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Main questions:

Can we perform the experiments on [inelastic x-ray scattering

(IXS) better than we are doing now, in terms of:
1. energy transfer resolution Age?

2. momentum transfer resolution AQ?
and

3. count rate?
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Resolution of the IXS spectrometers & count-rates,

Ae > 1 meV AQ =~ 0.5 nm™! Count-rate < 1 Hz
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Courtesy of M. Krisch (ESRF)
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Modern IXS Spectrometer (layout)

high-resolution
analyzer

LD X-rays g - m

NNERERERERENERER
undulator cooled detector high-resolution
monochromator sample monochromator
bandwidth bandwidth bandwidth
~100 eV ~1eV ~1 meV

High-resolution analyzer is a two-dimensional array of flat crystals on a sphere of radius R a
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High-Resolution Spherical Crystal Analyzer

Courtesy of H. Sinn (APS)/
60 mm

~ 3000 pixels




Modern IXS Spectrometer (layout)

high-resolution
analyzer

LD X-rays g - m

NNERENENENENANER
undulator cooled detector high-resolution
monochromator sample monochromator
bandwidth bandwidth bandwidth
~100 eV ~1eV ~1 meV

Kohra, Matsushita (1972)
Graef, Materlik (1982)
Burkel, Dorner, Peisl (1987)

Sette, Krisch, et al. [GESRF Alp, Sinn, et al. |(GAPS| Baron, et al. [@SPring-8

Yuri Shvyd'ko L rnsonne NSLS-II, March 10, 2006 foil 8/73

New Optics for high-resolution IXS Spectrosco py



X-ray Bragg diffraction and crystal reflectivity

Bragg’s law:

Esin0=F,(1+w,)

E, = %th
H = 2rn/d,
w, < 1074

% = f(H) = const

6 [degrees]
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AFE of Bragg reflections in Si, and in Al;O3 (sapphire)
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The smaller AFE is required, the higher indexed Bragg reflection

at_higher photon energy has to be used (unfortunately!).
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Undulator spectrum
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Undulator spectrum
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Low-energy photons would be better:

e Higher count-rates (more photons in the low-energy range).

e IXS applicable at low- and intermediate energy SR facilities (including
X-FELs).

e Better momentum resolution [AQ for the same solid acceptance angle
YT X Y:

AQ-THI  [KEENBE

e Proximity to K-absorption edges of the important transition metals.
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Low-energy photons would be better:

e Higher count-rates (more photons in the low-energy range).

e IXS applicable at low- and intermediate energy SR facilities (including
X-FELs).

e Better momentum resolution [AQ for the same solid acceptance angle
YT X Y:

AQ-THI  [KEENBE

e Proximity to K-absorption edges of the important transition metals.

. but ...

Employing low-energy photons is in conflict with the principles
underlying single-bounce backscattering monochromators and analyzers.
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AFE of Bragg reflections in Si, and in Al;O3 (sapphire)
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The smaller AFE is required, the higher indexed Bragg reflection

at_higher photon energy has to be used (unfortunately!).
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New concepts, new solutions are required:

Problem:

Spectral width AFE of the low-indexed Bragg reflections is too large.
Typically AE > 20 meV.
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New concepts, new solutions are required:

Problem:

Spectral width AFE of the low-indexed Bragg reflections is too large.
Typically AE > 20 meV.

Solution:

Use a small fraction of it!
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New concept illustrated with optical prism

V4
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DE

DE - dispersing element C - collimator W - wavelength selector
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New concept

— DE

DE - dispersing element C - collimator W - wavelength selector

An asymmetrically cut crystal behaves like the optical prism dispersing
the photons with different photon energies: effect of angular dispersion.

L rssonne

New Optics for high-resolution IXS Spectrosco py Yuri Shvyd'ko NSLS-II, March 10, 2006 foil 19/73



Effect of angular dispersion (1)

K, =K,+H

a xXx 1 —n

n — refractive index

A

Z
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Effect of angular dispersion (2)

K, =K, +H
H=H-+A,

A=K sin(g—n) 2

0 < /2

36’ = —°L (14 b) tano
b= — S

A

Z
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Effect of angular dispersion (3)

K, =K,+H

AND: Exact Backscattering is NOT at normal incidence!
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Effect of angular dispersion (4)
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Effect of angular dispersion (5)

DE
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Effect of angular dispersion (6)

Use a small fraction of the Bragg reflection width!

