

Seminar at National Institute of Standards and Technology

ANOMALY DETECTION AND FAILURE MITIGATION IN COMPLEX DYNAMICAL SYSTEMS

Asok Ray

The Pennsylvania State University University Park, PA 16802 Email: axr2@psu.edu Tel: (814) 865-6377

Supported by Army Research Office Grant No. DAAD19-01-1-0646

November 19, 2004

PENNSTATE Outline of the Presentation

Anomaly Detection in Complex Dynamical Systems

Microstate Information Based on Macroscopic Observables

- Thermodynamic Formalism of Multi-time-scale Nonlinearities
- Symbolic Time Series Analysis of Macroscopic Observables
- Pattern Discovery via Information-theoretic Analysis
- Real-time Experimental Validation on Laboratory Apparatuses
 - Active Electronic Circuits and Three-phase Electric Induction Motors
 - Multi-Degree-of-Freedom Mechanical Vibration and Chaotic Systems
 - Fatigue Damage Testing in Polycrystalline Alloys

Discrete Event Supervisory Control for Failure Mitigation

- Quantitative Measure for Language-based Decision and Control
- Real-time Identification of Language Measure Parameters
- Robust and Optimal Control in Language-theoretic Setting

Future Collaborative Research in Complex Microstructures

- Modeling and Control of Hidden Anomalies and their Propagation
- Experimentation on Real-time Detection and Mitigation of Malignant Anomalies on a Hardware-in-the-loop Simulation Test Bed

PENNSTATEAnomaly Detection and Classification:Symbolic Time Series Analysis

Multi-Time-Scale Nonlinear Dynamics

Slow Time Scale: Anomaly Propagation (Non-stationary Statistics)
 Fast Time Scale: Process Response (Stationary Statistics)

Model-based Statistical Methods

- Modeling with Nonlinear Stochastic Differential Equations
 - Ito Equation: $dx_t(\zeta) = \varphi(x_t(\zeta), t) dt + \gamma_t(x_t(\zeta), t) d\beta_t(\zeta) \quad \forall t \ge t_0$

• Fokker Planck Equation: $\frac{\partial p(x,t|y,\tau)}{\partial t} = -\frac{\partial \left[p(x,t|y,\tau) \, \varphi(x,t)\right]}{\partial x} + \frac{1}{2} \frac{\partial^2 \left[p(x,t|y,\tau) \, \gamma^2(x,t)\right]}{\partial x^2}$

• Uncertainties in Model Identification and Loss of Robustness

Statistical Mechanical Modeling (Canonical Ensemble Approach)

- Symbolic Time Series Analysis
 - Small perturbation stimulus
 - Self-excited oscillations
- Thermodynamic Formalism and Information Theory
- Hidden Markov Modeling (HMM) and Shift Spaces

Discretization of the Dynamical System in Space and Time
 Representation of Trajectories as Sequences of Symbols

PENNSTATE State Space Construction State Space Construction

- **Computationally efficient for anomaly measure**
- **Fixed depth D and alphabet size A**
- Only the state transition probabilities to be determined based on symbol strings derived from time series data or wavelet-transformed data
- States represented by an equivalence class of strings whose last D strings are identical

Anomaly Measure Based on the D-Markov Machine

State Transition Matrix Construction

- Banded structure
- Separation into irreducible subsystems
- Stationary state probability vector
- Information on the dynamical system characteristics
 - Chaotic motion, period doubling, and bifurcation
- State Probability Vector
 - Reference Point: Nominal Condition $\mathbf{p}(\tau_o)$
 - Epochs {τ_k} of Slow Time Scale {p(τ_k)}

Anomaly Measure at Slow-Time Epochs $\mathcal{M}(\tau_k; \tau_o) = d(p(\tau_k), p(\tau_o))$

Comparison of

Epsilon Machine and D-Markov Machine

Epsilon Machine [Santa Fe Institute]

- A priori unknown machine structure
- Optimal prediction of the symbol process
- Maximization of mutual information
 - (i.e., minimization of conditional entropy)

