# Hydrogeology of the Regional Aquifer near Flagstaff, Arizona, 1994–97

Water-Resources Investigations Report – 4122

Prepared in cooperation with the CITY OF FLAGSTAFF



# Hydrogeology of the Regional Aquifer near Flagstaff, Arizona, 1994–97

*By* Donald J. Bills, Margot Truini, Marilyn E. Flynn, Herbert A. Pierce, Rufus D. Catchings, *and* Michael J. Rymer

Water-Resources Investigations Report 00—4122

*Prepared in cooperation with the* CITY OF FLAGSTAFF

> Tucson, Arizona 2000

## U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY Charles G. Groat, Director

The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division 520 N. Park Avenue, Suite 221 Tucson, AZ 85719–5035 Copies of this report can be purchased from:

U.S. Geological Survey Information Services Box 25286 Federal Center Denver, CO 80225–0046

Information regarding research and data-collection programs of the U.S. Geological Survey is available on the Internet via the World Wide Web. You may connect to the home page for the Arizona District Office using the URL *http://az.water.usgs.gov*.

# **CONTENTS**

### Page

| Introduction       2         Purpose and scope       5         Overview of study methods       5         Description of the study area       6         Previous investigations       6         Acknowledgments       8         Well and spring data       9         Hydraulic properties       9         Remote sensing       10         Surface-geologic mapping       10         Ground-penetrating radar       14         Seismic reflection and seismic refraction       14         Square-array resistivity       20         Borehole       20         Water chemistry       20         Common ions, trace elements, and nutrients       22         Stable isotopes       22         Radiogenic isotopes       22         Radiogenic isotopes       23         Geologic structure       27         Geologic structure       27         Ground-penetrating radar       39         Borehole       32         Borehole       32         Stable isotopes       22         Radiogenic isotopes       23         Geologic structure       37         Geologic structure       35 <t< th=""><th>Abstract</th><th>1</th></t<>                                  | Abstract                                   | 1  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----|
| Purpose and scope5Overview of study methods5Overview of study methods6Previous investigations6Acknowledgments8Methods of investigation8Well and spring data9Hydraulic properties9Remote sensing10Surface-geologic mapping10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity20Water chemistry20Water chemistry20Water chemistry22Radiogenic isotopes22Radiogenic isotopes22Radiogenic isotopes23Hydrogeologic setting23Geologic structure27Geophysical investigations29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon34Methods of mountain gradar39Skunk Canyon34Ground-penetrating radar39Skunk Canyon34Ground-penetrating radar39Skunk Canyon34Ground-penetrating radar35Siguare-array resistivity36Borehole39Skunk Canyon34Ground-penetrating radar35Siguare-array resistivity36Borehole37Siguare-array resistivity36Boreho                                                                                                                                                                                                                            | Introduction                               | 2  |
| Overview of study methods5Description of the study area6Previous investigations6Acknowledgments8Well and spring data9Hydraulic properties9Remote sensing10Surface-geologic mapping10Geophysics10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity20Borehole20Water chemistry20Borehole20Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes22Radiogenic isotopes23Hydrogeologic setting23Hydrogeologic setting29Lake Mary29Ground-penetrating radar32Borehole33Borehole34Hydrogeologic units23Hydrogeologic setting32Borehole35Suquer-array resistivity32Borehole35Suquer-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity39Borehole39Skunk Canyon44Giound-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity39Borehole39Sk                                                                                                                                                                                                                            | Purpose and scope                          | 5  |
| Description of the study area.6Previous investigations.6Acknowledgments8Well and spring data.9Hydraulic properties.9Remote sensing10Surface-geologic mapping10Ground-penetrating radar14Scismic reflection and seismic refraction14Square-array resistivity8Gravity20Borehole20Water chemistry20Borehole20Lydrogeologic setting23Hydrogeologic setting23Hydrogeologic setting23Ground-penetrating radar23Geologic setting23Borehole29Stable isotopes22Radiogenic isotopes22Radiogenic isotopes23Hydrogeologic units23Geologic setting23Borehole.29Suare-array resistivity32Borehole39Skunk Canyon35Woody Mountain35Souare-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity36Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity36Borehole37Sugare-array resistivity <td>Overview of study methods</td> <td>5</td>                                                                                                                                                                                 | Overview of study methods                  | 5  |
| Previous investigations6Acknowledgments8Methods of investigation8Well and spring data9Hydraulic properties9Remote sensing10Surface-geologic mapping10Geophysics10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity18Gravity20Borehole20Water chemistry20Commonions, trace elements, and nutrients22Radiogenic isotopes22Radiogenic isotopes23Hydrogeologic setting23Geophysical investigations29Lake Mary29Cround-penetrating radar29Geophysical investigations29Square-array resistivity32Borehole35Square-array resistivity39Borehole35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity39Borehole35Siguare-array resistivity36Sorehole37Seismic reflection and seismic refraction46Sorehole47Foxglenn51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Square-array resistivity56 <td>Description of the study area</td> <td>6</td>                                                                                                                                      | Description of the study area              | 6  |
| Acknowledgments8Methods of investigation8Well and spring data9Hydraulic properties9Remote sensing10Surface-geologic mapping10Geophysics10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity20Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes23Hydrogeologic setting23Hydrogeologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Sugare-array resistivity39Borehole39Skunk Canyon34Ground-penetrating radar39Soura-array resistivity39Borehole39Skunk Canyon34Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity36Borehole39Skunk Canyon47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction36Square-array resistivity36Sorehole31Sigare-array resistivity36Square-array resistivity <td< td=""><td>Previous investigations</td><td>6</td></td<>                                                                                                                                             | Previous investigations                    | 6  |
| Methods of investigation       8         Well and spring data       9         Hydraulic properties       9         Remote sensing       10         Surface-geologic mapping       10         Geophysics       10         Ground-penetrating radar       14         Seismic reflection and seismic refraction       14         Square-array resistivity       18         Gravity       20         Borehole       20         Water chemistry       20         Common ions, trace elements, and nutrients       22         Stable isotopes       22         Radiogenic isotopes       22         Hydrogeologic setting       23         Hydrogeologic structure       27         Geologic structure       27         Geologic structure       29         Ground-penetrating radar       29         Square-array resistivity       32         Borehole       35         Woody Mountain       35         Square-array resistivity       39         Borehole       39         Skuk Canyon       44         Ground-penetrating radar       44         Ground-penetrating radar       44      <                                                                     | Acknowledgments                            | 8  |
| Well and spring data.9Hydraulic properties.9Remote sensing.10Surface-geologic mapping10Geophysics.10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity18Gravity.20Borehole.20Water chemistry.20Common ions, trace elements, and nutrients22Stable isotopes.22Radiogenic isotopes.22Hydrogeologic setting23Geologic structure27Geophysical investigations.29Lake Mary29Ground-penetrating radar.29Square-array resistivity.32Borehole.35Square-array resistivity.39Skunk Canyon44Ground-penetrating radar.44Seismic reflection and seismic refraction46Square-array resistivity.39Skunk Canyon44Seismic reflection and seismic refraction46Square-array resistivity.35Square-array resistivity.35Skunk Canyon44Seismic reflection and seismic refraction46Borehole.47Foxglenn.51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity.51Square-array resistivity.51Seismic reflection and seismic refraction51Seismic reflectio                                                                                                                                           | Methods of investigation                   | 8  |
| Hydraulic properties9Remote sensing10Surface-geologic mapping10Geophysics10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity18Gravity20Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes22Hydrogeologic setting23Geologic setting23Geologic setting23Ground-penetrating radar29Lake Mary29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Skunk Canyon44Seismic reflection and seismic refraction46Square-array resistivity39Skunk Canyon44Seismic reflection and seismic refraction46Square-array resistivity35Square-array resistivity35Square-array resistivity35Skunk Canyon46Sorehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity51                                                                                                                                                                                                                                                                                                                   | Well and spring data                       | 9  |
| Remote sensing10Surface-geologic mapping10Geophysics10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity18Gravity20Borchole20Water chemistry20Common ions, trace elements, and nutrients22Radiogenic isotopes22Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic setting23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Borehole37Foxglenn51Ground-penetrating radar51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hydraulic properties                       | 9  |
| Surface-geologic mapping10Geophysics10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity18Gravity20Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes22Hydrogeologic setting23Hydrogeologic units23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Ground-penetrating radar44Ground-penetrating radar44Ground-penetrating radar35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Ground-penetrating radar44Ground-penetrating radar44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Sorehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                     | Remote sensing                             | 10 |
| Geophysics10Ground-penetrating radar14Seismic reflection and seismic refraction14Square-array resistivity18Gravity20Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes22Hydrogeologic setting23Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole39Skunk Canyon39Skunk Canyon44Ground-penetrating radar44Ground-penetrating radar46Seismic reflection and seismic refraction46Borehole47Foxglenn51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51 </td <td>Surface-geologic mapping</td> <td>10</td>                                                                        | Surface-geologic mapping                   | 10 |
| Ground-penetrating radar.14Seismic reflection and seismic refraction14Square-array resistivity18Gravity20Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic setting23Geologic structure27Geologic structure29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity36Borehole37Square-array resistivity36Square-array resistivity36Square-array resistivity36Square-array resistivity37Square-array resistivity36Borehole37Square-array resistivity36Borehole47Foxglenn51Ground-penetrating radar51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                         | Geophysics                                 | 10 |
| Seismic reflection and seismic refraction14Square-array resistivity18Gravity20Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes.22Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic structure23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Square-array resistivity39Borehole35Square-array resistivity39Schuck Canyon44Ground-penetrating radar44Ground-penetrating radar44Seismic reflection and seismic refraction46Borehole35Square-array resistivity39Skunk Canyon46Borehole35Square-array resistivity36Square-array resistivity36Sismic reflection and seismic refraction46Borehole31Seismic reflection and seismic refraction51Square-array resistivity51Seismic reflection and seismic refraction51Seismic reflection and seis                                                                                                                | Ground-penetrating radar                   | 14 |
| Square-array resistivity18Gravity20Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes22Hydrogeologic setting23Geologic structure23Geophysical investigations29Lake Mary29Square-array resistivity32Borehole35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Ground-penetrating radar44Ground-penetrating radar44Seismic reflection and seismic refraction46Borehole39Skunk Canyon44Seismic reflection and seismic refraction46Borehole47Foxglenn51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51 <tr< td=""><td>Seismic reflection and seismic refraction</td><td>14</td></tr<> | Seismic reflection and seismic refraction  | 14 |
| Gravity20Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic units23Geologic structure27Geophysical investigations29Lake Mary29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Square-array resistivity46Borehole37Foxglenn51Ground-penetrating radar41Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Square-array resistivity                   | 18 |
| Borehole20Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic units23Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Borehole47Foxglenn51Ground-penetrating radar51Square-array resistivity36Skunk Canyon36Stuite reflection and seismic refraction36Square-array resistivity36Borehole37Foxglenn51Ground-penetrating radar51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gravity                                    | 20 |
| Water chemistry20Common ions, trace elements, and nutrients22Stable isotopes.22Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic units23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Borehole                                   | 20 |
| Common ions, trace elements, and nutrients22Stable isotopes22Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic suture23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Seismic reflection and seism                               | Water chemistry                            | 20 |
| Stable isotopes22Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic units23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole51Ground-penetrating radar51Square-array resistivity51Square-array resistivity51Square-array resistivity51Square-array resistivity51Square-array resistivity51Seismic reflection and seismic refraction51Seismic reflection and seismi                                                          | Common ions, trace elements, and nutrients | 22 |
| Radiogenic isotopes22Hydrogeologic setting23Hydrogeologic units23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Seis                               | Stable isotopes                            | 22 |
| Hydrogeologic setting23Hydrogeologic units23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole51Ground-penetrating radar51Square-array resistivity51Square-array resistivity51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Square-array resistivity51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                 | Radiogenic isotopes                        | 22 |
| Hydrogeologic units23Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole51Ground-penetrating radar51Square-array resistivity51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hydrogeologic setting                      | 23 |
| Geologic structure27Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole51Ground-penetrating radar51Square-array resistivity51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hydrogeologic units                        | 23 |
| Geophysical investigations29Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Geologic structure                         | 27 |
| Lake Mary29Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity51Square-array resistivity51Square-array resistivity51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Geophysical investigations                 | 29 |
| Ground-penetrating radar29Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lake Mary                                  | 29 |
| Square-array resistivity32Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ground-penetrating radar                   | 29 |
| Borehole35Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Square-array resistivity                   | 32 |
| Woody Mountain35Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Borehole                                   | 35 |
| Square-array resistivity39Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Source-array resistivity51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Woody Mountain                             | 35 |
| Borehole39Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Square-array resistivity                   | 39 |
| Skunk Canyon44Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Borehole                                   | 39 |
| Ground-penetrating radar44Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skunk Canyon                               | 44 |
| Seismic reflection and seismic refraction46Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ground-penetrating radar                   | 44 |
| Square-array resistivity46Borehole47Foxglenn51Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Seismic reflection and seismic refraction  | 46 |
| Borehole       47         Foxglenn       51         Ground-penetrating radar       51         Seismic reflection and seismic refraction       51         Square-array resistivity       56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Square-array resistivity                   | 46 |
| Foxglenn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Borehole                                   | 47 |
| Ground-penetrating radar51Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Foxglenn                                   | 51 |
| Seismic reflection and seismic refraction51Square-array resistivity56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ground-penetrating radar                   | 51 |
| Square-array resistivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Seismic reflection and seismic refraction  | 51 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Square-array resistivity                   | 56 |