DE
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(+,+, —) Monochromator
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DE - dispersing element C - collimator W - wavelength selector
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(+,+, —) Monochromator

DE - dispersing element C - collimator W - wavelength selector
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(4+, +, =) Monochromator

—] — C/W

DE - dispersing element C - collimator W - wavelength selector
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Spectral resolution of the (+, +, &) monochromator

AFE A6

E tann

(a)

The smaller the photon energy FE,
the smaller is the energy bandwidth A E (fortunately!).
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Spectral resolution of the (+, +, &) monochromator

AFE _ A6

E  tannm

AFE

T —10=%—10"8 (a)

is feasible

E=10keV = AFEFE =10—-— 0.1 meV
EFE=5keV= AF =5—0.05 meV
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Throughput of the (4, +, =) monochromator
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Energy dependence of the reflectivity in Si in backscattering
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4 ) 0 2 4 ..., but, also the reflectivity drops ...
from 0.74 to 0.42, respectively.
E-E, [meV]

New Optics for high-resolution IXS Spectrosco py Yuri Shvyd'ko AARGONNE NSLS-II, March 10, 2006 foil 32/73



Throughput of the (4, +, =) monochromator

1 3 IS IR B B AL I
5 f ]
1
105 1”: AE = 1.5 meV (n = 85°)

2’ : AE = 0.3 meV (n = 89°)
4 3':AF = 0.09 meV (n = 89.6°)

(\9)
ST T T TTTTd
N

Throughput
=
I

I\III

2
E-E,

New Optics for high-resolution IXS Spectroscopy Yuri Shvyd'ko

NSLS-II, March 10, 2006 foil 33/73



Spectral functions of different types of monochromators
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Spectral functions of different types of monochromators
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Spectral functions of different types of monochromators
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Spectral functions of different types of monochromators
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Spectral functions of different types of monochromators
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Features of the (+, 4+, =) monochromators

1. AE/FE is independent of E or of Bragg reflection.
2. The smaller the photon energy E the smaller is the bandpass AFE.
3. AFE can be varied by changing n (F is fixed).

4. The peak throughput T' and the angular acceptance A0

are almost constant (while changing 7).
5. Steep wings in the spectral function.

6. The temperature control and energy tuning is technically not demanding
(for x-ray photons in the low-energy region 5 — 10 keV).

. . . . , AARGONNE .
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(4, +,x) Analyzer

5x5 mrad2

M - paraboloidal mirror

DE - dispersing element

D - detector _
S - sample W - wavelength selector C - collimator

L rssonne
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(+,+,x) IXS spectrometer (1)

high-resolution
analyzer

detector
NERERERENERERENA X-rays 9/6 e o Z
INNEEENENENENEEER
undulator cooled collimating focusing high-resolution
monochromator  optics optics~ monochromator
bandwidth bandwidth bandwidth
~100 eV ~1 eV <1 meV
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Energy tuning of the (+, 4+, &) monochromator

... by changing the
temperature of the
dispersing element (DE)

Bragg back-reflection Si(008) @ 9.13 keV

dE/dT=-23 meV /K
1 meV = 43 mK
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Dispersing Silicon Crystal Elements = Long Crystals

dispersing element (DE)

I It

16 mm
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Elements = Long Silicon Crystals

ispersing

D

16 mm

88.5°

0 | =88

175 mm

NSLS-II, March 10, 2006 foil 44/73
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Energy tuning of the (+, +, &) monochromator

| ... by changing the
e temperature of the
[6 dispersing element (DE)

dE/dT=-23 meV /K
1 meV = 43 mK
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Energy tuning of the (+, +, &) monochromator

... by changing the
temperature of the
dispersing element (DE)

— W
dE/dT=-23 meV /K
1 meV = 43 mK

:J"?
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Thermostats for long crystals

. . . ! ; . AARGONNE — ¥ - .
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—— Ambient temperature

/|

Tests of the thermostats

L

N
S,

— reference thermometer
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Collimator and Wavelength-Selector (C-W)

Bragg reflection: Si(220)

Asymmetry angles: 177 = g3 = 19°
Angular acceptance: Af; = 106 purad
Angular divergence: Af; = 5 prad
Angular acceptance: Af; = 5 urad

Problem: absorption in the collimator crystal

ARGONNE
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Collimator and Wavelength-Selector
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Collimator and Wavelength-Selector
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Collimator and Wavelength-Selector
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Collimator and Wavelength-Selector
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Collimator and Wavelength-Selector
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Bragg Backscattering from Symmetrically Cut Crystal
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Bragg Backscattering from Asymmetrically Cut Crystal
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Bragg Backscattering from Asymmetrically Cut Crystal

What do we observe?

