

Inelastic X-ray Scattering by Electronic Excitations

The Taiwan Beamline Perspective (BL12XU@SPring-8)

Yong Cai SPring-8 Group National Synchrotron Radiation Research Center, Taiwan

NSLS-II Seminar, 11 April 2007

The Taiwan Beamlines at SPring-8

- The biggest scientific investment overseas for Taiwan in her history
 - US\$10M initial construction cost for 5 years, subsequent annual operation and instrumentation upgrade budget US\$500 ~ 800K (excl. salary)
- Motivation: To extend Taiwan Light Source's spectral range to hard x-rays

🕷 Two Beamlines:

4 BL12B2: Biostructure & Materials Research

Multiple Purposes (Scattering, Powder Diffraction, Protein Crystallography)

BL12XU: Inelastic X-ray Scattering

For a broad range of applications, focusing on the study of electronic excitations in correlated electron systems and high-pressure physics (sciences)

Location and Access

Close Proximity:

- Flight time 2.5 hours between Taipei and Osaka (Kansai Airport)
- Fast train connection 2.5 hours from Kansai to SPring-8
- Almost the same time zone

National Synchrotron Radiation Research Center

SPring-8 Site

National Synchrotron Radiation Research Center

Outline

Brief Review of IXS by Electronic Excitations

- Theory and Experiment (BL12XU Setup)
- Performance and Selected Results
 - Element-Specific Applications (XRS/XES/FPY-XAS)

XRS: High pressure phases of H_2O_1 , liquid & solid He, SiO₂, Ba_8Si_{46} ...

XES/XAS: P/T-induced charge instability in TmTe, Prussian Blue ...

Low-Energy Charge Dynamics in (ω,q) Space (NIXS/RIXS) NIXS: Graphite, MgB₂, Py-SO, CaMnO₃, NiO ...

RIXS at the K-edge of TM: NiO, Sr_2CuO_3 , La_2CuO_4/La_2NiO_4 ...

- Possible Further Developments and Outlook
 - Possible further developments
 - Outlook with the Taiwan Photon Source

IXS by Electronic Excitations

A rather weak scattering probe:

$$\left(\frac{d\sigma}{d\Omega}\right)_0 = r_0^2 \left(\vec{e}_i \cdot \vec{e}_f\right)^2 \left(\frac{\omega_f}{\omega_i}\right) \approx 10^{-25} \text{ cm}^2$$

$$\left(\frac{d\sigma}{d\Omega}\right)_0 = \frac{4}{a_B^2 q^4} \qquad \approx 10^{-15} \,\mathrm{cm}^2$$

Hard x-rays: Thomson scattering

Fast electrons: Rutherford scattering

Therefore IXS measures properties of the scattering system by itself, but requires intense hard x-ray beam for practical applications

→ Possible only with 3rd generation photon sources !!

National Synchrotron Radiation Research Center

SPring 8

Advantages of IXS

... as compared to other scattering probes (light, neutrons, electrons)

Kinematics

- Accessible (ΔE, q) covers the full range of dielectric response:
 ΔE : meV ~ keV q : typical BZ sizes
- ΔE and q are effectively decoupled

Coupling to matter

- Coupled directly to the electronic charge, therefore sensitive to all kinds of electronic excitations
- Truly bulk-sensitive, in comparison with VUV and SX photoemission and absorption
- Applicable to systems under external environments (high pressure, electric and magnetic fields, high and low temperatures, etc.), and systems that are not compatible with vacuum (e.g., liquids)
- Energy tuneability provides element specific experiments (XRS/XES/PFY-XAS)
- Small beam size offers the possibility to study small samples (incl., HP-DAC samples)

Resonant and/or Non-resonant IXS?