#### Page

| Borehole                                           | 56  |
|----------------------------------------------------|-----|
| Continental                                        | 56  |
| Ground-penetrating radar                           | 64  |
| Seismic reflection and seismic refraction          | 66  |
| Square-array resistivity                           | 70  |
| Borehole                                           | 70  |
| Hydrogeology of the regional aquifer               | 74  |
| Water levels and saturated thickness               | 75  |
| Well yield and specific capacity                   | 77  |
| Hydraulic properties                               | 78  |
| Transmissivity and hydraulic conductivity          | 78  |
| Storage coefficients and aquifer storage           | 81  |
| Ground-water flow system                           | 81  |
| Recharge and discharge                             | 82  |
| Water chemistry                                    | 83  |
| Common ions, trace elements, and nutrients         | 83  |
| Stable isotopes                                    | 83  |
| Radiogenic isotopes                                | 90  |
| Effects of geologic structure on ground-water flow | 92  |
| Regional structure                                 | 97  |
| Local structure                                    | 98  |
| Potential for future ground-water development      | 99  |
| Summary and conclusions1                           | .00 |
| Selected references                                | .03 |

## **PLATES**

- 1. Map showing geology, geologic structure, locations of wells and springs, and carbon-14 ages of ground water near Flagstaff, Arizona
- 2. Map showing the potentiometric surface of the regional aquifer (1994–97), geologic structure, and selected well and spring data near Flagstaff, Arizona
- 3. Geologic sections near Flagstaff, Arizona
- 4. Water-level and hydrogeologic data for wells near Flagstaff, Arizona

# FIGURES

| 1.     | Map showing study area, and locations of wells and springs that discharge water from<br>the regional aquifer selected wells and springs that discharge water from perched |    |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
|        | water-bearing zones, traces of geologic sections, and surface-geophysical test sites                                                                                      |    |  |  |  |
|        | Flagstaff Arizona                                                                                                                                                         | 3  |  |  |  |
| 2      | Graphs and map showing water use annual precipitation and evaporation Flagstaff Arizona                                                                                   | 5  |  |  |  |
| 2.     | A Annual water use for the City of Flagstaff 1956–96                                                                                                                      | 4  |  |  |  |
|        | B Annual precipitation at Pulliam Field near Flagstaff Arizona 1950–97 and                                                                                                |    |  |  |  |
|        | average annual precipitation                                                                                                                                              | 4  |  |  |  |
|        | C Average annual precipitation and evaporation (Arizona Water Commission 1975)                                                                                            | 4  |  |  |  |
| 3.     | Landsat Thematic Mapper image. January 15, 1983. Flagstaff, Arizona                                                                                                       | 11 |  |  |  |
| 4      | Shaded relief digital-elevation model of Flagstaff Arizona                                                                                                                | 12 |  |  |  |
| 5.     | SPOT panchromatic image enlargement of the Fisher Point-Lower Lake Mary area.                                                                                             |    |  |  |  |
| 01     | November 7–8, 1995. Flagstaff, Arizona                                                                                                                                    | 13 |  |  |  |
| 6.     | Map showing locations of selected wells and geophysical test sites. Flagstaff, Arizona.                                                                                   | 15 |  |  |  |
| 7.     | Schematic showing ground-penetrating radar technique.                                                                                                                     |    |  |  |  |
|        | A. Common-offset single-fold profiling                                                                                                                                    | 16 |  |  |  |
|        | B. Format of reflection section showing interpretation of radar data for features in figure 8A.                                                                           | 16 |  |  |  |
| 8.     | Maps showing locations of selected wells and sites where ground-penetrating radar.                                                                                        |    |  |  |  |
|        | square-array resistivity, seismic-reflection, and seismic-refraction data were                                                                                            |    |  |  |  |
|        | collected near Flagstaff, Arizona.                                                                                                                                        |    |  |  |  |
|        | A. Skunk Canyon                                                                                                                                                           | 17 |  |  |  |
|        | B. Foxglenn                                                                                                                                                               | 17 |  |  |  |
|        | C. Continental.                                                                                                                                                           | 17 |  |  |  |
| 9.     | Drawings showing electrode configurations and crossed array.                                                                                                              |    |  |  |  |
|        | A. Three resistivity measurements: alpha ( $\alpha$ ), beta ( $\beta$ ), and gamma ( $\gamma$ )                                                                           | 18 |  |  |  |
|        | B. Electrode positions for a crossed array                                                                                                                                | 18 |  |  |  |
| 10.    | Map showing locations of selected wells, springs, and surface-water and snowmelt sites                                                                                    |    |  |  |  |
|        | where water samples were collected for chemical and isotope analysis, Flagstaff, Arizona                                                                                  | 21 |  |  |  |
| 11.    | Sketch showing generalized stratigraphic section of rock units, Flagstaff, Arizona                                                                                        | 24 |  |  |  |
| 12.    | Sketch showing conceptual model of the development of reverse drag.                                                                                                       |    |  |  |  |
| А.     | Geometry before faulting                                                                                                                                                  | 28 |  |  |  |
| В.     | Faulting without sag of hanging wall                                                                                                                                      | 28 |  |  |  |
| C.     | Faulting with sag of hanging wall.                                                                                                                                        | 28 |  |  |  |
| 13.    | Map showing color edge-enhanced image and simple Bouguer gravity data of a                                                                                                |    |  |  |  |
|        | 2.49-mile square grid on the Flagstaff area, Arizona                                                                                                                      | 30 |  |  |  |
| 14–17. | Graphs showing:                                                                                                                                                           |    |  |  |  |
|        | 14. Selected interpreted ground-penetrating radar data for the Lake Mary area.                                                                                            |    |  |  |  |
|        | A. Radar profile near Lake Mary well 8                                                                                                                                    | 31 |  |  |  |
|        | B. Middle part of the radar profile for site about 1 mile southeast of Lake Mary well 8,                                                                                  |    |  |  |  |
|        | 346–458 feet                                                                                                                                                              | 31 |  |  |  |

