QED
 Technologies

Outline

QED

\& Overview of Magnetorheological Finishing (MRF) * MRF Applications

* Jet Finishing
\& Subaperture Stitching Interferometer (SSI)
* SSI Applications
* Conclusions

Magnetorheological Finishing (MRF) 〇ED
 Technologies

Q22-Y Raster MRF System

Qvarious applications for non-round optics are enabled by rastering (e.g. cylinders, prisms, free forms...)
W. The Q22-Y has all of the capabilities of the Q22X plus the ability to polish:

MRF - Breakthrough Technology

The MRF polishing tool:

- never dulls or changes
- is interferometrically characterized
- is easily adjusted
- conforms to part shape - works on complex shapes (flat, sphere, asphere, cylinder...)
- has high removal rates
- Has a removal based on shear stress so applies very low normal load on abrasive, improving surface integrity
- Is very deterministic, leading to high convergence rate
- These attributes lead to a production oriented, deterministic, computer controlled polishing and figuring technique.
- Production proven: more than 100 machines worldwide

MRF Process Flow Diagram

$\operatorname{removal}(x, y)=d w e l l(x, y) \otimes \operatorname{spot}(x, y)$
Technologies

Removal Function

QED Software

MRF Machine Instructions

Surface after MRF
Suction
Predicted Surface

Pump

Electromagnet

MR fluid conditioner

QED MRF Product Line

 100+ machines in use, many flavors...

- Q22-XE-Up to 80 mm in diameter
- Q222X - Up to 200 mm in diameter
- Q22Y - Q 22 X + Raster tool path
- Q22 400 X - Up to 400 mm in diameter
- Q22750P2 - Plano optics up to 750 mm $\times 1000 \mathrm{~mm}$ in size
- Q22:950F-Free-form optics up to $\sim 950 \mathrm{X}$ 1.250 mm
- The next-generation, meter-class machine is being built to finish free form optics
- Q22-xx*x:-Multi-meters freeform
- SSI-Sub-aperture Stitching Interferometer (SSI) for high precision metrology

Outline

QED

* Overview of Magnetorheological Finishing (MRF) \& MRF Applications
γ Jet Finishing
\& Subaperture Stitching Interferometer (SSI)
* SSI Applications
\& Conclusions

High Precision

CaF2 Lenses for 157nm Lithography

<111> Element
Surface figure: 0.57 nm rms

<100> Element
Surface figure: 0.63 nm rms

I-19489.ILL

\longrightarrow

Jan Mulkens (ASML), et al., "Optical lithography solutions for sub-65 nm semiconductor devices", Proc. of SPIE, 5040; pp: 753-762, 2003.

Transmitted Wavefront Correction

 Fused Silica Right angle prism

$p-v: 0.024 \lambda$

Transmitted Wavefront

Improve SPDT surfaces

QED
 Technologies

Roughness

Cerium oxide or diamond based fluids

High Pass Filter (FTT Fixed - 12.5 1/mm)

Rmax	44.692	\AA
Ra	2.829	\AA
Rq	3.575	\AA

Inse Rus (Rq) 0.176 nm Ing. Ra 0.136 nm Ing, Rmax 1.884 nM

Fused silica - round flat, 0.5 mm DC-run polishing

Improvements in Surface Integrity

Residual stress removal

QED
 Technologies

From: "Magnetorheological Finishing (MRF) to Relieve Residual StressandSubsurface Damage on Silicon Wafers", by StevenR: Arrasmith, Stephen D.Jacobs, Johm C. Lambropoulos, Alexander Maltsev, Donald Golini and William I. Kordonski:

MIT Lincoln Lab

157 nm Laser Damage Study on CaF2

Improvements in Surface Integrity National Ignition Facility (NIF) at LLNL
\square

MRF polished and etched parts

Highest quality conventional polish

MRE polished part

Dark-field microscopy of etched MRF surfaces shows a near-absence of the sub-surface damage normally associated with conventional finishing

Aspheres

QED
 Technologies

Spherical vs. Aspheric Optics

Aspheric optics provide performance advantages.

Aspheric Correction

Pictures from the Hubble Space Telescope

MRF's Unique Attributes

MRF's unique attributes...

MR Fluid properties are Precisely Controlled.
MRF tool is Subaperture.
therefore
MRF is Deterministic.

