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Outline of the Presentation

Anomaly Detection in Complex Dynamical Systems
Microstate Information Based on Macroscopic Observables

Thermodynamic Formalism of Multi-time-scale Nonlinearities
Symbolic Time Series Analysis of Macroscopic Observables
Pattern Discovery via Information-theoretic Analysis

Real-time Experimental Validation on Laboratory Apparatuses
Active Electronic Circuits and Three-phase Electric Induction Motors
Multi-Degree-of-Freedom Mechanical Vibration and Chaotic Systems
Fatigue Damage Testing in Polycrystalline Alloys

Discrete Event Supervisory Control for Failure Mitigation
Quantitative Measure for Language-based Decision and Control
Real-time Identification of Language Measure Parameters
Robust and Optimal Control in Language-theoretic Setting
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Future Collaborative Research in Complex Microstructures
Modeling and Control of Hidden Anomalies and their Propagation
Experimentation on Real-time Detection and Mitigation of Malignant

Anomalies on a Hardware-in-the-loop Simulation Test Bed



Intelligent Health Management 
and Failure Mitigating Control

of Aerial Vehicle Systems

Other 
Information

Life Extending Control System
(including Feedforward Control)

Avionic and Structural
Health and Usage Monitoring

System (HUMS)

Robust Wide range 
Gain Scheduling

Feedback Control System

Aircraft Flight 
and Structural  

Dynamics

Conventional 
and 

Special-Purpose
Sensor Systems

Actuator
Dynamics

Analytical Measures
(including real-time NDA)

of Damage States and 
Damage State Derivatives

Anomaly Detection
Information Fusion

(e.g., FDI, calibration, data fusion,
and redundancy management)

..

Mission/Vehicle Management Level
(Discrete Event Decision Making)

Flight Management Level
(Continuous/Discrete Event Decision Making)

Avionics and Flight Control  Level

1 8 5 5



Anomaly Detection and Classification:
Symbolic Time Series Analysis1 8 5 5

Multi-Time-Scale Nonlinear Dynamics
Slow Time Scale: Anomaly Propagation (Non-stationary Statistics)
Fast Time Scale: Process Response (Stationary Statistics)

Model-based Statistical Methods
Modeling with Nonlinear Stochastic Differential Equations

Ito Equation: 

Fokker Planck Equation: 

Uncertainties in Model Identification and Loss of Robustness
Statistical Mechanical Modeling (Canonical Ensemble Approach)

Symbolic Time Series Analysis
Small perturbation stimulus
Self-excited oscillations

Thermodynamic Formalism and Information Theory

Hidden Markov Modeling (HMM) and Shift Spaces



Notion of Symbolic Dynamics

Discretization of the Dynamical System in Space and Time

Representation of Trajectories as Sequences of Symbols
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State Machine Construction
D-Markov Machine
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State to state transitions from a symbol sequence
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|A|=2;  D=2;  AD = 4

Example
1-D Ising (Spin-1/2) Model 

Nearest Neighbor Interactions
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Computationally efficient for anomaly measure

Fixed depth D and alphabet size A 

Only the state transition probabilities to be determined
based on symbol strings derived from time series data

or wavelet-transformed data

States represented by an equivalence class of strings
whose last D strings are identical

State Space Construction
via D-Markov Machine1 8 5 5



Anomaly Measure
Based on the D-Markov Machine

State Transition Matrix Construction
Banded structure
Separation into irreducible subsystems
Stationary state probability vector
Information on the dynamical system characteristics

Chaotic motion, period doubling,  and bifurcation

State Probability Vector
Reference Point:  Nominal Condition p(το )
Epochs {τk} of Slow Time Scale {p(τk)}

Anomaly Measure at Slow-Time Epochs
M(τk; το) = d(p(τk), p(το))
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Comparison of
Epsilon Machine  and D-Markov Machine

Epsilon Machine [Santa Fe Institute]
A priori unknown machine structure
Optimal prediction of the symbol process
Maximization of mutual information

(i.e., minimization of conditional entropy)
I[X;Y] = H[X] – H[X|Y]

Analogous to the class of Sofic Shifts in Shift Spaces 

D-Markov Machine
A priori known machine structure

(Fixed order fixed structure with given |A| and D)
Excess states yielding redundant reducible matrices

(Perron-Frobenius Theorem)
Suboptimal prediction of the symbol process
Analogous to the class of Finite-type Shifts in Shift Spaces
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Anomaly Detection Procedure

