Progress in the Development of New Optics for Very High-Resolution Inelastic X-Ray Scattering Spectroscopy

Yuri Shvyd'ko

Argonne National Laboratory Advanced Photon Source

Can we perform the experiments on **inelastic x-ray scattering** (IXS) better than we are doing now, in terms of:

- 1. energy transfer resolution $\Delta \varepsilon$?
- 2. momentum transfer resolution ΔQ ?

and

3. count rate?

Resolution of the IXS spectrometers & count-rates,

Can we perform the experiments on **inelastic x-ray scattering** (IXS) better than we are doing now, in terms of:

- 1. energy transfer resolution $\Delta \varepsilon$?
- 2. momentum transfer resolution ΔQ ?

and

3. count rate?

Content

- IXS spectroscopy with meV resolution: how it works now?
- Angular dispersion as alternative monochromatization principle.
- $(+, +, \pm)$ Monochromator.
- $(+, +, \pm)$ Analyzer.
- Layouts of the novel IXS spectrometer.
- Present status of the experimental effort
- First experiment: observation of the effect of the angular dispersion
- Summary and outlook

New Optics for high-resolution IXS Spectroscopy

Modern IXS Spectrometer (layout)

High-resolution analyzer is a two-dimensional array of flat crystals on a sphere of radius $R_{
m A}$

New Optics for high-resolution IXS Spectroscopy

High-Resolution Spherical Crystal Analyzer

New Optics for high-resolution IXS Spectroscopy

Modern IXS Spectrometer (layout)

Burkel, Dorner, Peisl (1987)

X-ray Bragg diffraction and crystal reflectivity

NSLS-II, March 10, 2006

ΔE of Bragg reflections in Si, and in Al₂O₃ (sapphire)

The smaller ΔE is required, the higher indexed Bragg reflection at higher photon energy has to be used (unfortunately!).

New Optics for high-resolution IXS Spectroscopy

Undulator spectrum

Undulator spectrum

Low-energy photons would be better:

- Higher count-rates (more photons in the low-energy range).
- IXS applicable at low- and intermediate energy SR facilities (including X-FELs).
- Better momentum resolution ΔQ for the same solid acceptance angle $\Upsilon \times \Upsilon$:

$$\Delta Q = \Upsilon K. \qquad K = E/c.$$

• Proximity to K-absorption edges of the important transition metals.

Low-energy photons would be better:

- Higher count-rates (more photons in the low-energy range).
- IXS applicable at low- and intermediate energy SR facilities (including X-FELs).
- Better momentum resolution ΔQ for the same solid acceptance angle $\Upsilon \times \Upsilon$:

$$\Delta Q = \Upsilon K. \qquad K = E/c.$$

• Proximity to K-absorption edges of the important transition metals. ... but ...

Employing low-energy photons is in conflict with the principles underlying single-bounce backscattering monochromators and analyzers.

New Optics for high-resolution IXS Spectroscopy

ΔE of Bragg reflections in Si, and in Al₂O₃ (sapphire)

The smaller ΔE is required, the higher indexed Bragg reflection at higher photon energy has to be used (unfortunately!).

New Optics for high-resolution IXS Spectroscopy

Problem:

Spectral width ΔE of the low-indexed Bragg reflections is too large. Typically $\Delta E > 20$ meV.

New concepts, new solutions are required:

Problem:

Spectral width ΔE of the low-indexed Bragg reflections is too large. Typically $\Delta E > 20$ meV.

Solution:

Use a small fraction of it!

New concept illustrated with optical prism

New concept

DE - dispersing element C - collimator W - wavelength selector

An asymmetrically cut crystal behaves like the optical prism dispersing the photons with different photon energies: effect of angular dispersion.

New Optics for high-resolution IXS Spectroscopy

Effect of angular dispersion (1)

$$K_{H} = K_{0} + \tilde{H}$$
$$\tilde{H} = H + \Delta_{H}$$
$$\Delta_{H} = K \frac{\alpha}{\sin(\theta - \eta)} \hat{z}$$

 $\alpha \propto 1 - n$

n – refractive index

Effect of angular dispersion (2)

 $K_{H} = K_{0} + H$ $\tilde{H} = H + \Delta_H$ $\Delta_{H} = K \frac{\alpha}{\sin(\theta - \eta)} \hat{z}$ $heta < \pi/2$ $\delta heta' = -rac{\delta E}{E} (1+b) an heta$ $b = -rac{\sin(heta-\eta)}{\sin(heta+\eta)}$

Effect of angular dispersion (3)

$$\begin{split} & K_H = K_0 + \tilde{H} \\ & \tilde{H} = H + \Delta_H \\ & \Delta_H = K \frac{\alpha}{\sin(\theta - \eta)} \hat{z} \\ & \theta \simeq \pi/2 \\ & \delta \theta' = \frac{\delta E}{E} \left(2 \tan \eta \right) \end{split}$$

NSLS-II, March 10, 2006 foil 22/73

Effect of angular dispersion (4)

Effect of angular dispersion (5)

Effect of angular dispersion (6)

(+,+,-) Monochromator

DE - dispersing element C - collimator W - wavelength selector

New Optics for high-resolution IXS Spectroscopy

(+,+,-) Monochromator

DE - dispersing element C - collimator W -

W - wavelength selector

$(+,+,\pm)$ Monochromator

Spectral resolution of the $(+,+,\pm)$ monochromator

The smaller the photon energy E,

the smaller is the energy bandwidth ΔE (fortunately!).