I[X;Y] = H[X] - H[X|Y]

Analogous to the class of Sofic Shifts in Shift Spaces

PENNSTATE

D-Markov Machine

- A priori known machine structure
 - (Fixed order fixed structure with given |A| and D)
- Excess states yielding redundant reducible matrices (Perron-Frobenius Theorem)
- Suboptimal prediction of the symbol process
- Analogous to the class of *Finite-type Shifts* in Shift Spaces

PENNSTATE Anomaly Detection Procedure

Forward (Analysis) Problem:

- Characterization of system dynamical behavior
 - Parametric and non-parametric anomalies
- Evolution of the grammar in the system dynamics
 - Representation of dynamical behavior as formal languages
 - Thermodynamic formalism of anomaly measure

Inverse (Synthesis) Problem

Estimation of feasible ranges of anomalies

Fusion of information generated from responses under several stimuli chosen in the forward problem

Summary of Anomaly Detection Procedure

Anomaly Detection and Classification

- □ Signal Conditioning and Decimation
 - Denoising

PENNSTATE

1855

- Embedding
- Symbol Sequence Generation
 - Phase space partitioning
 - Wavelet space partitioning
- Markov Modeling of Symbol Dynamics
 - Epsilon machine (sofic shift)
 - D-Markov machine (finite type shift)

Thermodynamic Formalism of Generated Information

Governing Equations:

$$\frac{d^{2}y(t)}{dt^{2}} + \theta(t_{s})\frac{dy(t)}{dt} + y(t) + \alpha y^{3}(t)$$

$$= A Cos(\omega t) \qquad t \in [t_{o}, \infty)$$
Random Initial Conditions
$$[y(t_{o}) \quad \dot{y}(t_{o})]^{T} \in B_{\delta}(\underline{0})$$

$$t \quad fast time \quad t \in [t_{o}, \infty)$$

$$t_{s} \quad slow time$$
Parameters:

 $\alpha = 1; \delta = 0.01; A = 22; \omega = 5.0$

PENNSTATE Electromechanical Systems Laboratory Anomaly Detection Apparatus for Hybrid Electronic Circuits

Externally Stimulated Duffing Equation

PENNSTATE Electromechanical Systems Laboratory Anomaly Detection Apparatus for Mechanical Vibration Systems

PENNSTATE Electromechanical Systems Laboratory Fatigue Test Apparatus for Damage Sensing in Ductile Alloys

8

x 10⁴

Figure A-1 Fatigue Damage Apparatus

Anomaly Detection Symbolic Time Series Analysis

A. Ray, "Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection," *Signal Processing*, Vol. 84, No. 7, July 2004, pp. 1115-1130.

Advantages

- Foundations on fundamental principles of physics and mathematics
- Quantitative measure as opposed to qualitative measure
- Robustness to measurement noise and spurious signal distortion
- Sensitivity to signal distortion due to nonlinearity and nonstationarity
- Adaptability to low-resolution sensing
- Applicability to real-time anomaly detection
- (Near-term) Disadvantages
 - Requirement for advanced knowledge to understand the basics
 - Need for much theoretical and experimental research
 - Seemingly counter-intuitive to inadequately trained technical personnel