Interaction Hamiltonian with Electrons

(neglecting spin and orbital degrees of freedom)

$$\boldsymbol{H}_{\text{int}} = \boldsymbol{H}_{\text{int}}^{(1)} + \boldsymbol{H}_{\text{int}}^{(2)} = \sum_{j} \frac{e^2}{2mc^2} \boldsymbol{A}_{j}^{2} + \sum_{j} \frac{e}{mc} \boldsymbol{A}_{j} \cdot \boldsymbol{p}_{j}$$

Double Differential Cross Section

Non-resonant

$$\frac{d^2\sigma}{d\Omega d\omega_2} \propto \sum_{I,F} \left| \left\langle F \left| H_{\text{int}}^{(1)} \right| I \right\rangle + \sum_N \frac{\left\langle F \left| H_{\text{int}}^{(2)} \right| N \right\rangle \left\langle N \left| H_{\text{int}}^{(2)} \right| I \right\rangle}{E_N - (E_I + \hbar \omega_1) - i\Gamma_N} + \dots \right| \right|$$

 $d^2\sigma$

$$d\sigma$$

 $S(\mathbf{q},\omega)$

Resonant 💵

Non-resonant IXS (NIXS):

$$S(\mathbf{q},\omega) = -\frac{\hbar q^2}{4\pi^2 e^2 n} \cdot \operatorname{Im} \varepsilon^{-1}(\mathbf{q},\omega) = -\frac{1}{\pi n} \cdot \operatorname{Im} \chi(\mathbf{q},\omega)$$

- + S(q, ω): charge density-density correlation function
- Fluctuation-dissipation theorem provides the macroscopic connection
- **#** First-principles calculations possible

Ø

National Synchrotron Radiation Research Center

- $A^2 term$: 1st order expansion, photon-in photon-out process
- $\mathbf{A} \cdot \mathbf{p} term$: 2nd order expansion, involving intermediate states

Resonant IXS (RIXS):

- Secondary processes involving intermediate states
- + Resonant enhancement
- Element, charge, and spin specific experiments (RXES/PFY-XAS)
- Non-dipole excitations
- **4** Theo: Model dependent

IXS Spectroscopic Information

NIXS (XRS/XES/PFY-XAS)

Taiwan IXS Beamline (BL12XU@SPring-8)

Design principle 1: Maximize the flux within the required energy width !

Maximize flexibility to accommodate changing needs !

Taiwan IXS Beamline (BL12XU@SPring-8)

Micro focusing system (optional), compact and low cost

X-ray Crystal Analyzers

Spherically bent Si(111) analyzer

- 🔸 Bending radius: 2m
- Diameter: 100mm
- Wafer thickness: 0.5mm diced with the DRIE technique.

SEM image of a Si(111) test wafer diced with the DRIE technique under similar conditions as those for the analyzer shown on the left.

(Shew et al, SPIE Proc. 4783, 131)

National Synchrotron Radiation Research Center

Analyzer Performance

Test Conditions

- Incident Beam: 50 meV width @ 9886.2 eV
- Scatter: 2 mm thick PMMA
- 4 Analyzer: 2-m bending radius, Si(555) reflection at near backscattering
- Controlled dicing tailors the strain left in the wafer, allowing tuning of the energy resolution to match the incident beam band width
 - The most efficient configuration for a given energy resolution !

SPring.

RIXS Analyzers (R=1,2m)

		θ =89deg	3d Transitional Metal K-edge		θ =60deg							
Si (hkl)	Back Scattering	Emin	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Emax
004	4.5661	4.5918	Ti									5.2725
133	4.9758	5.0038		V								5.7455
224	5.5923	5.6237			Cr							6.4574
115	5.9315	5.9649				Mn						6.8491
333	5.9315	5.9649										6.8491
044	6.4574	6.4937					Fe					7.4564
135	6.7533	6.7913						Со				7.7981
026	7.2196	7.2602							Ni			8.3365
335	7.4855	7.5276										8.6435
444	7.9087	7.9532								Cu		9.1322
117	8.1521	8.1979										9.4132
155	8.1521	8.1979										9.4132
246	8.5424	8.5904									Zn	9.8639
137	8.7682	8.8175										10.1247
355	8.7682	8.8175										10.1247
008	9.1322	9.1835										10.5449
337	9.3438	9.3963										10.7893