New Optics for high-resolution IXS Spectroscopy

Spectral resolution of the $(+,+,\pm)$ monochromator

 $E = 10 \text{ keV} \Rightarrow \Delta E = 10 - 0.1 \text{ meV}$ $E = 5 \text{ keV} \Rightarrow \Delta E = 5 - 0.05 \text{ meV}$

New Optics for high-resolution IXS Spectroscopy

Throughput of the $(+, +, \pm)$ monochromator

E = 9.1 keV

$$egin{aligned} 1':\Delta E &= 1.5 \ {
m meV} \ (\eta = 85^\circ) \ 2':\Delta E &= 0.3 \ {
m meV} \ (\eta = 89^\circ) \ 3':\Delta E &= 0.09 \ {
m meV} \ (\eta = 89.6^\circ) \end{aligned}$$

New Optics for high-resolution IXS Spectroscopy

Energy dependence of the reflectivity in Si in backscattering

Throughput of the $(+, +, \pm)$ monochromator

E = 9.1 keV

$$egin{aligned} 1':\Delta E &= 1.5 \ {
m meV} \ (\eta = 85^\circ) \ 2':\Delta E &= 0.3 \ {
m meV} \ (\eta = 89^\circ) \ 3':\Delta E &= 0.09 \ {
m meV} \ (\eta = 89.6^\circ) \end{aligned}$$

New Optics for high-resolution IXS Spectroscopy

1: single-bounce $\Delta E = 0.82 \text{ meV}$ $E_0 = 21.7 \text{ keV}$ 0.8 З Graef, Materlik (1982) (a) (a) Verbeni et al. (1996) 0.7 1 |2: (+, +)| $\Delta E = 0.80 \; { m meV}$ $E_0 = 14.4 \text{ keV}$ 0.6 Throughput 0.5 CRL Chumakov et al. (1996) 00000 Toellner et al. (1997)4 0.4 **3**: $(+, +, \pm)$ $\Delta E = 0.83 \; { m meV}$ $E_{_0}=9.1~{ m keV}$ 0.3 2 DF 0.2 $\Delta \epsilon$ Shvyd'ko (2004) 0.1 C/W 4: (+, - $\Delta E = 0.93 \; { m meV}$ 0.0 $E_0 = 9.4 \text{ keV}$ 2 -2 \mathbf{O} Yabashi et al. (2001) $E-E_{o}$ [meV] Toellner et al. (2001)(a)

Spectral functions of different types of monochromators

New Optics for high-resolution IXS Spectroscopy

Yuri Shvyd'ko

NSLS-II, March 10, 2006 foil 34/73

Spectral functions of different types of monochromators

New Optics for high-resolution IXS Spectroscopy

Yuri Shvyd'ko

NSLS-II, March 10, 2006

foil 35/73

Spectral functions of different types of monochromators

New Optics for high-resolution IXS Spectroscopy

Yuri Shvyd'ko

NSLS-II, March 10, 2006

foil 36/73
Spectral functions of different types of monochromators

New Optics for high-resolution IXS Spectroscopy

Yuri Shvyd'ko

NSLS-II, March 10, 2006

foil 37/73

Spectral functions of different types of monochromators

New Optics for high-resolution IXS Spectroscopy

Yuri Shvyd'ko

NSLS-II, March 10, 2006

foil 38/73

- 1. $\Delta E/E$ is independent of E or of Bragg reflection.
- 2. The smaller the photon energy E the smaller is the bandpass ΔE .
- 3. ΔE can be varied by changing η (*E* is fixed).
- 4. The peak throughput T and the angular acceptance $\Delta \theta$

are almost constant (while changing η).

ARGONNE

- 5. Steep wings in the spectral function.
- 6. The temperature control and energy tuning is technically not demanding (for x-ray photons in the low-energy region 5 10 keV).

New Optics for high-resolution IXS Spectroscopy

DE

$(+,+,\pm)$ Analyzer

$(+,+,\pm)$ IXS spectrometer (1)

Energy tuning of the $(+,+,\pm)$ monochromator

... by changing the temperature of the dispersing element (DE)

Bragg back-reflection Si(008) @ 9.13 keV

Dispersing Silicon Crystal Elements = Long Crystals

Dispersing Elements = Long Silicon Crystals

New Optics for high-resolution IXS Spectroscopy

Energy tuning of the $(+, +, \pm)$ monochromator

Energy tuning of the $(+, +, \pm)$ monochromator

Thermostats for long crystals

New Optics for high-resolution IXS Spectroscopy

NSLS-II, March 10, 2006

Bragg reflection: Si(220) Asymmetry angles: $\eta_1 = \eta_3 = 19^{\circ}$ Angular acceptance: $\Delta \theta_1 = 106 \ \mu$ rad Angular divergence: $\Delta \theta'_1 = 5 \ \mu$ rad Angular acceptance: $\Delta \theta_3 = 5 \ \mu$ rad

Problem: absorption in the collimator crystal

New Optics for high-resolution IXS Spectroscopy

Bragg Backscattering from Symmetrically Cut Crystal

Bragg Backscattering from Asymmetrically Cut Crystal

Bragg Backscattering from Asymmetrically Cut Crystal

What do we observe?