800000
1. Exact Backscattering takes place NOT [ ) 1 1.4e+07
at normal incidence to atomic planes: 700000 | 0 =220 prad I
angular shift A®gz = 220 prad [ 1 1.2e+07
600000 | ]
2. Angular dispersion: [ 4 1.e+07
2 X A®, = 260 urad ) 500000 ]
g [ 1 8.e+06
400000 | b ]
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New Optics for high-resolution IXS Spectroscopy Yuri Shvyd'ko AARGONNE NSLS-II, March 10, 2006 foil 58/73



Bragg Backscattering from Asymmetrically Cut Crystal

THEORY:
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Estimation of the Energy Resolution
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Energy Resolution - Direct Measurements
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Experimental Set-up: @APS, 3ID-D
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Summary of properties

e Spectral properties improve with decreasing photon energy. Most opti-
mal performance in the low-energy spectral range £ ~ 5 — 10 keV.
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Summary of properties

e Spectral properties improve with decreasing photon energy. Most opti-
mal performance in the low-energy spectral range £ ~ 5 — 10 keV.

e Applicable even at low- and intermediate energy synchrotron radiation
sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).
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Undulator spectrum
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Summary of properties

e Spectral properties improve with decreasing photon energy. Most opti-
mal performance in the low-energy spectral range £ ~ 5 — 10 keV.

e Applicable even at low- and intermediate energy synchrotron radiation
sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).

e Higher count-rates, since undulators produce much more photons in the
low-energy range (also at high-energy synchrotron radiation sources).
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Summary of properties

e Spectral properties improve with decreasing photon energy. Most opti-
mal performance in the low-energy spectral range £ ~ 5 — 10 keV.

e Applicable even at low- and intermediate energy synchrotron radiation
sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).

e Higher count-rates, since undulators produce much more photons in the
low-energy range (also at high-energy synchrotron radiation sources).

e Variable energy bandpass from AFE ~ 5 down to ~ 0.1 meV at a fixed
photon energy F.
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Summary of properties

e Spectral properties improve with decreasing photon energy. Most opti-
mal performance in the low-energy spectral range £ ~ 5 — 10 keV.

e Applicable even at low- and intermediate energy synchrotron radiation
sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).

e Higher count-rates, since undulators produce much more photons in the
low-energy range (also at high-energy synchrotron radiation sources).

e Variable energy bandpass from AFE ~ 5 down to ~ 0.1 meV at a fixed
photon energy F.

e Peak throughput practically independent of the energy bandpass AF.
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Summary of properties

e Spectral properties improve with decreasing photon energy. Most opti-
mal performance in the low-energy spectral range £ ~ 5 — 10 keV.

e Applicable even at low- and intermediate energy synchrotron radiation
sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).

e Higher count-rates, since undulators produce much more photons in the
low-energy range (also at high-energy synchrotron radiation sources).

e Variable energy bandpass from AFE ~ 5 down to ~ 0.1 meV at a fixed
photon energy F.

e Peak throughput practically independent of the energy bandpass AF.

e Using low-energy photons means better momentum transfer resolution
for the same angular acceptance.
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Summary of properties

e Spectral properties improve with decreasing photon energy. Most opti-
mal performance in the low-energy spectral range £ ~ 5 — 10 keV.

e Applicable even at low- and intermediate energy synchrotron radiation
sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).

e Higher count-rates, since undulators produce much more photons in the
low-energy range (also at high-energy synchrotron radiation sources).

e Variable energy bandpass from AFE ~ 5 down to ~ 0.1 meV at a fixed
photon energy F.

e Peak throughput practically independent of the energy bandpass AF.

e Using low-energy photons means better momentum transfer resolution
for the same angular acceptance.

e Steep wings in the spectral function.
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Summary of properties

e Spectral properties improve with decreasing photon energy. Most opti-
mal performance in the low-energy spectral range £ ~ 5 — 10 keV.

e Applicable even at low- and intermediate energy synchrotron radiation
sources (DIAMOND, SOLEIL, NSLS-II, TESLA X-FEL, etc.).

e Higher count-rates, since undulators produce much more photons in the
low-energy range (also at high-energy synchrotron radiation sources).

e Variable energy bandpass from AFE ~ 5 down to ~ 0.1 meV at a fixed
photon energy F.

e Peak throughput practically independent of the energy bandpass AF.

e Using low-energy photons means better momentum transfer resolution
for the same angular acceptance.

e Steep wings in the spectral function.

e Proximity to K-absorption edges of the important transition metals.
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