|           | 15. Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data,                 |       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|           | Lower Lake Mary site                                                                                                                                                               | 33    |
|           | porosity, and interpreted resistivity from the square-array sounding data,                                                                                                         | 34    |
|           | <ol> <li>Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data,</li> </ol> |       |
|           | Lake Mary well 9 site                                                                                                                                                              |       |
| 18.       | Plots showing lithologic and borehole-geophysical logs, Lake Mary sites.                                                                                                           |       |
|           | A. Well LM-6                                                                                                                                                                       |       |
|           | B. Well LM-7                                                                                                                                                                       |       |
|           | C. Well LM-8                                                                                                                                                                       |       |
| 10        | D. Well LM-9.                                                                                                                                                                      |       |
| 19.       | Graphs showing calculated apparent strike of major fractures, coefficient of anisotropy,                                                                                           |       |
|           | secondary porosity, and interpreted resistivity from the square-array sounding data,<br>Woody Mountain well 10 site                                                                | 40    |
| 20        | Graphs showing calculated apparent strike of major fractures, coefficient of anisotropy                                                                                            | 40    |
| 20.       | secondary porosity and interpreted resistivity from the square-array sounding data                                                                                                 |       |
|           | Woody Mountain well 11 site (W11)                                                                                                                                                  |       |
| 21.       | Plots showing lithologic and borehole-geophysical logs, Woody Mountain site.                                                                                                       |       |
|           | A. Well 10                                                                                                                                                                         | 42    |
|           | B. Well 11                                                                                                                                                                         | 43    |
| 22.       | Graphs showing selected interpreted ground-penetrating radar data for the Skunk Canyon                                                                                             | area. |
|           | A. Radar profile 1, 0–300 feet                                                                                                                                                     | 44    |
|           | B. Radar profile 2, 0–620 feet                                                                                                                                                     | 44    |
|           | C. Radar profile 3, 0–600 feet                                                                                                                                                     | 45    |
| 23.       | Stacked seismic image of the Skunk Canyon North profile No. 1.                                                                                                                     | 47    |
| 24.       | Graphs showing calculated apparent strike of major fractures, coefficient of anisotropy,                                                                                           |       |
|           | secondary porosity, and interpreted resistivity from the square-array sounding data,                                                                                               | 40    |
| 25        | Skunk Canyon site                                                                                                                                                                  |       |
| 23.<br>26 | Plots showing infologic and borehole-geophysical logs, Skulk Callyon well                                                                                                          | 49    |
| 20.       | in the Eexclore area                                                                                                                                                               | 57    |
| 27        | Photograph showing Northeastward-striking fracture zne and possible faults in the                                                                                                  |       |
| 21.       | Foxglenn area                                                                                                                                                                      | 52    |
| 28        | Graphs showing selected interpreted ground-penetrating radar data for the Foxglenn area                                                                                            |       |
| 20.       | A. Radar profile 1. 0–400 feet                                                                                                                                                     |       |
|           | B. Radar profile. Foxglenn test line. 0–268 feet                                                                                                                                   |       |
|           | C. Radar profile 8, 0–500 feet                                                                                                                                                     | 53    |
| 29.       | Graphs showing stacked seismic image of the Foxglenn East profile                                                                                                                  | 55    |
| 30.       | Graphs showing calculated apparent strike of major fractures, coefficient of anisotropy,                                                                                           |       |
|           | secondary porosity, and interpreted resistivity from the square-array sounding data,                                                                                               |       |
|           | Foxglenn site                                                                                                                                                                      | 57    |
| 31.       | Plots showing lithologic, video, and borehole-acoustic-televiewer logs, Foxglenn well                                                                                              | 64    |

| 32.       | Graphs showing selected interpreted ground-penetrating radar data for the Continental area.            | 61 |
|-----------|--------------------------------------------------------------------------------------------------------|----|
|           | A. Radar profile 2, 0–450                                                                              | 04 |
|           | <b>D.</b> Radar profile 3, $0-480$ feet                                                                | 04 |
| 22        | C. Radar profile 9, 0–500 feet                                                                         | 03 |
| 55.<br>24 | Graph showing stacked seismic image along Continental line 2                                           | 07 |
| 24.<br>25 | Detergraph showing solution widered frequence hadding plane structure, and the                         | 00 |
| 55.       | Bottomless Pits in the Continental area                                                                | 69 |
| 36.       | Graphs showing velocity model for Continental line 1 derived from inversion of seismic-refraction data | 70 |
| 37.       | Graphs showing calculated apparent strike of major fractures, coefficient of anisotropy.               |    |
|           | secondary porosity, and apparent resistivity for the square-array sounding data,                       |    |
|           | Continental site                                                                                       | 71 |
| 38.       | Plots showing lithologic and borehole-geophysical logs, Continental site.                              |    |
|           | A. Well 1                                                                                              | 72 |
|           | B. Well 2                                                                                              | 72 |
| 39–41.    | Hydrographs showing:                                                                                   |    |
|           | 39. Water levels in selected observation wells, Flagstaff, Arizona                                     | 76 |
|           | 40. Relation of water level in the Navaio Army Depot well (NAD-1) to the flow rate of                  |    |
|           | Lake Atherton into a nearby sinkhole                                                                   | 77 |
|           | 41. Water levels in selected observation wells in the northeastern part of the study area              |    |
|           | near Flagstaff, Arizona                                                                                | 77 |
| 42.       | Histogram showing distribution of data from well and aquifer tests, Flagstaff, Arizona.                |    |
|           | A. Well-yield data                                                                                     | 79 |
|           | B. Transmissivity data from water-level recovery                                                       | 79 |
|           | C. Hydraulic-conductivity data from water-level recovery                                               | 79 |
|           | D. Specific-capability data.                                                                           | 79 |
| 43.       | Graphs showing drawdown and recovery data for a typical well test in the Flagstaff area.               |    |
|           | A. Walnut Canyon well                                                                                  | 80 |
|           | B. Recovery, Walnut Canyon well                                                                        | 80 |
| 44.       | Graphs showing relation of well yield to transmissivity, hydraulic conductivity, and                   |    |
|           | specific capability, Flagstaff, Arizona.                                                               |    |
|           | A. Transmissivity                                                                                      | 81 |
|           | B. Hydraulic conductivity                                                                              | 81 |
|           | C. Specific capacity.                                                                                  | 81 |
| 45.       | Trilinear diagram showing relative composition of ground-water samples from the                        |    |
|           | regional aquifer and perched water-bearing zones, Flagstaff, Arizona, 1995–97                          | 84 |
| 46.       | Graph showing concentrations of chloride as a function of concentrations of dissolved                  |    |
|           | solids in water from the regional aquifer and perched water-bearing zones, Flagstaff,                  |    |
|           | Arizona, 1995–97                                                                                       | 85 |
| 47.       | Map showing areas of the regional aquifer in which wells and springs have similar                      |    |
|           | water-chemistry characteristics, Flagstaff, Arizona, 1995–97                                           | 86 |
| 48–51.    | Graphs showing:                                                                                        |    |
|           | 48. Concentrations of calcium and magnesium as a function of concentrations of dissolved               |    |
|           | sonus in water from the regional aquifer and perched water-bearing zones, Flagstaff,                   |    |
|           | ATIZONA, $1995-97$ .                                                                                   | 07 |
|           | A. Calcium<br>D. Mognosium                                                                             | 8/ |
|           | D. Magnesium.                                                                                          | ð/ |

|     | 49. Graph showing concentrations of silica as a function of concentrations of dissolved solids in water from the regional aquifer and perched water-bearing zones, Flagstaff, Arizona, 1995–97 | . 88 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | 50. Graph showing oxygen and hydrogen isotopes in water from the regional aquifer and                                                                                                          | 00   |
|     | perched water-bearing zones, and from surface-water and precipitation sites,                                                                                                                   |      |
|     | Flagstaff, Arizona, 1995–97                                                                                                                                                                    | . 89 |
|     | 51. Graphs showing strontium-isotope data for water from the regional aquifer, Flagstaff,                                                                                                      |      |
|     | Arizona, 1995–97.                                                                                                                                                                              | 02   |
|     | A. Strontium                                                                                                                                                                                   | 93   |
|     | B. Strontium-isotope data as a function of cation activity                                                                                                                                     | . 93 |
| 52. | Azimuthal plot orientation of documented surface fractures, Flagstaff, Arizona, 1995–97                                                                                                        | . 94 |
| 53. | Photograph showing horizontal and bedding-plane fracturing in Walnut Canyon,                                                                                                                   |      |
|     | Flagstaff, Arizona                                                                                                                                                                             | . 95 |
| 54. | Azimuthal plots showing relation of data from well and aquifer tests to structural                                                                                                             |      |
|     | orientation of surface geology, Flagstaff, Arizona.                                                                                                                                            |      |
|     | A. Well yield                                                                                                                                                                                  | . 96 |
|     | B. Transmissivity                                                                                                                                                                              | 96   |
|     | C. Hydraulic conductivity                                                                                                                                                                      | 96   |
|     | D. Specific capacity.                                                                                                                                                                          | 96   |
| 55. | Graph showing comparison of hydraulic-conductivity data in the Flagstaff area with                                                                                                             |      |
|     | hydraulic-conductivity data for similar consolidated rocks                                                                                                                                     | . 97 |
|     |                                                                                                                                                                                                |      |

## TABLES

| 1. | Data from surface-geophysical investigation sites, Flagstaff, Arizona                        | 32 |
|----|----------------------------------------------------------------------------------------------|----|
| 2. | Physical and chemical data for water from selected wells and springs, for surface water,     |    |
|    | and for precipitation, Flagstaff, Arizona                                                    | 58 |
| 3. | Temporal data for oxygen, deuterium, and tritium in water from selected wells that discharge |    |
|    | water from the regional aquifer, Flagstaff, Arizona                                          | 90 |
| 4. | Sensitivity analysis for calculations of carbon-14 ages                                      | 91 |
| 5. | Stable-isotope data for strontium in water from selected wells and springs that discharge    |    |
|    | water from the regional aquifer, Flagstaff, Arizona                                          | 92 |
| 6. | Average ground-water flow velocity and estimated travel times for ground water in            |    |
|    | selected parts of the study area, Flagstaff, Arizona                                         | 98 |
| 7. | Porosity and specific yield for common consolidated rocks and for rock units of the          |    |
|    | regional aquifer near Flagstaff, Arizona                                                     | 98 |