Forward (Analysis) Problem:
Characterization of system dynamical behavior

Parametric and non-parametric anomalies

Evolution of the grammar in the system dynamics
Representation of dynamical behavior as formal   
languages
Thermodynamic formalism of anomaly measure 

Inverse (Synthesis) Problem
Estimation of feasible ranges of anomalies

Fusion of information generated from responses under 
several stimuli chosen in the forward problem
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Anomaly Detection and Classification
Signal Conditioning and Decimation

Denoising
Embedding

Symbol Sequence Generation
Phase space partitioning
Wavelet space partitioning

Markov Modeling of Symbol Dynamics
Epsilon machine (sofic shift)
D-Markov machine (finite type shift)

Thermodynamic Formalism of 
Generated Information



Externally Stimulated Duffing Equation
with a single slowly varying parametric anomaly
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Externally Stimulated Duffing Equation

Electromechanical Systems Laboratory
Anomaly Detection Apparatus for

Hybrid Electronic Circuits

Computer and 
Data Acquisition 
System

A Sin(ωt)
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Phase-plane Plots under Nominal
and Anomalous Conditions
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Construction of Finite State Machines
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Electronic Circuit Apparatus
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Electromechanical Systems Laboratory
Anomaly Detection Apparatus for

Mechanical Vibration Systems
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Anomaly Detection 
Symbolic Time Series Analysis 

Advantages
Foundations on fundamental principles of physics and mathematics
Quantitative measure as opposed to qualitative measure
Robustness to measurement noise and spurious signal distortion
Sensitivity to signal distortion due to nonlinearity and nonstationarity
Adaptability to low-resolution sensing
Applicability to real-time anomaly detection

(Near-term) Disadvantages
Requirement for advanced knowledge to understand the basics 
Need for much theoretical and experimental research
Seemingly counter-intuitive to inadequately trained technical personnel
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A. Ray, “Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection,” 
Signal Processing, Vol. 84, No. 7, July 2004, pp. 1115-1130. 



Quantitative Measure for 
Discrete Event 

Supervisory Control
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Discrete Event Supervisory (DES)
Control of Continuous Plants

External 
Commands
Treated as
Uncontrollable
Events

Real-Time
Continuously

Varying 
Plant

Event 
Generator

(C/D)

Discrete Event Model 
of the 

Continuously Varying Plant
(Treated as State Estimator)

Other information

Supervisor

Command
Generator

(D/C)

Sensor data

Disabling
Controllable

events
Observable

Events
Generated

Events
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Modeling of Discrete Event
Supervisory Control Systems

f(x, u)f(x, u) ∫∫ g(x, u)g(x, u)

h(x, u)h(x, u)

f(x, u)f(x, u) ∫∫ g(x, u)g(x, u)

h(x, u)h(x, u)

fi(x, u)fi(x, u) ∫∫ g(x, u)g(x, u)

h(x, u)h(x, u)

Continuously Varying Systems Discrete Event Systems Hybrid Systems

f(x, u)
fi(x, u)

Decoupling: continuous evolutions 
and discrete transitions

Coupling: continuous evolutions and 
discrete transitions
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Behavior-based Robotic System 
DES Control Architecture

Precision

Intelligence
DES control

Event 
Detection

Continuous-time 
operational control

Reference
GenerationContinuous time

Discrete Event

Pioneer 2 AT Stage Simulator

interchangeable
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Signed Real Measure of Regular Languages
Salient Features

Language Metric |µ|
Total variation of the signed real measure  
(Real positive) distance between two languages

Applications of the Language Measure for Failure Mitigation
Robust and optimal control of discrete-event systems
Anomaly quantification, classification, and mitigation

Vector Space of Formal Languages
Infinite-dimensional space
Galois field GF(2)
Vector addition operator - Exclusive-OR

Quantitative Measure of *-Languages
Finite alphabet  Σ              Σ∗  cardinality N0

Language Measure   µ: 2Σ* R
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State-Based Partitioning

The  set  Qm of marked states is partitioned as:

By using        

Myhill-Nerode Theorem 

Hahn Decomposition Theorem

where is the set of good marked states (positive measure)

is the set of bad marked states  (negative measure)