Lead to a unique asphere manufacturing capability

MRF Asphere Manufacturing:

1. "Mild" aspheres - Aspherize from a best fit sphere and figure correct
2. "Wild" aspheres - MRF figure correction following:

- Diamond turning to aspheric
- Ground aspheric shape
- Intermediate pre-polish step
- Direct from grind (in some cases)

Aspherizing from Best Fit Sphere

 Asphere polishing with MRF- Spot shape = F (local curvature)
- Impossible for conventional pads
- Algorithms to "morph" spot

MRF Aspherizing - "mild" aspheres

 Complete Asphere Manufacturing- MRF "aspherizes" or polishes in the aspheric shape from a best fit sphere
- MRF then figure corrects the optic

Before

\&Hyperbola (conic constant $=-1.355$)
KOD 70 mm , CA 64 mm
-Convex base radius, $R=272.539 \mathrm{~mm}$
-Best fit radius $=274.059 \mathrm{~mm}$ (at an aperture of 70 mm)
*Aspheric departure $=3.1 \mathrm{\mu m}$ (from best fit sphere)
Deviation from asphere

P-V N10, rms N 160
(over the 64 mm CA in reflection)

MRF Aspherizing - "mild" aspheres

 BK7 Aspheres produced with MRF

- Aspheres are 110 mm diameter with 11 microns of departure.
- Total run time was -5 hours per lens.

Large Optics

QED
 Technologies

- Optics getting larger and larger
- Size and/or number of segments increasing
\&Manufacturing time decreasing
- From month(s) $/ m^{2}$ to day(s) $/ m^{2}$

Ancreasing light-weighted structures

- From 100's $\mathrm{kg} / \mathrm{m}^{2}$ to $<10 \mathrm{~kg} / \mathrm{m}^{2}$
- Decreasing face-sheet thickness
- New materials (e.g. SiC, Be, porous Si etc.)

-Specifications tightening

- Figure, mid-spatial frequency and roughness
- Edge exclusion going to zero (for segment design)

- More challenging shapes: aspheres, offraxis etc.

Wosts decreasing

Q22-750P2 Polishing

QED
 Technologies

Light-weighted optics

MRF Fixing quilting errors

Light-weighted optics

MRF Fixing quilting errors - Add'l examples

Hextek Gas FusionTM Borosilicate $15 \mathrm{~kg} / \mathrm{m}^{2}$ mirror blank
Correct cryo-quilting

Coors I ek lightweight SiC mirror $20 \mathrm{~kg} / \mathrm{m}^{2}$

Q22-950F Large Asphere Polishing

QED
 Technologies

- Asphere ~ 1,300 um $(1.3 \mathrm{~mm})$) of departure from BFS
- Fused Silica
884.0 mm in diameter

Asphere Polishing Video

QED

SOI Wafer

QED

Thick film 150 mm SOI wafer

Initial Condition

Thickness: $5.36 \mu \mathrm{~m}$ with TTV of $1.131 \mu \mathrm{~m}$

Thickness: $3.07 \mu \mathrm{~m}$ with TTV of $0.144 \mu \mathrm{~m}$

Thin film 200 mm SOI Wafer

Thickness variation

Outline

QED

* Overview of Magnetorheological Finishing (MRF) \& MRF Applications
\% Jet Finishing
\& Subaperture Stitching Interferometer (SSI)
\& SSI Applications
\star Conclusions

MR Jet Polishing

QED
 Technologies

- For special geometries
* Jet of MR fluid
\&. Polish steep/decp concave surfaces
-. Polish magnetic materials
* Stable spot over large range of standoff distances
- Same shear-based removal process

MR Jet ${ }^{\text {TM }}$ Prototype

MR Fluid. Magnet

MR Fluide
Magnet on

-A fluid jet can be stabilized by using a magnetorheological fluid and a magnetic field

Whis stabilized jet gives significant advantages in finishing complex shapes
\mathcal{C} Contained in the CNC machine with stable delvery system, MR Jet is used for polishing challenging shapes to high precision

MR Jet Removal Function Stability

- Stability provided by MR Jet enables deterministic finishing at large stand-off distances