#### CONVERSION FACTORS AND VERTICAL DATUM

| Multiply                                                                 | Ву       | To obtain                       |
|--------------------------------------------------------------------------|----------|---------------------------------|
| inch (in)                                                                | 25.4     | millimeter                      |
| foot (ft)                                                                | 0.3048   | meter                           |
| mile (mi)                                                                | 1.609    | kilometer                       |
| square mile (mi <sup>2</sup> )                                           | 2.590    | square kilometer                |
| gallon (gal)                                                             | 3.785    | liter                           |
| million gallons (Mgal)                                                   | 3,785    | cubic meter                     |
| acre-foot (acre-ft)                                                      | 0.001233 | cubic hectometer                |
| cubic foot per second (ft <sup>3</sup> /s)                               | 0.02832  | cubic meter per second          |
| cubic foot per day (ft <sup>3</sup> /d)                                  | 0.02832  | cubic meter per day             |
| gallon per minute (gal/min)                                              | 0.06309  | liter per second                |
| gallon per day (gal/d)                                                   | 0.003785 | cubic meter per day             |
| gallons per minute per foot <sup>1</sup> [(gal/min)/ft)]                 | 0.2070   | liters per second per meter     |
| gallons per day per foot squared <sup>1</sup> [(gal/d)/ft <sup>2</sup> ] | 0.041    | liter per day per meter squared |
| foot per mile (ft/mi)                                                    | 0.1894   | meter per kilometer             |
| gallons per day per foot [(gal/d)/ft]                                    | 0.0124   | meters squared per day          |

<sup>1</sup>The standard unit for transmissivity is cubic foot per day per square foot per foot of aquifer thickness  $[(ft^3/d)/ft^2]$ ft and generally the mathematically reduced form, foot squared per day ( $ft^2/d$ ), is used for convenience. The standard unit for hydraulic conductivity is foot per day (ft/d). In this report, however, transmissivity is reported in gallons per day per foot, and hydraulic conductivity is reported in gallons per day per foot, and hydraulic conductivity is reported in gallons per day er foot squared would be multiplied by 0.134 to obtain the standard factor of foot per day. For transmissivity, the factor of gallons per day per foot squared be multiplied by 0.134 to obtain the standard factor of foot per day.

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

 $^{\circ}F=1.8(^{\circ}C)+32$ 

#### ABBREVIATED WATER-QUALITY UNITS

Chemical concentration and water temperature are given only in metric units. Chemical concentration in water is given in milligrams per liter (mg/L) or micrograms per liter ( $\mu$ g/L). Milligrams per liter is a unit expressing the solute mass (milligrams)

per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. For concentrations less than 7,000 milligrams per liter, the numerical value is about the same as for concentrations in parts per million. Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius ( $\mu$ S/cm at 25°C). Radioactivity is expressed in picocuries per liter (pCi/L) or picocuries per gram (pCi/g), which is the amount of radio-active decay producing 2.2 disintegrations per minute in a unit volume (liter) of water or mass (gram) of sediment.

#### VERTICAL DATUM

**Sea level**: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929".

# Hydrogeology of the Regional Aquifer near Flagstaff, Arizona, 1994–97

By Donald J. Bills, Margot Truini, Marilyn E. Flynn, Herbert A. Pierce, Rufus D. Catchings, and Michael J. Rymer

#### Abstract

Sandstones, siltstones, and limestones that are Pennsylvanian to Permian in age underlie the southern part of the Colorado Plateau near Flagstaff, Arizona, and contain a complex regional aquifer that has become increasingly important as a source of water for domestic, municipal, and recreational uses. Ground-water flow in the regional aquifer is poorly understood in this area because (1) depth of the aquifer limits exploratory drilling and testing and (2) the geologic structure increases the complexity of the aquifer characteristics and the ground-water flow system.

Four methods were used to improve the understanding of the hydrogeology of the regional aquifer near Flagstaff.

- Remote-sensing techniques and geologic mapping provided data to identify many structural features that indicate a more complex structural environment and history than previously realized.
- Data from surface-geophysical techniques that included ground-penetrating radar, seismic reflection and seismic refraction, and square-array resistivity, verified that some of the geologic structures expressed at land surface propagate deep into the subsurface and through the principal water-bearing zones of the regional aquifer at near-vertical angles.
- A well and spring inventory, borehole-geophysical methods, and well and aquifer tests provided additional information relating aquifer and ground-water flow characteristics to geologic structure.
- Water-chemistry data, which included major ion, nutrient, trace-element, and radioactive and stable-isotope analyses, provided an independent means of verifying the hydrogeologic characteristics of the aquifer and were used to determine recharge and discharge areas, ground-water movement, and ground-water age.

Ground-water recharge occurs throughout the area but is greatest at higher altitudes where precipitation is greater and in areas where heavily fractured rock units of the aquifer are exposed. The estimated annual average recharge to the regional aquifer in the study area is about 290,000 acre-feet. Ground water flows laterally and vertically through pore spaces in the rock and along faults and other fractures from high-altitude areas in the southern part of the study area to regional drains north of the study area along the Little Colorado and Colorado Rivers, and to drains south of the study area along Oak Creek and the Verde Valley. Ground-water discharge in these areas—about 400,000 acre-feet per year—exceeds the annual recharge to the aquifer in the Flagstaff area, but ground water from areas outside the study area contributes to this discharge as well. The saturated thickness of the regional aquifer

averages about 1,200 feet, and the amount of water in storage could be as much as 4,800,000 acrefeet, or about 10 percent of the total volume of the aquifer.

The quality of water in the regional aquifer in terms of dissolved-solids concentrations is good for most uses throughout the area. Dissolvedsolids concentrations generally are less than 500 milligrams per liter. Water in the regional aquifer is primarily a calcium magnesium bicarbonate type. In some areas near the Rio de Flag, the water has significant nitrate and chloride components, which indicate direct recharge in these areas from the Rio de Flag. Oxygen and deuterium data indicate a common recharge source for water in the aquifer and that some sites receive recharge from surface waters where evaporation has occurred. Estimated carbon-14 ages and tritium activities indicate ground-water ages from less than 200 years in the Lake Mary area to more than 5,000 years in the Wupatki area.

The regional aquifer is heterogeneous and anisotrophic and has a complex ground-water flow system. The most productive water-bearing material tends to be fine- to medium-grained sandstones, and ground-water flow and potential well yields are related to geologic structure. Fracturing associated with structural deformation increases recharge locally and also increases the potential for high well yields. Surface-geophysical techniques provided information on the orientation of high-angle, deep-seated structure in the saturated zone. Borehole-geophysical data identified horizontal to near-horizontal fractures as significant components of the fracture-flow system not apparent in the surface-geophysical data. Structural features that strike northwest appear to be areas that have the greatest potential for high well yields. A north-northeastward-striking structure may be just as promising, but additional data are needed to verify this relation.

#### INTRODUCTION

Ground water is a major source of public and domestic water supply on the Colorado Plateau in northern Arizona (fig. 1). Water resources near Flagstaff are obtained from surface runoff, shallow perched water-bearing zones, and a deep regional aquifer. Surface-water resources are limited because runoff in the area is small, and surface-water rights either are fully appropriated or under adjudication. Ground water, therefore, is one of the few remaining alternatives for communities in the area. Because the depth to ground water in the regional aquifer significantly affects the cost of drilling and developing wells, high-yield wells are desired for public and municipal supply; however, the hydrogeology and flow characteristics of the regional aquifer are poorly understood.

Until the 1950s, the water needs of Flagstaff and the surrounding area were met by developed springs, surface-water impoundments, and a few shallow wells developed in perched water-bearing zones. By the early 1960s, Flagstaff had grown to a community of about 18,000, and the need to increase development of the water resources was apparent. In the late 1950s to the early 1960s, a cooperative investigation between the U.S. Geological Survey (USGS) and the City of Flagstaff resulted in the drilling and development of high-yield wells; this investigation recognized a relation between geologic faults and the occurrence of ground water in the Flagstaff area. As the community continued to grow, the City of Flagstaff and water companies in the surrounding area drilled deep wells that met with varied results. Some wells yielded hundreds of gallons per minute; however, most wells yielded less than 50 gal/min. By the mid-1990s, development of high-yield wells completed in fault zones had reached the point where the water table was being drawn down, which reduced the yield of other wells in the surrounding areas (Ron Doba, Utilities Director, City of Flagstaff, written commun., 1995).

In recent years, the City of Flagstaff has become more dependent on ground water from the regional aquifer. Water use in the study area increased about 30 percent from the mid-1980s to the mid-1990s, and the use of ground water has surpassed the use of surface water (U.S. Geological Survey, 1985; Anning and Duet, 1994; **fig. 2**A). In 1995, the population of Flagstaff was 58,500. Recent studies of community growth and development project a population of about 100,000 by the year 2020 (City of Flagstaff, 1996).



**Figure 1**. Study area, and locations of wells and springs that discharge water from the regional aquifer, selected wells and springs that discharge water from perched water-bearing zones, traces of geologic sections, and surface-geophysical test sites, Flagstaff, Arizona.