∅== −+−+
mmmmm QQ;QQQ IU

+
mQ
−
mQ
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Lemma: The regular expressions

can be expressed by the following set of symbolic equations:
( ), {1,2, , }L LG i I ni i≡ ∈ ≡ L
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Theorem: The language measure of the regular expressions 
is given by the unique solution of the following 

set of algebraic equations: I∈∀χ+µ∑ π=µ ijj
j

iji

}n,,2,1{i,Li L∈

In vector notation, the system                       has a unique solution:Χ+µΠ=µ

1]I[ −Π−Remark: exists and is bounded above by  ∞Π/1

Main Result:
Signed Real Measure of Regular Languages

µ=[Ι−Π] −1 Χ

A. Ray, V. V. Phoha and S. Phoha, QUANTITATIVE MEASURE FOR
DISCRETE EVENT SUPERVISORY CONTROL: Theory and Applications, 
Springer, New York, 2004. ISBN 0-387-02108-6
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Algorithm for  the Unconstrained 
Optimal Control Law
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Given the information on the plant model  
Gi = (Q, Σ , δ ,qi , Qm)

along with the state transition cost matrix Π
and characteristic vector χ , the unconstrained optimal 
control maximizes the language measure by deleting some
of the “bad” strings so that optimality of the supervised plant 
sublanguage is achieved
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Supporting Theorems

Theorem #1 (Monotonicity) : Disabling the controllable events leading to 
states with negative (positive) performance does decrease (increase) 
supervised plant performance.

Theorem #2 (Monotonicity) : Enabling the controllable event(s) leading to 
states with non-negative performance does not decrease the 
performance for any state.

Theorem #3 (Global Performance): The controller at the termination of the 
algorithm is the global optimal controller in terms of supervised plant 
performance.

Theorem #4 (Computational Complexity): The optimal control law is solved 
in at most n steps and each step requires a solution of n linear 
algebraic equations where n is the number of states of the plant model. 
Therefore, the computational complexity for synthesis of the optimal 
control algorithm of a polynomial order in n.

A. Ray, J. Fu and C.M. Lagoa, "Optimal Supervisory Control of Finite State Automata," 
International Journal of Control, Vol. 77, No. 12, August 2004, pp. 1083-1100.
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Language-Measure-Theoretic 
Discrete-Event Supervisory Control

Advantages
Foundations on principles of automata theory and functional analysis
Quantitative measure as opposed to qualitative measure 
Robustness to measurement noise and spurious signal distortion
Capability for emulation of human reasoning in a quantitative way
Adaptability to low-resolution sensing
Applicability to real-time decision-making at multiple time scales

Disadvantages
Potential source of instability under switching actions
Need for much theoretical and experimental research
Requirement for advanced knowledge to understand the basics
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A. Ray, V. V. Phoha and S. Phoha, QUANTITATIVE MEASURE FOR
DISCRETE EVENT SUPERVISORY CONTROL: Theory and Applications, 
Springer, New York, 2004. ISBN 0-387-02108-6
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Future Collaborative Research 
in Complex Microstructures
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Modeling and Control of Hidden 
Anomalies and their Propagation

Problem Definition
Let the time series of (macroscopic) measurement(s)  θ be available.
The first problem is to estimate the unobservable performance parameter(s) β

(e.g., damage states and derivatives).    
The second problem is to control the microstates via manipulation of macroscopically 

controllable inputs u to satisfy desired performance specifications p. 

Proposed Solution 
Construction of a canonical-ensemble model with the state probability vector  π(θ, u) of 

the unobservable phenomena that are macroscopically controlled by inputs u through 
usage of the time series data and a microstructural model, such as the OOF of NIST.

Formulation of constitutive equations for the unobservable parameters β(π, u) that are
indicator(s) of the internal microstates and control laws u(βd , πd, p) to satisfy desired 
performance specifications (e.g., remaining service life and reliability)



Experimentation for Real-time Detection 
and Mitigation of Malignant Anomalies1 8 5 5

Experimental Validation of the Novel Constitutive Relations
Special-purpose Fatigue Testing Machine at Penn State
Object Oriented Finite-element (OOF) Modeling Package at NIST

Experimental Validation of the Supervisory Control Concept
Special-purpose Multi-degree-of-freedom Machine at Penn State
Control of the unobservable parameters, such as plastic zone size,

that are indicator(s) of the internal microstates
Discrete Event Supervisory Control at the Upper level

Derived parameter(s) β (e.g., damage states and their derivatives) to provide 
the input event sequence to the supervisory control module at the upper level
Supervisor command(s) to provide the control inputs u, such as shaft torque, 

to the test apparatus to satisfy the desired performance specifications p 
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Questions & Suggestions


