiered homogeneous CA and wavelets

4/30/2004 Kevin Mills
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Example #1 — Exploring Implications of Space and Time

e (Goal — characterize correlation in congestion at different
network sizes and time granularities of observation

 Method — collect and analyze data from simulation of a
homogeneous 2-D CA model that can employ three different
means of feedback control

— (1) open-loop (no control)
— (2) connection-admission control (CAC) and
— (3) transmission-control protocol (TCP) flow control

 Analysis Methods—log-log plots of power spectral density vs.
frequency (i.e., 1/f noise) from time-series of

— Node throughput
— System congestion state
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2-D Homogeneous CA Model of a Network

L x L grid of
Inter connected nodes

Each nodeinterconnected |
to four neighbors
(boundary nodes .
Inter connected as needed)

4/30/2004

Nodes — gener ate source packets (subject to flow
restrictions), maintain unlimited length queue, forward
packets on to neighbors, consume packets if node is
destination

Gener ation process — each node has an on-off process:

— at each time step, generate a packet if on and congestion
control permits

— do not generate packet if off or if congestion control
forbids

— duration of on and off periods exponentially distributed
with means Aon and Aoff, respectively

Congestion control algorithms (explained soon)
— Open Loop
— Connection admission control (CAC)
— TCP Flow Control

Routing — next hop selected nearest neighbor (random
selection when equidistant)

System State

— Xout is number of packets received by a selected
destination node during atime interval T

— Nr isthe number of packetsin router r
Kevin Mills
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Behavior of aNodein 2-D CA Mode€

Wait For
Time Step

_| and inject a data packet, subject

Consult control state (using either
CAC or TCP algorithm) to
determine how many (if any) data
packets will be injected along the
source-destination path

Probe-Reply
Packet?

If Node State is “on”, then create

to restrictions imposed by
congestion-control mechanisms.

Yes

No | (data or probe packet)

l

Queue Empty?

Select the oldest
packet in the queue

|

Final Destination?

Remove the packet from the
system. If the packet was a probe
packet, then create a probe-reply
packet destined for the sender of

the probe.

Forward the packet to the end of
the queue of the neighboring
node nearest to the packet's final |
destination

4/30/2004 Kevin Mills
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Alternate Congestion-Control Algorithms

Open-L oop — send a packet at each time step when on

CAC — source sends probe packet at beginning of each on period and
destination returns probe reply from which source can compute a round-trip
time normalized (Nrtt) by distance between source and destination

— If Nrtt < some threshold (Drtt), then send a data packet at each time step of on
period; else send probe packet at next time step

TCP — source sends data packets and destination sends acknowledgment
packet for each data packet. Source computes Nrtt for each data-ack pair and
uses Nrtt and Drtt in a TCP-like congestion control agorithm. For each ack
recelved the source does:

— If Nrtt > Drtt, set slow-start threshold to %2 congestion window; otherwise, if
congestion window < slow-start threshold, then congestion window++

— If congestion window > slow-start threshold, then in congestion window =
congestion window + 1/congestion window

— At each time step source generates a packet, but can only have as many packetsin
transmission as the congestion window allows
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Some Time-Series from 2-D CA Mode Using TCP Congestion Control

The total time shown on these, and similar graphs, is equal to T x t, the sample
interval size (T) multiplied by the number of sample intervals (t).

Unless otherwise indicated Aon = 100, Aoff = 500, Drtt = 50
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Log-Log Plots of Power Spectravs. Frequency for Xout
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Technique to Monitor Network-Wide Congestion

Red nodes are congested ,  pefing threshold Y such that if Nr > Y, node r

Is congested (Y = 5 here)

e Atany given time granularity T, count the
number y of congested nodes
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20t
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Kevin Mills

4/30/2004



Log-Log Plots of Power Spectravs. Frequency for y
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Embedded Subsets of a Network vs. Network of Same Size

Red nodes are : :
=38 1=16 * Response in anetwork sub-area might have

A A,

- i - = different characteristics than responsein a
network of the same size as the sub-area
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Example #2 - nvestigating current understanding of Internet behavior

Goal — improve current understanding of correlation structure of network
traffic by identifying and studying fundamental causalities arising from
multiple protocol layers operating in a sufficiently large network

— What isthe role of user behavior?

— What isthe role of transmission dynamics?

— What istherole of network structure?
Method — collect and analyze data from simulation of a homogeneous two-
tiered (router tier and host tier) CA that represents different protocol layers

— (1) Application layer — on-off periods (exponential and heavy-tailed distributions)

— (2) Transport layer — TCP flow control and TCP Friendly Rate Control

— (3) Network layer -number of hosts per router and capacity of router links
Analysis Methods — wavelet analysis of router throughput over ranges of
timescales

Kevin Mills
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Analysis approach based on wavelets

Large-time
scaling
phenomena are
now believed to
arise from the
application layer
property of
heavy-tailed file
sizes™

This point is
larger than
round-trip

time

TCP can
produce a
linear part

within
limited time
scales™

Octave

Energy Scale Plot

Small timescale
irregular

behavior arising
from TCP

* Some current

understanding!!!
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Two-Tiered Homogeneous CA Model of a Network