B. Annual precipitation



C. Average annual precipitation and evaporation



**Figure 2**. Water use, annual precipitation, and evaporation, Flagstaff, Arizona. *A*, Annual water use for the City of Flagstaff, 1956– 96. *B*, Annual precipitation at Pulliam Field near Flagstaff, Arizona, 1950–97, and average annual precipitation (National Oceanic and Atmospheric Administration, 1998). *C*, Average annual precipitation and evaporation (Arizona Water Commission, 1975). Long-range resource-management plans foresee the need to secure additional dependable water supplies to meet the future demands of an increasing population and a developing commercial environment. In September 1995, the USGS, in cooperation with the City of Flagstaff, began a study to improve the understanding of the occurrence and movement of water and the relation between hydrogeologic characteristics and well productivity in the regional aquifer.

Flagstaff and the surrounding area overlie a complex series of volcanic and sedimentary rocks. These rock formations are deformed locally and regionally by a series of folds and fractures that collectively are the geologic structure of the area. This structure partly controls the occurrence and movement of ground water. Ground water in some areas is perched close to the land surface by dense and unfractured volcanic rocks or by fine-grained sediments or sedimentary rocks. The results of previous studies indicate that ground water is recharged by precipitation and surface flows throughout the area and along the Mogollon Rim. Water that filters down to the regional water table moves laterally and vertically until it discharges as springs along the Little Colorado and Colorado Rivers to the north, Oak and Sycamore Creeks to the south, or is pumped out of the ground by wells. None of the previous studies, however, discuss the effects of highly fractured rocks on the general flow of ground water.

To provide an improved understanding of the ground-water flow system, the USGS used geophysical and geological techniques in addition to traditional hydrologic approaches to delineate the regional aquifer and ground-water flow paths, and to locate zones of greatest permeability in the regional aquifer. Groundwater chemistry was characterized to delineate the sources and areas of ground-water recharge, groundwater flow directions, and the hydraulic connection among different rock units. This information was used to evaluate relations between certain types of geologic structure and high-yield wells.

#### **Purpose and Scope**

This report presents hydrogeologic, geophysical, and water-chemistry data of the regional aquifer near Flagstaff, Arizona. The data are used to define the availability and flow of ground water in the area and evaluate areas where geologic structure, hydraulic properties, and water chemistry provide the most favorable conditions for ground-water development.

The scope of the report includes the following.

- 1. Background material on the physical setting of the study area and description of the methods used to collect hydrogeologic, geophysical, and water-chemistry data.
- 2. Description of the application of these methods and collection of data to describe ground-water flow directions, recharge and discharge areas, and hydraulic properties that affect regional groundwater flow.
- 3. Comparison of historic water-level data with data collected during this study to evaluate temporal trends.
- 4. Evaluation of the hydrogeology of the regional aquifer and the hydraulic connection among water-bearing zones.
- 5. Chemical analysis of ground water to refine and corroborate the conceptual flow model developed using the hydrogeologic, geologic, and geophysical methods.
- 6. A summary of the principal findings of the study focusing on the investigative methods that best establish relations among known geologic and structural characteristics, hydrologic properties, water chemistry, and high well yields.

Primary data were collected in 1995 and 1996. Supplemental data that verify and refine spatial and temporal trends were collected in 1997 and are presented in the section entitled "**Supplemental Data**" at the end of this report.

#### **Overview of Study Methods**

Field programs were established to collect the data needed to define the hydrogeologic, geophysical, and water-chemistry characteristics in the study area. All accessible wells and springs that discharge water from the regional aquifer in and adjacent to the study area were inventoried. Data were collected from depthto-water measurements, well-yield calculations, pumping tests, borehole-geophysical logs, and waterchemistry analyses. Where appropriate, an attempt was made to fill in data gaps by the collection of additional borehole-geophysical logs or the collection of new well-test data. These data were used to determine hydrogeologic patterns that relate to potential highyield well development. Surface-geophysical surveys that included ground-penetrating radar, seismic reflection and seismic refraction, and square-array resistivity techniques were made in selected areas where remote-sensing data and surface structure indicated potential fracturing in the subsurface. These techniques were evaluated to determine if they were capable of delineating areas of significant fracturing in the aquifer units. Existing regional gravity data also were evaluated. Where geophysical data were used by the City of Flagstaff to locate and develop wells, borehole-geophysical logs and well-test data were used to verify the location and extent of structural deformation in the subsurface that was indicated by surface-geophysical techniques.

Water samples from selected wells and springs were analyzed for major ions, nutrients, trace elements, and radioactive and stable isotopes. These data were used to help determine recharge areas, ground-water flow directions, and hydraulic connectivity of different rock units, and possibly to indicate hydraulic conductivity and recharge rates.

#### **Description of the Study Area**

The study area is on the southern edge of the Colorado Plateau in north-central Arizona (Fenneman and Johnson, 1946; fig. 1, this report). The study area includes about 1,600 mi<sup>2</sup> of the Little Colorado River and Upper Verde River Basins that extend about 40 mi north of latitude 35°00 ' N. and about 40 mi east of longitude 112°00 ' W. The eastern part of the San Francisco volcanic field covers most of the area and provides much of the topographic relief. Cinder cones and hills, basalt flows, and San Francisco Mountain of the San Francisco volcanic field are the principal features superimposed onto the consolidated sedimentary rocks of the Colorado Plateau. Erosion of the consolidated sediments exposed at land surface has created a complex series of low-relief hills and mesas in the southern and southeastern parts of the study area. A few deeply incised streams drain the area to the north and south. Altitude of the study area ranges from 12,633 ft at the top of San Francisco Mountain to about 5,450 ft in Oak Creek Canyon. The average altitude of the study area is about 7,200 ft.

The climate of the study area is semiarid with extremes of precipitation and temperature during the year (**fig. 2**B). The average precipitation for Flagstaff is 21.1 in./yr, and amounts vary from year to year (Sellers and others, 1985). Generally, precipitation is greater at the higher altitudes in the study area. Precipitation ranges from about 15 in. at the eastern end of the study area where the altitude is about 5,500 ft to more than 30 in. on the flanks of San Francisco Mountain (fig. 2C). The amounts of summer and winter precipitation are about equal (Sellers and others, 1985). Winter storms moving into the area from the northern Pacific Ocean produce moderate to large amounts of snow and rain. Because of low evapotranspiration in the winter months, much of this moisture can infiltrate the land surface. In middle to late summer, large amounts of moisture move into Arizona from the southern Pacific Ocean and the Gulf of California. The orographic effect of the high altitude of the study area results in frequent, intense short-duration thunderstorms. The high summer temperatures also result in evapotranspiration rates far in excess of precipitation. Intense but sporadic rains that last for one to several days occasionally can result in significant runoff. Vegetation consists mainly of dense to thin stands of ponderosa pine, gambles oak, and aspen that are interspersed with many flat meadows populated with drought-tolerant grasses and brush.

A few deeply incised streams drain the area to the north and south. The Rio de Flag, which is the principal drainage in the study area, heads on the west flanks of San Francisco Mountain and flows into the Little Colorado River Basin to the north. Perennial springs typically flow for short distances before the water either infiltrates the surficial sediments or evaporates. Perennial springs in the southwestern corner of the study area in Oak Creek Canyon discharge from the regional aquifer and sustain the base flow of Oak Creek. Although base flow varies seasonally in response to evapotranspiration, the long-term base flow of Oak Creek appears to be stable (Levings, 1980). Blee (1988) indicated that evaporation losses of 27 percent of the average annual precipitation are possible in the Lake Mary area. The few shallow natural lakes in the area dry up during extended periods without precipitation.

#### **Previous Investigations**

Evaluation of the local geology and hydrogeology began with Darton (1910) who made a reconnaissance of parts of northwestern New Mexico and northern Arizona to assess ground-water supplies. Darton focused on the geology and structure of the region, defined the character, thickness, and boundaries of geologic formations, and commented on the occurrence of open fractures and sinks. Robinson (1913) made the first detailed study of the San Francisco volcanic field and provided a general summary of surface and underground drainage, and the occurrence and nature of springs and the "bottomless" pits and fissures common to the area.

The first detailed investigations of ground water in the Flagstaff area were made by the USGS in cooperation with the City of Flagstaff. Akers (1962) reported the general relation of faulting to the occurrence of ground water. Cooley (1963) and Akers and others (1964) provided summaries and a synopsis of ground-water conditions. In both cases, the authors recognized a general relation between ground-water flow and major faults. Detailed investigations in these two studies were restricted to a triangle-shaped area between Lake Mary, Woody Mountain, and San Francisco Mountain. A general reconnaissance of ground-water resources was made of the surrounding areas. Feth (1953) studied the ground-water resources of the Doney and Black Bill Parks northeast of Flagstaff, and Cosner (1962) assessed ground water in the Wupatki and Sunset Crater National Monuments. J.H. Feth (hydrologist, USGS, written communs., 1950, 1951, 1952) evaluated ground-water resources to the west of Flagstaff at the Navajo Army Depot near Bellmont. Yost and Gardner (1961) studied water requirements for the City of Flagstaff.

Cooley (1963) evaluated the ground-water resources near Flagstaff in relation to regional groundwater flow on the Colorado Plateau and the adjacent transition zone. Feth and Hem (1963) discussed ground-water flow and the occurrence of springs along the Mogollon Rim. As more data became available, these regional evaluations of the ground-water flow system were updated by McGavock (1968), Appel and Bills (1981), and McGavock and others (1986).