Quantitative Measure for Discrete Event Supervisory Control

Modeling of Discrete Event Supervisory Control Systems

$f(x, u) \rightarrow f(x, u)$ $f(x, u) \rightarrow f(x, u)$ $C = (\mathcal{X}, U, f)$ $\mathcal{X} \subseteq \mathbb{R}^{n} \text{ is the state space}$ $U \subseteq \mathbb{R}^{m} \text{ is the system input},$ $f : \mathcal{X} \times U \rightarrow \mathbb{R}^{n}$ $\dot{x} = f(x, u, t), x(t_{0}) = x_{0}$ $y = g(x, u, t)$	$f(x, u)$ $f(x, u)$ $f(x, u)$ $f(x, u)$ $f(x, u)$ $f(x, u)$ $G = (Q, \Sigma, \delta, q_0, Q_m)$ $Q \text{ is the discrete state space}$ $\Sigma \text{ is the set of events}$ $\delta : Q \times \Sigma \to Q$ $q_0 \in Q \text{ is the initial state}$ $\phi(k+1) \in \delta(\phi(k), \sigma)$ $\phi(0) = q_0 k \in \mathbb{N} \cup \{0\}$ $L(G) = \{s \in \Sigma^* \mid \delta(q_0, s) \in Q\}$	$\begin{split} & f_i(x, u) \\ & f_i(x, u) $
	Decoupling: continuous evolutions and discrete transitions	Coupling: continuous evolutions and discrete transitions
Continuously Varying Systems	Discrete Event Systems	Hybrid Systems

PENNSTATEBehavior-based Robotic SystemImage: DES Control Architecture

Quantitative Measure of *-Languages

> Finite alphabet $\Sigma \implies \Sigma^*$ cardinality N₀

> Language Measure $\mu: \mathbf{2}^{\Sigma^*} \longrightarrow \mathbf{R}$

□ Language Metric µ

- Total variation of the signed real measure
- (Real positive) distance between two languages
- □ Vector Space of Formal Languages
 - Infinite-dimensional space
 - Galois field GF(2)
 - Vector addition operator Exclusive-OR

□ Applications of the Language Measure for Failure Mitigation

- Robust and optimal control of discrete-event systems
- > Anomaly quantification, classification, and mitigation

 \Box The set Q_m of marked states is partitioned as:

$$\mathbf{Q}_{\mathbf{m}} = \mathbf{Q}_{\mathbf{m}}^+ \cup \mathbf{Q}_{\mathbf{m}}^-; \ \mathbf{Q}_{\mathbf{m}}^+ \cap \mathbf{Q}_{\mathbf{m}}^- = \emptyset$$

By using

- Myhill-Nerode Theorem
- Hahn Decomposition Theorem

where Q_m^+ is the set of good marked states (positive measure) Q_m^- is the set of bad marked states (negative measure)

Main Result:

PENNSTATE

Signed Real Measure of Regular Languages

A. Ray, V. V. Phoha and S. Phoha, QUANTITATIVE MEASURE FOR DISCRETE EVENT SUPERVISORY CONTROL: Theory and Applications, *Springer*, New York, 2004. ISBN 0-387-02108-6

Lemma: The regular expressions $L_i \equiv L(G_i), i \in I \equiv \{1, 2, \dots, n\}$ can be expressed by the following set of symbolic equations:

$$L_{i} = \sum_{j} \sigma_{i}^{j} L_{j} + \mathcal{G}_{i} \qquad \forall i \in I \qquad \text{where} \quad \mathcal{G}_{i} = \begin{cases} \varepsilon \text{ if } q_{i} \in Q_{m} \\ \varnothing \text{ otherwise} \end{cases}$$

Theorem: The language measure of the regular expressions $L_i, i \in \{1, 2, \dots, n\}$ is given by the unique solution of the following set of algebraic equations: $\mu_i = \sum_j \pi_{ij} \mu_j + \chi_j \quad \forall i \in I$

In vector notation, the system $\mu = \prod \mu + X$ has a unique solution:

$$\mu = [I - \Pi]^{-1} X$$

Remark: $[I - \Pi]^{-1}$ exists and is bounded above by $1/||\Pi||_{\infty}$

$$\Pi^{0} = \begin{bmatrix} \pi^{0}_{11} & \pi^{0}_{12} & \cdots & \pi^{0}_{1n} \\ \pi^{0}_{21} & \pi^{0}_{22} & \cdots & \pi^{0}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \pi^{0}_{n1} & \pi^{0}_{n2} & \cdots & \pi^{0}_{nn} \end{bmatrix} \qquad \overline{\mu}^{0} = \begin{pmatrix} \mu_{1}^{0} \\ \mu_{2}^{0} \\ \vdots \\ \mu_{n}^{0} \end{pmatrix} = (I - \Pi^{0})^{-1} \overline{\chi}$$