L x L grid of routers
connected by links of
capacity n, packets per
timestep

Equal number n, of
sour ces attached to each
router with avariable
number (< 2n ) of
receiver s attached to
each router

4/30/2004

Sour ces — gener ate packets (subject to congestion
control algorithms)

Generation process — each source has on-off process:
— at beginning of each on period randomly select areceiver
— at each time step, generate a packet if permitted

— duration of on and off periods exponentially distributed
(with means Aon and Aoff) or Pareto distributed with
means .24 Aon /1.2 and .24 Aoff /1.2

Congestion control algorithms (explained soon)
— TCP How Control
— TCP Friendly Rate Control (TFRC)

Routers— maintain limited length queue (50 packets
here) and forwar d packets on to neighbors

— next hop selected near est neighbor to theleft (so
that packets between source-destination pairs are
split among the two equidistant routes)

Receiver s— consume packets
System State

— number of packets consumed and forwarded by a
selected destination router during each time step

Kevin Mills
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Alternate Congestion-Control Mechanisms

 TCP — source sends data packets and expects destination to send
ack for each data packet.

— |If ack indicates missed data packet, set low-start threshold to %2
congestion window

— |If ack indicates no data packet missed:

* if congestion window < slow-start threshold, then congestion
window++

* €lse congestion window = congestion window + 1/congestion window

— At each time step source generates a packet, but can only have as many

packets in transmission as the congestion window allows
 TFRC —receiver computes packet loss rate and feeds that back
to sender, which estimates round-trip time (RTT)

— Source inputs packet loss rate and estimated RTT into a TFRC throughput
eguation to learn when to transmit the next packet (i.e., what should be
the interval between packet transmissions)
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Investigating Effects of Application Layer
L =3,n,=10,n,=5, TCP—noten, that determines granularity of observation
Exponential A, =200, A = 2000

Heavy-tailed distribution of file sizes (modeled as on
periods) leads to a pronounced autocorrelation in
traffic over a range of about 11 octaves

Exponential distribution in file sizes leads to a more
limited autocorrelation in traffic over a range of about 6
octaves

These results are consistent with the results of others;:
thus, raising confidence in our model
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Y
4 ____________________________________________________
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Investigating Effects of Transport Layer

Heavy-tailed distribution of file sizes appears to give rise to long-range
dependence regardless the transport mechanism used; however lowering the link
capacity destroys

correlation structure for TFRC but not TCP L =3,ng=10, A, = 200, Ay = 2000

n=2

I . — —
10}-Pareta fOFF. ... ... e
o Exponentia “ ON”

5 10 15 20
Octave j

5 10 15 20
Octave j

P ToR N S S—

“ G\ry i

. 4 :
5 10 15 20
Octave j Octave j Octave j
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Investigating Effects of Link Capacity

Restricting network capacity appears to strengthen correlation structure, while
expanding network capacity appears to weaken correlation structure

L = 3, Exponential A,, =200, A = 2000

12}
10
8 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
n| - 2 y y S e SRR
i A S S S R A |
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n =20
5 10 15 20 5 10 15 20
Octave j Octave |
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Investigating Effects of Traffic Demands

Independent of transport mechanism, increasing the traffic demand for a fixed
network capacity increases correlation, while increasing network capacity for a
fixed traffic demand weakens correlation | = 3 Exponential Ay, = 200, A = 2000

n,=10
n =5
e s S —
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Investigating Effects of Network Size

Independent of transport mechanism, increasing network size increases
correlation structure, given the same traffic demand and network capacity

n,=10, n, =1, Exponential A, =200, A = 2000

L=9 L =27
10 e !
JTep o BRTCP b
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4/30/2004 Kevin Mills 31

5 10 15 20
Octave



Challenges in Recognizing Emergence

* What data should be collected?

 How much data should be collected?

e At what time granularity should data be collected?
* How should collected data be analyzed?

How can data be collected and analyzed in real-time throughout
alarge-scale network (which is not homogeneous)?

Normalized flow from domain i to domain j

fij = (Xij _mj)/ ok v )

Cross-correlation between time-averaged flow vectors e 0247
Cinwy = < fi; () Ty (t)> 1

Principle Component Analysis of cross-correlation

T=21s

Compute the ith domain’s contribution to kth domain
2 _
D, (w)* =1
ik

Compute relative strength of flows to kth domain

5 =Y (W)’
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Challenges in Interpreting, Exploiting, Eliciting, and Controlling
Emergence

Can evidence of emergent behavior be attributed to appropriate
cause(s)?

Can coherent behavior be recognized and acted upon in time to
effect control?

Can decentralized feedback and adaptation be applied effectively
to elicit adesired coherent state?

Does a system that self-organizesto a“critical” (coherent state)
Imply a substantial probability of exhibiting chaotic behavior?

If so, then can a system operating at acritical state be prevented
from exhibiting chaotic behavior?
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Conclusions

| wish we knew more about these questions because | suspect that
our large-scale information systems (e.g., Internet, Web, and
Grid) will exhibit emergent properties long before we are able to

understand what is happening and why, or to do anything about
It.
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