As Flagstaff continued to grow, several consultants were contracted to study and evaluate the potential for expanding well fields in the Woody Mountain and Lake Mary areas (**fig. 1**). The more comprehensive of these reports were Harshbarger and Associates and John Carollo Engineers, Inc. (1972, 1973), and Harshbarger and Associates (1976, 1977). Duren Engineering (1983) analyzed yield for the well fields at Lake Mary and Woody Mountain and indicated that no long-term declines of the water table had occurred in either well field. Duren Engineering (1983) also estimated the average annual flow through the Lake Mary and Woody Mountain well fields as 1 to 1.5 Mgal/d and 4.9 to 6.9 Mgal/d, respectively. These studies culminated in the early 1990s with drilling and testing of exploratory and observation wells in the Lake Mary area (Errol L. Montgomery and Associates, 1992). A 90-day aquifer test and ground-water flow model resulted in projections for long-term yield of the regional aquifer in the Lake Mary well field (Errol L. Montgomery and Associates, 1993). Errol L. Montgomery and Associates (1993) indicated that large ground-water withdrawals from 1985 through 1991 resulted in a 90-foot water-level decline in the Lake Mary well field. Using pumping scenarios then in use by the city, Errol L. Montgomery and Associates (1993) estimated aquifer yields of 4.5 Mgal/d in the Lake Mary area.

The general geology of the area was updated by Moore and others (1960) and by Cooley (1960a, b; 1963). These works were revised and updated for inclusion into a geologic map of Arizona by Reynolds (1988). Beginning in the 1970s, the geology and structure of the San Francisco volcanic field was revisited in detail as part of a national mineral and energy evaluation. This study resulted in detailed geologic maps of parts of the San Francisco volcanic field by Wolf and others (1987) and Moore and Wolf (1987). Ulrich and others (1984) compiled the work by Wolf and others (1987) and Moore and Wolf (1987) into a geology and structure map of the area. Weir and others (1989) completed geologic mapping of the adjacent Sedona area. Although these reports contain great detail on the surface geology of the area surrounding Flagstaff, the treatment of only the major structural features of the area and only general treatment of the subsurface geology was insufficient for the needs of this study. In spite of all of the previous work, little detailed information was available on the structural evolution of rocks in the study area. Most of what is known about geologic structure is inferred from surrounding areas (Karlstrom and others, 1974; Elston, 1989) and broader regional studies (Davis, 1978; Shoemaker and others, 1978). A few local geophysical investigations have been done principally by consultants for local water companies and suppliers.

Chavez and others (1997) used remote sensing and aerial photography to evaluate in detail the surface geologic structure of the area. This information was the basis for detailed field investigation and mapping of surface structure (G.M. Mann and Dr. A.E. Springer, geologists, Northern Arizona University (NAU), written commun., 1997). Both studies provided the basis for the investigation of subsurface structure for this study.

#### **Acknowledgments**

The City of Flagstaff, the National Park Service, and many private water companies contributed well data and hydrologic information. In addition, Ron Doba, Randy Pellatz, Don Perry, Jack Rathgen, and Paul Peters, City of Flagstaff and the Flagstaff Water Commission provided logistical support to all aspects of the study. George Billingsley, USGS, provided much needed insight into the geologic structural environment and subsurface geology of the Flagstaff area. International students from the USGS Volunteers for Science Program assisted in the seismic-data collection and analysis. Dr. A.E. Springer, NAU, also organized volunteers from NAU to assist in the seismic-data collection. A. Wesley Ward, Bob Hart, Sue Beard, Sue Priest, and Don Thorstenson, USGS, provided equipment and logistical support and collected data. Gary Mann, USGS, provided instruction in the collection and analysis of ground-penetrating radar data. Jeff Phillips, Ray Davis, Dawn McDoniel, Christie O'Day, Brad Baum, Curt Crouch, and Anita Rowlands, USGS, provided additional data-collection and data-processing support. Fred Paillet and Richard Hodges, USGS, provided help in collection and interpretation of borehole-geophysical logs. Dr. A.E. Springer and Dr. Ron Parnell, NAU, directed graduate students who provided size analysis and X-ray defraction of selected well cuttings.

#### **METHODS OF INVESTIGATION**

The principal hypothesis of this study is that geologic structure has a significant influence on the hydraulic properties of the regional aquifer, and consequently, the most favorable areas for groundwater development would be concentrated along structural trends. Hydrogeologic, remote sensing, surface-geologic mapping, geophysical, and waterchemistry methods were used to evaluate the relation of geologic structure to ground-water flow. This hypothesis was tested by compiling hydrologic data from wells developed in the regional aquifer throughout the study area to relate data spatially and geostatistically with structural trends and alignments. Several surface-geophysical techniques were evaluated for their ability to identify geologic structure in the shallow and deep subsurface. Those techniques that proved most promising were applied to selected areas where surface-structural trends suggest a high likelihood of these features in the deeper subsurface. At sites where wells were later completed, boreholevideo logs and selected borehole-geophysical techniques were used to verify zones of subsurface fracturing that resulted in substantial ground-water flow to the well. These data were used to corroborate the data from the surface geophysics.

Several different qualitative and quantitative analyses of aquifer characteristics and hydraulic properties were used to determine structural control of ground-water flow. These analyses included (1) evaluation of the effects of aquifer characteristics on local and regional ground-water flow, (2) evaluation of the effects of geologic structure on local and regional ground-water flow, and (3) evaluation of water chemistry to determine sources, flow directions, and hydraulic connections of different rock units. Hydraulic gradients were used to determine structural influence. Well yields and hydraulic properties were correlated and used to identify aquifer characteristics and hydrogeologic patterns that are related to highyield wells. Selected data were evaluated spatially and temporally. Statistical and regression analysis were used to evaluate aquifer characteristics, hydraulic properties, and the relation of these attributes to structural features. Water-chemistry methods provided an independent means to determine the relations between the regional aquifer and geologic structure by determination of recharge areas, ground-water flow directions and rates, and hydraulic connections.

Fracturing is one of the most important features related to the development of ground-water resources in the study area. A fracture is defined as any opening in the formation where formation continuity is interrupted or lost. Fractures that include shear are called faults; fractures that have no offset are called joints. Fault and joint orientation was determined by measuring the strike of interpreted surface lineaments from remote-sensing data and aerial photographs. About 220 faults were mapped, and hundreds of other fractures were identified (**pl. 1**). The potentiometric surface of the regional aquifer and the general direction of ground-water flow were determined in this study. Selected hydraulic properties of the regional aquifer were evaluated in relation to geologic structure and the potentiometric surface of the regional aquifer.

The field work for this study was done in 1995–97. Results of the remote-sensing work by Chavez and others (1996, 1997) were used with additional photogrammetry to develop the detailed surface geology and structure of the area (G.M. Mann and Dr. A.E. Springer, geologists, NAU, written commun., 1997). These data, in turn, were used as the basis for much of the hydrogeologic analysis and interpretations in this report.

#### Well and Spring Data

Data in the USGS Ground-Water Site Inventory (GWSI) data base for 124 wells and 12 springs near Flagstaff were used to provide information on the regional aquifer. Well and spring data also were obtained from the Arizona Department of Water Resources (ADWR). Data in the historical groundwater files of the USGS were compared with the data in the GWSI, and updates were made in the data base where appropriate. Many sites were field checked to resolve data discrepancies, measure water levels where possible, and update information on lithology, well yield, zones of well development, and specific capacity. Specific-capacity and aquifer-test data were used to estimate hydrologic properties that included transmissivity, hydraulic conductivity, storage coefficient, and (or) specific yield.

#### **Hydraulic Properties**

Data on hydraulic properties of wells in the regional aquifer were obtained from historical and recent well logs, specific-capacity, and aquifer-test data. Much of the historical field data were reevaluated for this study, and additional well and aquifer tests were done on new wells as access allowed. No laboratory analyses of porosity from well cuttings could be found for wells in the study area. Porosity estimated from well logs in this study was compared with porosity determined for the regional aquifer in northeastern Arizona by Cooley and others (1969). Secondary porosity estimates from geophysical techniques also are compared to porosity data from Cooley and others (1969) and from well logs.

The analysis of field data consisted of the evaluation of specific-capacity and aquifer tests to determine transmissivity, hydraulic conductivity, and storage coefficients. Transmissivity is the rate at which water is transmitted through a unit width of the aquifer under a unit hydraulic gradient. Hydraulic conductivity is the volume of water that flows through a unit thickness of an aquifer under a unit hydraulic gradient. The transmissivity and hydraulic conductivity are functions of the amount of interconnection of open space in the aquifer materials. Fractures and folds increase the transmissivity and hydraulic conductivity in the aquifer by creating more interconnected openings. The specific storage, which is dimensionless, is the storage component for confined aquifers and is defined as the amount of water released from storage from a unit volume of an aquifer under a unit decline in hydraulic head. The primary storage coefficient for unconfined aquifers is specific yield and represents the ratio of the volume of water that will drain from a unit volume of an aquifer by gravity. These hydraulic properties reflect those of the aquifer surrounding a well or wells and generally integrate the primary porosity and permeability of the formation with secondary porosity and permeability that are the result of structural deformation of the rock units.

Well tests done in the Flagstaff area typically included a 12-hour drawdown period followed by a 12-hour recovery period. Pumping periods longer than 12 hours are required to determine the effects that hydrologic boundaries caused by lithologic changes or geologic structure have on the hydraulic properties of the aquifer near a well. Recovery data are desirable because well recovery is unaffected by well and pump efficiencies and delayed-yield response. Most of these tests were too short for equilibrium to be reached; therefore, nonequilibrium techniques were used to evaluate well- and aquifer-test data for this study.

Equilibrium and nonequilibrium well- and aquifertesting methods that are used to determine hydraulic properties of aquifers are suspect when applied to fractured-rock environments for several reasons. Most of the aquifer-test methods are designed to evaluate porous media that is homogeneous and isotropic. In many cases, fractured consolidated rocks are characterized by extreme heterogeneity and anisotropy. Fracture characteristics, such as orientation, spacing, aperture, extent, and interconnectivity, can vary considerably within the formation and from one formation to the next formation. Anisotropy is attributed to preferred flow directions along parallel to subparallel fracture sets that are either vertical or horizontal. To fully characterize the anisotropy, it is necessary to determine the magnitudes of the hydraulic conductivity in three principal directions (Kaehler and Hsieh, 1991). Often it is assumed (as in this study) that one principal direction is vertical and the other two are horizontal. Data needed to quantify the heterogeneity and anisotropy in most of the regional aquifer are undefined.