Available analyzers Spring

National Synchrotron Radiation Research Center

Configurations and Performance

NIXS Setups

Beamline @ 9884.7 eV			IXS Spectrometer		
HRM Configuration	Flux (×10 ¹¹ photons/sec)	Bandwidth (meV)	Multiple Analyzer(s)	Resolution (meV)	
Si(333)	1.5	50	Si(555) 2m diced (×9)	70	
c:(400)	57	150	Si(555) 2m diced (×9)	175	
51(400)	J .7	150	Si(555) 2m bent (x3)	300	
None (DCM)	120	1250	Si(555) 1m bent (x1)	1300	

RIXS Setups

Beamline		IXS Spectrometer				
Resolution Mode	Bandwidth ($\Delta E/E$)	Spherical Analyzer	Energy Range (eV)	Resolution (eV)		
LR: Si(111) DCM	1.4×10-4	1m bent	Various edges	~1		
HR: Si(400) HRM	1.5×10 ⁻⁵	2m bent	Various edges	~0.35		

Outline

Brief Review of IXS by Electronic Excitations

- Theory and Experiment (BL12XU Setup)
- Performance and Selected Results
 - Element-Specific Applications (XRS/XES/FPY-XAS)
 XRS: High pressure phases of H₂O, liquid & solid He, SiO₂, Ba₈Si₄₆...
 XES/XAS: P/T-induced charge instability in TmTe, Prussian Blue ...
 - Low-Energy Charge Dynamics in (ω,q) Space (NIXS/RIXS) NIXS: Graphite, MgB₂, Py-SO, CaMnO₃, NiO ...

RIXS at the K-edge of TM: NiO, Sr_2CuO_3 , La_2CuO_4/La_2NiO_4 ...

- Possible Further Developments and Outlook
 - Possible further developments
 - Outlook with the Taiwan Photon Source

H₂O consists of the first and third most abundant elements in the solar system, and plays an exceedingly important role in a wide range of geophysical, planetary, physical, chemical, and biological systems.

Phase Diagram of H_2O (before 2004)

After de Pater & Lissauer (2001)

There exist at least 15 phases including stable, metastable, crystalline, and amorphous phases of H₂O. All of these phases observed over modest P-T below 60 GPa conditions have structures closely dictated by the Pauling ice rules (Pauling, 1935). At higher pressures, symmetrization of the hydrogen-bonded network occurs, forming an ionic state, ice X.

X-ray Raman Scattering (XRS)

Bowron et al, Phys. Rev. B 62, R9223

- First observed by Das Gupta in the 1950's
- Clear connection to XAS was established theoretically by Mizuno and Ohmura and experimentally by Suzuki in 1967, with different strengths
- Synchrotron Radiation experiments by Tohji and Udagawa in 1987
- Established as a routine technique in the 1990's -- see work by Uwe Bergmann (Bergmann et al. Microc. 71 (2002) 221).
- High-pressure DAC applications in recent years

A powerful probe that provides detailed information on the local electronic bonding structure of light elements under high pressure

(Yong Cai, NSLS-II Seminar, 11 April 2007)

SPring. 8

XAS versus XRS

The energy of the incident photon in XAS = The energy transfer in XRS The momentum transfer q = photon polarization vector

Limitations due to the use of soft x-rays for light elements: Surface sensitivity Restricted sample environments e.g., incompatible with high pressure

 Advantages of using hard x-rays : Non-dipole regimes (qr ≥ 1) True bulk sensitivity Flexible sample environments e.g., compatible with high pressure

XRS: Possible Applications

Various Systems

- **4** Aqueous systems, organisms with high water content (vacuum non-compatible)
- First and second row elements
- Transition metal L edges and M-edges

High Pressure / Temperature

- Different forms of ice, supercritical water and aqueous solutions
- Methane hydrates
- ♣ N₂, O₂, CO, CO₂, NO, etc.
- Hydrogen storage in nanotubes under pressure
- Pressure-induced superconductivity (most light elements)

Notable High-Pressure Related Works:

- W.L. Mao *et al.*, "Bonding Changes in Compressed Superhard Graphite", SCIENCE 302, 425 (2003)
- Y. Meng et al., "The Formation of sp³ Bonding in Compressed BN", Nature Mat. 3, 111 (2004)
- Y.Q. Cai et al., "Ordering of Hydrogen Bonds in High-Pressure Low-Temperature H₂O", Phys. Rev. Lett. 94, 025502 (2005)
- S.K. Lee et al., "Probing of Bonding Changes in B₂O₃ Glasses at High Pressure with Inelastic Xray Scattering", Nature Mat. 4, 851 (2005).
- W.L. Mao *et al.*, "X-ray-induced Dissociation of H₂O and Formation of an O₂-H₂ Alloy at High Pressure", SCIENCE **314**, 636 (2006).