Polishing Inside an Ogive Dome

Dome Polish - MR Jet

FS Dome Polish - MR Jet Results

97 mm OD, 2.5 mm thick fused silica dome in MR Jet Machine-

tritial
$408 \mathrm{~mm} \mathrm{P-V}$
50.3 mm RMS

Final
42.5 mm P-V
6.1 mm RMS

- Improved figure error from 408 nm PVV (50.2 nm RMS) to 42.5 nm P.V (6.1 nm RMS)
- MR Jet was able to polish this high aspect ratio dome to high precision
- This technique provides an opportunity to correct the concave surface of a dome, and other challenging shapes, to high precision
- Future applications will include more aerodynamic conformal shapes

Outline

QED

* Overview of Magnetorheological Finishing (MRF) \& MRF Applications
\varnothing Jet Finishing
\& Subaperture Stitching Interferometer (SSI)
\& SSI Applications
\star Conclusions

Innovative Metrology: SSI

Technologies

- Full aperture measurement of large NA \& CA parts

Completely Automatic

- Auto-Positioning, nulling, \& radius testing

Q Intuitive \& Easy to Operate
*- Reference wave, distortion, pixel scale

Reference

Large Aperture Metrology

QED
 Technologies

Large aperture lens mounted in QED's SSI.

Schematic representations of a six-axis platform for performing stitching interferometry on large aperture convex and concave parts.

Outline

QED

* Overview of Magnetorheological Finishing (MRF) \& MRF Applications
$\%$ Jet Finishing
\& Subaperture Stitching Interferometer (SSI)
* SSI Applications
\& Conclusions

Stitching a Large AION Dome

 Lattice \& Motions```
Aperture - 148.34 mm (5.84")
Radius - 82.55 mm (3.25")
 CT - 3.04 mm (0.12")
Sag - 50.39 mm (1.984")
```

Fl0. 55


Objective - Zygo - 4 ${ }^{1 / 111.5}$
Subaperture $=55.1 \mathrm{~mm}$
Required 25 subapertures -


Determine Optical Testability

$$
\text { (4 center, } 9 \text { inner, } 12 \text { outer) }
$$



Design Measurement

## Stitching a Large AION Dome Results



Radius: 82.6 mm
Surface:
PV - $1.649 \lambda$ (@ 68Bnm $)$
Runs - 0.187 $\lambda$ (@ 6B8nns)
Total measurement time:
12 minutes!!

## Full Aperture Stitched Result

Reference Wave Error


## MRF/SSI Hemisphere Demonstration

## QED

Technologies


## SSI measurement process

## QED <br> Technologies



Measure


Full-aperture map

## Measuring High Precision Spheres




Aperture: $200 \mathrm{~mm}\left(8.0^{\prime \prime}\right)$
Radius: 500 mm (19.7")
CT: 34 mm (1.3 ${ }^{\mathrm{HI}}$ )

Subaperture: 69.4 mm
Extension Factor: 2,95
Required subapertures: 30
(4 center, 11 inner, 15 outer)

## The Stitched Result

## QED <br> Technologies



| (1) zyso | Surface/Wavefront Kap | 4 |
| :---: | :---: | :---: |
| 1.2 2ygo | Billed Plot | 4 |



Radius: 499.9765 mm
Surface: $P V=0.060 \lambda$ (@ 633nm) RMS = $0.004 \lambda$ (@ 633nm)
Total measurement time: 25 minutes!!

## Summary

## QED <br> Technologies

- Boosted testable aperture sizes (i.e. costeffective reference optics)
- Boosted testable aspheric departure (can obviate need for nulls)

8. Boosted accuracy (from thorough, automated calibration of reference wave, distortion, retrace, etc.)

- Boosted resolution

Q- Reduced non-common air path for long-radius concaves


## Outline

## QED

* Overview of Magnetorheological Finishing (MRF) \& MRF Applications
$\%$ Jet Finishing
\& Subaperture Stitching Interferometer (SSI)
* SSI Applications
\& Conclusions


## Conclusions

- MRE:
- Shaping - high precision figure correction
- From real small to real large optics
- Improve surface integrity
- Thickness control - substrates, or thin/thick films
- Jet Finishing:
- For difificult geometries
- Or new materials
- SSI:
- Metrology solution for small to large optics
- Including hemispheres and other high NA parts


## QED <br> Technologies