Recognizing the limitations of many of the well and aquifer tests analyzed, estimates of transmissivity were derived from the specific capacity calculated for most of these well tests conducted in the study area. A few selected wells that had drawdown and recovery data of sufficient time to use the nonequilibrium methods of either Theis (1935) and (or) Cooper and Jacob (1946) were processed using the software Aquifer Test (Waterloo Hydrogeologic, Inc., 1999). Corrections for both unconfined (Jacob, 1950) and partial-penetrating conditions (Hantush, 1962; Roscoe Moss Co., 1990) were applied where necessary. Calculations were made on both drawdown and recovery data because the respective data provide a useful and independent check on the calculated values and reflect different aspects of the well, formation, and structural characteristics. Resulting transmissivity and effective saturated-thickness estimates were used to derive hydraulic conductivity.

Storage coefficient and (or) specific yield were available from previously published or reported well and aquifer tests. Storage coefficient and (or) specific yield can be determined from either drawdown or recovery data from observation wells monitored during aquifer tests. Storage-coefficient and (or) specific-yield data derived from a pumping well generally are not considered valid. Storage-coefficient or specific-yield estimates were available on the basis of drawdown or recovery data at 11 observation wells. Storage coefficients were calculated for wells where confined conditions exist, and specific yield was calculated where unconfined conditions exist.

#### **Remote Sensing**

Remote-sensing data and methods developed by Chavez and others (1997) for this study include (1) remote-sensing satellite images, (2) digitalelevation models, and (3) digital-image processing. These data and methods have been helpful in detecting and mapping regional physiographic and structural trends that include major fracture systems (Chavez, 1984; Chavez and Bowell, 1988; and Chavez, 1992). The main focus of this work was to use digital-image processing, digital-satellite images, and a digitalelevation model (DEM) to extract spatial information related to structural and topographic patterns. Data used were from the Landsat Thematic Mapper (TM) and the French Systeme Probatorie d'Observation de la Terre (SPOT) imaging system along with a DEM of the study area (figs. 3–5). Linear features on the images, such as the trace of fractures and fracture zones, ridges and valleys, deflected stream-channel segments, vegetation lines, and abrupt changes in soil color, were associated with structural elements such as joints, faults, and grabens. These structural elements were investigated in greater detail as part of the surface-geology mapping.

#### **Surface-Geologic Mapping**

Geologic structure inferred photogrammetically and from remote-sensing data provided the basis for field mapping and interpretations of geologic structural features on the surface completed by G.M. Mann and Dr. A.E. Springer (geologists, NAU, written commun., 1997; pls. 1 and 2, this report). This information was re-evaluated for use in this report, and additional structural information was obtained for adjacent areas (pls. 1 and 2).

#### Geophysics

Geophysical methods—ground-penetrating radar (GPR), seismic reflection, seismic refraction, squarearray direct-current azimuthal resistivity (SAR), gravity, and borehole logging-were used to locate fractures in the subsurface, and, in some cases, zones of water saturation and enhanced permeability. As a fracture propagates toward the surface, its vertical and directional orientation can change and horizontal- and bedding-plane fractures may have no surface expression. Once a surface trend is identified, surfacegeophysical methods can image the subsurface in a noninvasive manner to determine if there is a geologic structure relative to the surface trend. Each of the methods, however, is limited by the physical properties of the material being measured. In addition, some of these methods are labor and cost intensive, which makes them better suited for detailed site investigations rather than reconnaissance tools.



Figure 3. Landsat Thematic Mapper image, January 15, 1983, Flagstaff, Arizona (from Chavez and others, 1997).



Figure 4. Shaded relief digital-elevation model of Flagstaff, Arizona (from Chavez and others, 1997).



**Figure 5**. SPOT panchromatic image enlargement of the Fisher Point-Lower Lake Mary area, November 7–8, 1995, Flagstaff, Arizona (from Chavez and others, 1997).

The five sites chosen for application of surfacegeophysical methods were the Lake Mary and Woody Mountain well fields, Skunk Canyon, Foxglenn, and Continental (fig. 1). The Lake Mary area was chosen as the principal test site for GPR and SAR because it is accessible and the hydrogeologic characteristics have been well documented. The Woody Mountain area was used to further test SAR because the area allowed investigations to the limit of the equipment. Seismicreflection and seismic-refraction methods were not tested before their use because the application of these methods in similar geologic environments is well documented.

Four surface-geophysical methods—GPR, seismic reflection, seismic refraction, and SAR—were used to investigate subsurface structure of the Skunk Canyon, Foxglenn, and Continental areas (**fig. 6**). These sites were selected for geophysical investigations as a result of the analysis of remotely sensed data, photogrammetry, and mapping of surface-structural features. The GPR data are represented as cross-section profiles that show bedding and other horizontal features as reflectors of radar energy. Fractures and other subsurface features are indicated by disruptions of the main reflectors and (or) as hyperbolic events in the profile.

Seismic data also are represented as cross-sectional profiles of the subsurface; however, in this case, the horizontal features are represented as reflectors of seismic energy. Fractures and other subsurface features also are indicated by disruptions of the horizontal reflectors. The square-array data sets produce azimuthal plots of apparent resistivity and apparentstrike direction, coefficient of anisotropy, and secondary porosity percentage with depth (see the "**Supplemental Data**, Part A" at the back of the report).

#### **Ground-Penetrating Radar**

GPR is an electromagnetic technique that uses radio waves—typically in the 1 to 1,000-megahertz frequency range—to map underground structures and is similar to seismic-reflection and sonar methods. A transmitting antenna radiates a short pulse of highfrequency electromagnetic energy into the subsurface. As the radiated energy propagates through the subsurface, variations in the electrical properties of the subsurface material cause part of the radiated energy to be reflected back toward the surface and part to be transmitted deeper into the subsurface (**fig. 7**). In soils, variations in electrical properties usually correspond to changes in volumetric water content. In rock, the radar is sensitive to changes in rock type and water-filled or dry fractures (Davis and Annan, 1989). The reflected signal is detected by the receiver where it is amplified; transformed to audio-frequency range; and recorded, processed, and displayed by the receiving antenna and processing software. Depending on the frequency and the permittivity properties of the host rock, GPR can penetrate to depths of about 140 ft. Permittivity is an electrical property of matter that influences radar returns. In most cases in the Flagstaff area, 140 ft is not deep enough to image rock units in the regional aquifer. The depth, however, is enough to verify that surface expressions of fractures extend far enough into the subsurface to warrant further investigation using other geophysical methods.

GPR was selected as a reconnaissance tool to verify the extent in the shallow subsurface of surface trends that were identified by remote sensing and surface-geologic mapping. GPR is portable, easy to use, and allows for the rapid evaluation of many potential sites. Unless otherwise noted, surveying was done using the single-fold, fixed-offset, reflectionprofiling method described by Sensors and Software (1994) in step mode because of the rough terrain. Survey lines were staked and surveyed to determine elevation differences so the radar profiles could be corrected.

#### **Seismic Reflection and Seismic Refraction**

Seismic reflection and seismic refraction are used to map trends of geologic structure at depth by imaging discontinuities or offsets in marker beds, which are rock layers that show significant contrast in seismic velocity, and measuring changes in compressional- and shear-wave velocities and attenuation. Seismic reflection provides an image of the subsurface and is best suited for layered stratigraphy. Seismic refraction measures the velocity at which seismic waves propagate through the subsurface and is well suited for locations where there are assumed to be vertical and lateral changes in velocity. Seismic-wave velocity is directly related to the density and saturation of formation material (R.D. Catchings and W.H.K. Lee, geophysicists, USGS, written commun., 1997); therefore, seismic- refraction measurements can enhance the seismic-reflection imaging by providing data that can be used to infer composition and physical conditions in the subsurface.



Figure 6. Locations of selected wells and geophysical test sites, Flagstaff, Arizona.



В.



| PO | SI       | Т | 10  | N |
|----|----------|---|-----|---|
|    | <u> </u> |   | . – |   |

**Figure 7**. Ground-penetrating radar technique (from Sensors and Software, 1994). *A*, Common-offset single-fold profiling. *B*, Format of reflection section showing interpretation of radar data for features in figure 8A.

Seismic refraction is particularly useful in identifying subsurface fractures because fractures are known to cause appreciable reduction in the seismic velocity relative to the surrounding media (Williams, 1994; R.D. Catchings and W.H.K. Lee, geophysicists, USGS, written commun., 1997). The velocity and amplitude of the shear waves are reduced further where rocks are saturated; however the compressional waves are unaffected under this condition (Nur, 1982).

Two high-resolution, combined seismic-reflection and seismic-refraction profiles were made at the Skunk Canyon, Foxglenn, and Continental sites to obtain images from about 900 to 2,500 ft in depth (fig. 8). Major fracture systems inferred at these sites from remotely sensed data and geologic mapping were the targets of investigations (Chavez and others, 1996, 1997; G.M. Mann and Dr. A.E. Springer, geologists, NAU, written commun., 1997). Final location of the seismic lines was facilitated by reconnaissance GPR surveys. One-pound charges of ammonia nitrate buried to depths of about 10 ft were used to generate the seismic energy. The seismic energy was detected by geophones placed about 8.2 ft apart along the survey lines and recorded by multichannel seismographs. The recorded seismic data were processed by computer to generate seismic images of the subsurface. Acquisition and data-processing components are described by Catchings and others (1997) and Jaasma and others (1997).

The seismic-reflection sources and sensors were used to simultaneously acquire seismic-refraction data. Because the distance between the source and sensors is known, the velocity at which seismic energy propagates through the subsurface layers can be calculated. Velocity information is used to determine which areas are underlain by consolidated rock and which are underlain by unconsolidated sediments. Seismic velocities are typically much lower in unconsolidated sediments than in consolidated rock. More importantly, the shallow-velocity information then is used in processing the seismic-reflection image.