(NSRRC)

National Synchrotron Radiation Research Center

SPring-8

Proton Disordered to Ordered Transition

Proton disordered to
 ordered phase transitions:
 ice III - ice IX (two O sites)
 ice VI - ice VIII (one O sites)

Ice polymorph	Crystal structure	Proton Network		
Ice III / ice VI	Tetragonal	Disordered		
Ice II	Rhombohedral	Ordered		
Ice IX / ice VIII	Tetragonal	Ordered		

SPring.

Effect of Proton-Ordering in H₂O

High resolution (300meV) allows fine details of the edge structure to be resolved !

Scattering thru Be: Less absorption, larger angular range!

Ice polymorph	Crystal structure	Proton Network
Ice III	Tetragonal	Disordered (~75%)
Ice II	Rhombohedral	Ordered (100%)
Ice IX	Tetragonal	Ordered (~92%)

The decrease of the pre-edge intensity is a key signature of proton ordering in the H_2O frame work!

(Cai et al, Phys. Rev. Lett. 94, 025502)

A New LT Phase ?

National Synchrotron Radiation Research Center

(Cai et al, unpublished)

X-ray-induced Dissociation of H_2O

Before and after X-radiation

At pressure above 2.5 GPa, H_2O cleaves under prolong x-radiation and forms a new alloy of H_2 and O_2 molecules that does not follow Pauling's ice rules! New way to study H_2 and O_2 interaction

(W.L. Mao et al, Science 314, 636)

Synergy for HP Sciences

An excellent example of HP research that illustrates the necessity of using a multitude of experimental techniques for proper characterization of the system (A scenario of Elephant and the Blind Men).

Outline

Brief Review of IXS by Electronic Excitations

Theory and Experiment (BL12XU Setup)

Performance and Selected Results

- Element-Specific Applications (XRS/XES/FPY-XAS)
 XRS: High pressure phases of H₂O, liquid & solid He, SiO₂, Ba₈Si₄₆...
 XES/XAS: P/T-induced charge instability in TmTe, Prussian Blue ...
- Low-Energy Charge Dynamics in (ω,q) Space (NIXS/RIXS) NIXS: Graphite, MgB₂, Py-SO, CaMnO₃, NiO ...

RIXS at the K-edge of TM: NiO, Sr_2CuO_3 , La_2CuO_4/La_2NiO_4 ...

- Possible Further Developments and Outlook
 - Possible further developments
 - Outlook with the Taiwan Photon Source

NIXS of Charge Dynamics: Key Aspects

$$S(\mathbf{q},\omega) = -\frac{\hbar q^2}{4\pi^2 e^2 n} \cdot \operatorname{Im} \varepsilon^{-1}(\mathbf{q},\omega) = -\frac{1}{\pi n} \cdot \operatorname{Im} \chi(\mathbf{q},\omega)$$

Fluctuation-Dissipation Theorem links S(q,ω) to ε(q,ω), the latter defines all physical responses of the target system to external field: Insight into the excitations of the N-particle many-body system and their interplay with the electronic structure:

$$\mathbf{D}_{Internal} = \varepsilon \mathbf{E}_{external} = (\varepsilon_1 + i\varepsilon_2) \mathbf{E}_{external}$$

Generally, $\varepsilon(q, \omega)$ is a complex function of momentum and energy

- The real part represents features of collective excitations (e.g., plasmons)
- **4** The imaginary part describes single-particle excitation (e.g., interband transitions).
- For core excitations, the real part and the imaginary part are well decoupled $(\varepsilon_1 \sim 1, \varepsilon_2 \sim \mu)$, while they are strongly coupled for valence excitations