Bragg Backscattering from Asymmetrically Cut Crystal

THEORY:

Estimation of the Energy Resolution

Energy Resolution - Direct Measurements

Experimental Set-up: @APS, 3ID-D

• Spectral properties improve with decreasing photon energy. Most optimal performance in the low-energy spectral range $E\simeq 5-10$ keV.

- Spectral properties improve with decreasing photon energy. Most optimal performance in the low-energy spectral range $E\simeq5-10$ keV.
- Applicable even at low- and intermediate energy synchrotron radiation sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).

Undulator spectrum

- Spectral properties improve with decreasing photon energy. Most optimal performance in the low-energy spectral range $E \simeq 5 10$ keV.
- Applicable even at low- and intermediate energy synchrotron radiation sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).
- Higher count-rates, since undulators produce much more photons in the low-energy range (also at high-energy synchrotron radiation sources).

- Spectral properties improve with decreasing photon energy. Most optimal performance in the low-energy spectral range $E\simeq 5-10$ keV.
- Applicable even at low- and intermediate energy synchrotron radiation sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).
- Higher count-rates, since undulators produce much more photons in the low-energy range (also at high-energy synchrotron radiation sources).
- Variable energy bandpass from $\Delta E \simeq 5$ down to $\simeq 0.1$ meV at a fixed photon energy E.

- Spectral properties improve with decreasing photon energy. Most optimal performance in the low-energy spectral range $E\simeq 5-10$ keV.
- Applicable even at low- and intermediate energy synchrotron radiation sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).
- Higher count-rates, since undulators produce much more photons in the low-energy range (also at high-energy synchrotron radiation sources).
- Variable energy bandpass from $\Delta E\simeq 5$ down to $\simeq 0.1~{\rm meV}$ at a fixed photon energy E.
- Peak throughput practically independent of the energy bandpass ΔE .

- Spectral properties improve with decreasing photon energy. Most optimal performance in the low-energy spectral range $E\simeq 5-10$ keV.
- Applicable even at low- and intermediate energy synchrotron radiation sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).
- Higher count-rates, since undulators produce much more photons in the low-energy range (also at high-energy synchrotron radiation sources).
- Variable energy bandpass from $\Delta E\simeq 5$ down to $\simeq 0.1~{\rm meV}$ at a fixed photon energy E.
- Peak throughput practically independent of the energy bandpass ΔE .
- Using low-energy photons means better momentum transfer resolution for the same angular acceptance.

New Optics for high-resolution IXS Spectroscopy

- Spectral properties improve with decreasing photon energy. Most optimal performance in the low-energy spectral range $E\simeq 5-10$ keV.
- Applicable even at low- and intermediate energy synchrotron radiation sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).
- Higher count-rates, since undulators produce much more photons in the low-energy range (also at high-energy synchrotron radiation sources).
- Variable energy bandpass from $\Delta E\simeq 5$ down to $\simeq 0.1~{\rm meV}$ at a fixed photon energy E.
- Peak throughput practically independent of the energy bandpass ΔE .
- Using low-energy photons means better momentum transfer resolution for the same angular acceptance.
- Steep wings in the spectral function.

New Optics for high-resolution IXS Spectroscopy

- Spectral properties improve with decreasing photon energy. Most optimal performance in the low-energy spectral range $E\simeq 5-10$ keV.
- Applicable even at low- and intermediate energy synchrotron radiation sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).
- Higher count-rates, since undulators produce much more photons in the low-energy range (also at high-energy synchrotron radiation sources).
- Variable energy bandpass from $\Delta E\simeq 5$ down to $\simeq 0.1~{\rm meV}$ at a fixed photon energy E.
- Peak throughput practically independent of the energy bandpass ΔE .
- Using low-energy photons means better momentum transfer resolution for the same angular acceptance.
- Steep wings in the spectral function.
- Proximity to K-absorption edges of the important transition metals.

New Optics for high-resolution IXS Spectroscopy

More details in:

Springer Series in *Optical Sciences* Volume 89, June 2004

Thanks to

Ulrich Kütgens

PTB

Braunschweig, Germany

Hans Dierk Rüter Margit Draht Benno Frensche

Institute for Experimental Physics

Hamburg University, Germnany

Michael Lerche University of Illinois Urbana-Champaign, USA

Ahmet Alatas Jiyong Zhao Advanced Photon Source ANL, USA