Given the information on the plant model $G_i = (Q, \Sigma, \delta, q_i, Q_m)$

along with the state transition cost matrix Π and characteristic vector \overline{X} , the unconstrained optimal control maximizes the language measure by deleting some of the "bad" strings so that optimality of the supervised plant sublanguage is achieved

PENNSTATE Supporting Theorems

A. Ray, J. Fu and C.M. Lagoa, "Optimal Supervisory Control of Finite State Automata," *International Journal of Control*, Vol. 77, No. 12, August 2004, pp. 1083-1100.

Theorem #1 (*Monotonicity*) : Disabling the controllable events leading to states with negative (positive) performance does decrease (increase) supervised plant performance.

- Theorem #2 (*Monotonicity*) : Enabling the controllable event(s) leading to states with non-negative performance does not decrease the performance for any state.
- Theorem #3 (*Global Performance*): The controller at the termination of the algorithm is the global optimal controller in terms of supervised plant performance.
- Theorem #4 (*Computational Complexity*): The optimal control law is solved in at most *n* steps and each step requires a solution of *n* linear algebraic equations where *n* is the number of states of the plant model. Therefore, the computational complexity for synthesis of the optimal control algorithm of a polynomial order in *n*.

Language-Measure-Theoretic Discrete-Event Supervisory Control

A. Ray, V. V. Phoha and S. Phoha, QUANTITATIVE MEASURE FOR DISCRETE EVENT SUPERVISORY CONTROL: Theory and Applications, *Springer*, New York, 2004. **ISBN 0-387-02108-6**

PENNSTATE

1855

Advantages

□ Foundations on principles of automata theory and functional analysis

Quantitative measure as opposed to qualitative measure

Robustness to measurement noise and spurious signal distortion

- Capability for emulation of human reasoning in a quantitative way
- Adaptability to low-resolution sensing

□ Applicability to real-time decision-making at multiple time scales

Disadvantages

- Potential source of instability under switching actions
- Need for much theoretical and experimental research
- Requirement for advanced knowledge to understand the basics

Future Collaborative Research in Complex Microstructures

PENNSTATE

Modeling and Control of Hidden Anomalies and their Propagation

Problem Definition

- **\bullet** Let the time series of (macroscopic) measurement(s) θ be available.
- The first problem is to estimate the unobservable performance parameter(s) β (e.g., damage states and derivatives).
- The second problem is to control the microstates via manipulation of macroscopically controllable inputs *u* to satisfy desired performance specifications *p*.

Proposed Solution

- * Construction of a canonical-ensemble model with the state probability vector $\pi(\theta, u)$ of the unobservable phenomena that are macroscopically controlled by inputs u through usage of the time series data and a microstructural model, such as the **OOF** of NIST.
- * Formulation of constitutive equations for the unobservable parameters $\beta(\pi, u)$ that are indicator(s) of the internal microstates and control laws $u(\beta_d, \pi_d, p)$ to satisfy desired performance specifications (e.g., remaining service life and reliability)

PENNSTATE Experimentation for Real-time Detection and Mitigation of Malignant Anomalies

- **Experimental Validation of the Novel Constitutive Relations**
 - Special-purpose Fatigue Testing Machine at Penn State
 - * Object Oriented Finite-element (OOF) Modeling Package at NIST

□ Experimental Validation of the Supervisory Control Concept

- Special-purpose Multi-degree-of-freedom Machine at Penn State
- Control of the unobservable parameters, such as plastic zone size, that are indicator(s) of the internal microstates
- Discrete Event Supervisory Control at the Upper level
 - Derived parameter(s) β (e.g., damage states and their derivatives) to provide the input event sequence to the supervisory control module at the upper level
 - Supervisor command(s) to provide the control inputs *u*, such as shaft torque, to the test apparatus to satisfy the desired performance specifications *p*

Questions & Suggestions