NIXS v's Optical & EELS Studies

- Compared to optical studies (q=0), the q-dependent information provides full knowledge of the charge dynamics and a stringent test of theory
- IXS is almost free of multiple scattering (cf. EELS), even at high q, providing a clean way to study the charge dynamics at high q, where short-range correlation effects showing interesting and new physics can be expected
- **Gross section is proportional to** q^2 , in contrast to q^{-4} in the case of EELS
- At sufficiently high q, non-dipole transitions become possible, allowing additional excitation channels to be explored

Solution One derives $\varepsilon(q, \omega)$ by using the f-sum rule:

$$\int \operatorname{Im} \varepsilon^{-1}(\mathbf{q},\omega) \omega d\omega = -2\pi^2 e^2 n / m$$

and the Kramer-Kronig transformation:

National Synchrotron Radiation Research Center

$$\varepsilon_{1}(\mathbf{q},\omega) = 1 + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega' \varepsilon_{2}(\mathbf{q},\omega')}{(\omega')^{2} - \omega^{2}} d\omega'$$

Practical application of NIXS to study $\varepsilon(q, \omega)$ has just started !

Graphite

- Similar crystallographic and electronic structure to C-based novel materials C_{60} or nanotubes
- Various types of properties such as superconductivity, H storage, or super hard form, induced by intercalation, nano-structuring, or applying pressure

An important fact is that graphite is semi metallic. However, there are few reports that have observed semi-metallic electronic structure.

National Synchrotron Radiation Research Center

Superconductivity of MgB₂

Superconductivity (T_c =39K) is dominated by strong e-p coupling between the B sublattice (the E_{2a} optical phonons) and the 2D boron σ bands

Kortus et al, Phys. Rew. Lett. 86, 4656

The Realization of a Demon?

Strong charge inhomogeneity

Demon = distinct electron motion (D. Pines, 1956), formed in the presence of two distinct types of carriers in the system (the heavy B 2D σ holes and the light 3D π electrons in MgB₂). The light carriers could screen the Coulomb repulsion of the heavy carriers effectively, thereby reducing the plasmon frequency of the heavy carriers, leading to the so-called acoustic plasmon that follows generally: $\omega_a = v_a q$, where $v_a \sim$ the Fermi velocity of the heavy carriers.

O B σ -bands

O B π -bands

Dynamical Response of MgB₂

(W. Ku et al, Phys. Rev. Lett. 88, 057001)

At low q, crystal-local field effects (CLFE) are negligible, the new collective mode disappears into particle-hole continuum by Landau damping as q increases

National Synchrotron Radiation Research Center

Charge Dynamics in (ω,q) Space: MgB₂

Periodic Dispersion: q//c*-axis

First ever periodic collective charge excitation observed in a metallic system !

Periodicity of Dielectric Function

$$\varepsilon_{\vec{G},\vec{G}'}\left(\vec{q}-\vec{G}_{q};\omega\right) = \varepsilon_{\vec{G},\vec{G}'}\left(\vec{k};\omega\right)$$

National Synchrotron Radiation Research Center

Periodicity of the Dielectric Response?

The density-response matrix can be expressed in terms of the *inverse* of the dielectric matrix as

$$\chi_{\vec{G},\vec{G}'}\left(\vec{q}-\vec{G}_q;\omega\right) = v^{-1}\left(\vec{q}-\vec{G}_q+\vec{G}\right)\left(\left[\varepsilon\left(\vec{q}-\vec{G}_q;\omega\right)\right]_{\vec{G},\vec{G}'}^{-1} - \delta_{\vec{G},\vec{G}'}\right)$$

For the latter, we have derived the exact result,

$$\begin{split} \left[\varepsilon \left(\vec{q} - \vec{G}_q; \omega \right) \right]_{\vec{G}_q, \vec{G}_q}^{-1} &= \frac{1}{\varepsilon_{\vec{G}_q} \vec{G}_q} \left(\vec{q} - \vec{G}_q; \omega \right) \\ &+ F \left(\vec{q}, \vec{q} - \vec{G}_q; \omega \right) \left[\varepsilon \left(\vec{q} - \vec{G}_q, \omega \right) \right]_{\vec{G} = \vec{0}, \vec{G} = \vec{0}}^{-1} \end{split}$$

for q's in BZ's higher than the first one.

National Synchrotron Radiation Research Center

Outline

Brief Review of IXS by Electronic Excitations

- Theory and Experiment (BL12XU Setup)
- Performance and Selected Results
 - Element-Specific Applications (XRS/XES/FPY-XAS)
 XRS: High pressure phases of H₂O, liquid & solid He, SiO₂, Ba₈Si₄₆...
 XES/XAS: P/T-induced charge instability in TmTe, Prussian Blue ...
 - Low-Energy Charge Dynamics in (ω,q) Space (NIXS/RIXS) NIXS: Graphite, MgB₂, Py-SO, CaMnO₃, NiO ...

RIXS at the K-edge of TM: NiO, Sr_2CuO_3 , La_2CuO_4/La_2NiO_4 ...

Possible Further Developments and Outlook

- Possible further developments
- Outlook with the Taiwan Photon Source

Future Plan 1

IXS under high pressure at low temperature (already started)
Dynamic variation of temperature and pressure

Laser Raman spectroscopy to ensure phases of samples.

Future Plan 2

IXS using 20 keV photons

- High penetration power for XRS of compounds of heavy elements
- Increased flexibility for high pressure experiments (e.g., no-Be gaskets)
- RIXS on 4d, 5f compounds (E_B ~ 20 keV)

New 3-GeV Taiwan Photon Source (TPS)

TPS Parameters - Not the Final

TPS	Non-achromatic 24p18K1	Achromatic 24p18L1				
Energy (GeV)	3.0					
Beam current (mA)	400					
Circumference (m)	51	8.4				
Nat. emittance ε_x (nm-rad)	1.7 (ε _{xeff} = 2.17 LS center)	5.8				
Cell / symmetry / structure	24 / 6 / DBA					
$\beta_x / \beta_y / \eta_x$ (m) LS middle	10.59 / 9.39 / 0.11	12.9 / 9.79 / 0.0				
RF frequency (MHz)	499.654					
RF voltage (MV)	3.5					
Harmonic number	864					
SR loss/turn, dipole (MeV)	0.98733					
Straights	11.72m*6+7m*18					
Betatron tune v_x/v_y	26.22 / 12.28	26.24 / 12.28				
National Synchrotron Radiation Research Center		SPring				

Brilliance Comparison with Other Sources

Summary

- Versatile, state-of-the-art IXS facilities at 3rd generation synchrotrons provides a powerful probe of the charge dynamics of a wide variety of systems, including those under extreme pressure and temperature.
- The improved energy and momentum resolution and wide scan range have allowed experimental dielectric functions to be studied with unprecedented details.
- IXS experiments are flux limited. An ideal instrument should therefore provide the flexibility that allows maximum available flux within the appropriate energy band width for the problem to be attacked.
- New 3rd generation medium energy rings such as the NSLS-II and the TPS provide new opportunities and challenges.

Acknowledgements

NSRRC

- Nozomu HIRAOKA
- 👃 Hirofumi ISHII
- **4** Paul CHOW (now at HP-CAT, APS) **4** Chien-Te CHEN: Project Director

Key Collaborators

- 🖊 Chi-Chang KAO, BNL, USA
- Eric SHIRLEY, NIST, USA
- 🖊 John S. TSE, NRC, Canada 🚽
- 🖊 Wei KU, Phys., BNL, USA
- **4** Adolfo G. EGUILUZ, UT, USA
- ♣ Dave MAO, GL-CIW, USA

Funding

4 NSC and NSRRC

National Synchrotron Radiation Research Center

- **Cheng-Chi CHEN:** Mechanical Engineering
- **Shen-Yaw PERNG:** Analyzer Development
- **4** Ignace JARRIGE (now with JAEA) **4** Duan-Jen WANG: Analyzer Development
 - - 🖊 Donglai FENG, U. Fudan, China
 - 🔸 Changyoung Kim, Yonsei U., Korea
 - Alfred BARON, RIKEN/JASRI, Japan
 - **4** Shik SHIN, RIKEN, Japan
 - 4 Ahbay SHUKLA, U. P&M. Curie, France
 - 4 Jean-Pascal RUEFF, Soleil, France

Thank You!