The greatest variation in seismic velocities generally occurs near the land surface from lateral variation in the rock or sediment. These lateral variations make it difficult to stack (add) the seismic signal from each energy source into a single seismic section. Because stacking is critical to obtaining a clear image of the subsurface, detailed knowledge of nearsurface variations in velocity is necessary for highresolution imaging. At high frequencies, the shallow sedimentary subsurface in the study area is highly reflective; therefore, lower frequency (<100-Hertz) geophones were used so that the deeper subsurface could be imaged.

#### A. Skunk Canyon





**Figure 8**. Locations of selected wells and sites where ground-penetrating radar, square-array resistivity, seismic-reflection, and seismic-refraction data were collected near Flagstaff, Arizona. *A*, Skunk Canyon. *B*, Foxglenn. *C*, Continental.

The seismic-reflection images resemble a cross section of the subsurface in which (in theory) shaded portions of the seismic wavelet represent a reflection from the interface between two stratigraphic layers. Because of the layered nature of the rock units in the study area, the subsurface produces abundant reflections that can be traced for several tens to hundreds of feet before they are vertically displaced. Faults on the seismic sections are interpreted where reflectors have been vertically displaced or laterally disrupted.

#### **Square-Array Resistivity**

The SAR technique was used to determine the orientation of fractures and the degree of secondary porosity (Lane and others, 1995) and to measure the electrical conductivity of the rock and water. Using this

technique, fracture zones generally are indicated by decreased resistivity; water in the fracture zone or a fault further decreases the resistivity.

The SAR technique is much like the Schlumberger or Wenner collinear-array methods. The point of investigation is the center point of the square, and the array size (*a*) is the length of the side of the square. Electrodes are placed at the corners of the square, and potential and current wires are connected from the transmitter to the electrodes. The array is expanded symmetrically about the center usually in increments of  $a\sqrt{2}$ , so that the soundings can be interpreted as a function of depth. Three measurements are made for each square setup—two perpendicular (alpha and beta) and one diagonal measurement (gamma; fig. 9A–B). Depth of investigation is roughly equivalent to the size of the square (Habberjam, 1979).



**Figure 9**. Electrode configurations and crossed array. *A*, Three resistivity measurements: alpha ( $\alpha$ ), beta ( $\beta$ ), and gamma ( $\gamma$ ). *AB* are the current electrodes, and *MN* are the potential electrodes in each square-arry setup. Notice in this configuration alpha provides a north-south orientation, and beta provides an east-west orientation if the top of the page is north. The gamma configuration provides a check on alpha and beta. Resistivities ( $\rho$ ) of homogeneous isotropic material are  $\rho\gamma$ =0, and  $\rho\alpha$ = $\rho\beta$ . Resistivities in heterogeneous anisotropic ground are  $\rho\beta$ = $\rho\alpha$ + $\rho\gamma$ . *B*, Electrode positions for a crossed array. Habber jam (1972) showed that an apparent fracture-strike value, o for that spacing can be obtained by calculating the geometric mean pm obtained from two square arrays separated by a rotational angle of 45°.

The final size of the square depends on the desired depth of investigation, space limitations, and ability to pull or lay wire through vegetation and over rough terrain. Once the largest square measurements are made, the wires are reeled in and the square is rotated (a 15° rotation was used) and expanded again. Six expansions with 12 directions are required to provide a resistivity measurement every 15° for 180°. The graphical display is mirrored on a polar-coordinate diagram using methods of Taylor and Fleming (1988) to get a 360° plot.

Although the SAR technique has been used successfully in areas with layered sedimentary rocks, the ability of the technique to penetrate the layers of unconsolidated and volcanic material that overlie the sedimentary rocks in much of the study area was unknown. The technique was first tested to verify its utility in the Lake Mary area where faults and other fractures have been previously identified. These fractures are the cause of high well yields in this area. SAR then was applied at the Skunk Canyon, Foxglenn, Continental (**fig. 8**), and Woody Mountain sites. These areas were selected for further study on the basis of available remote-sensing data that indicated a high probability of significant fracturing in the subsurface.

During the summer of 1996, eight SAR soundings were made near or in the city limits of Flagstaff. Soundings were made near existing wells for control, in areas where additional data were needed, where data could be extrapolated from existing wells, or where the City of Flagstaff planned to drill wells. The SAR technique provided several important pieces of information that are not available using other geophysical methods.

- 1. Polar plots of the azimuthal resistivity that provided a graphical interpretation of fracture orientations with depth. In addition, a strike direction of the major fractures was calculated from crossed square-array apparent-resistivity values.
- 2. The mean-resistivity curves from the averaged soundings were translated into Schlumberger curves (Schlumberger, 1920) and, in some cases, interpreted to estimate depth to the saturated zone.
- 3. Coefficients of anisotropy were calculated and plotted against depth of investigation for a crossed array as an indication of rock fracturing.
- 4. If the conductivity of the ground water at the sounding site was known, estimates of secondary

porosity were made by applying the method of Taylor (1984).

Electrical-resistivity methods are the most widely used geophysical methods in ground-water investigations (Keller and Frischknecht, 1966). The reasons are mainly simplicity of instruments and operation, low operational costs, and a feasible depth range, suitability to a wide spectrum of subsurface problems, and easy methods of interpretation. The resistivity of earth materials is measured in units of the ohm-meter, which is the electrical resistance of a cube of material with dimensions of 3.28 ft (1 m) on a side. In the field and under laboratory conditions, earth materials have an observed-resistivity range well over five orders of magnitude. For example, graphitic schists in Chapada Diamantina, Brazil, have a measuredapparent resistivity near 0.25 ohm-meters (D.B. Hoover and H.A. Pierce, hydrologists, USGS, written commun., 1984); whereas, the resistivity of dry rhyolitc rocks in Newberry Crater, Oregon, is as much as 100,000 ohm-meters in some places (A.A.R. Zohdy, emeritus scientist, USGS, oral commun., 1988). The resistivity of a water-bearing rock depends on the salinity, temperature, quantity, and distribution of water through the formation unit (Keller, 1989).

The SAR technique originally was developed as an alternative to the collinear arrays, such as Schlumberger, Werners, and dipole-dipole, when dipping subsurface, bedding, or foliation was present (Habberjam and Watkins, 1967). Habberjam (1972) used a square array and demonstrated that it is more sensitive to anisotropy and requires less surface area than collinear arrays. Lane and others (1995) applied the technique to fractures in crystalline rock and used commercial computer software to provide layered-earth interpretations of the data.

An experimental SAR sounding in a crystalline granite terrain in Payson, Arizona (Pierce, 1996), confirms the utility of the technique and provides valuable joint-trend and substructure information. In addition, Pierce and Hoffmann (1996) presented preliminary results of the SAR soundings for the Flagstaff study area and determined that depth to the semisaturated zone above the regional aquifer could be closely approximated.

#### Gravity

Previously collected gravity data were evaluated to determine their use in defining local structural trends. The data were reprojected to Universal Transverse Mercator (UTM) from the original Albers projection, and a simple Bouguer gravity map and color image were generated. The UTM grid was then run through BOUNDARY (Blakely and Simpson, 1986), which is a package of computer programs used to locate the horizontal coordinates of the edges of gravity sources from grid data. BOUNDARY uses the principles that state that the maximum horizontal gradient of a gravity anomaly is close to the edge of tabular sources (Cordell, 1979; Grauch and Cordell, 1987). BOUNDARY generates a computer file of maximum horizontal-gradient locations by scanning each grid intersection in four directions-horizontal, vertical, and two diagonals.

#### Borehole

Borehole-geophysical methods were used in selected wells to verify the results of the surfacegeophysical surveys. Acoustic-televiewer, flowmeter, and borehole-video logs provided information on the extent and orientation of water-transmitting fractures in the subsurface near the borehole. Caliper, gamma, electric, and temperature logs were used to infer qualitative information about water-bearing characteristics of the rock units. Neutron and density logs provided in-place information on primary and secondary porosity of the formation.

After surface-geophysical investigations were completed, the City of Flagstaff drilled a total of four wells at Skunk Canyon, Foxglenn, and Continental. Because of difficulty in drilling and maintaining an open borehole at these sites, some of the boreholegeophysical logs are not complete. Video logs were completed for selected intervals at each of the well sites. Acoustic-televiewer logs were completed at Foxglenn and Continental well 2; however, flowmeter logs could only be obtained in the Skunk Canyon well. Gamma and electric logs were completed only at the Skunk Canyon and Continental sites because of the instability of the boreholes at Foxglenn. Lithologic logs for all three sites were constructed from borehole cuttings.

#### Water Chemistry

Water samples were collected from selected wells and springs and snowmelt to corroborate data from the geophysical methods and contribute data used to determine ground-water movement, ages, and sources and areas of recharge (fig. 10). Well selection was based on existing water-chemistry data, accessibility, location, aquifer type, and construction. Selected springs were sampled on the basis of aquifer type and location. Snowmelt samples were collected to represent different altitudes in the study area. Water was collected from 21 wells, 3 springs that discharge from the regional aquifer, and 2 snowmelt sites. In addition, water was collected from four shallow wells, two springs that discharge from perched water-bearing zones above the regional aquifer, and two surface-water sites.

As part of this study, data were collected from some previously sampled wells and springs, and from additional sites to fill in gaps in the data. Existing water-chemistry data also were obtained from records for wells monitored by the City of Flagstaff, from other local water companies, from private well owners, and from studies by Appel and Bills (1981) and McGavock and others (1986). Well-construction data and well logs were used to determine the geologic formation exposed to the screened interval of the well.

Samples were collected from pumped wells or flowing springs through a sampling manifold at land surface to minimize contact with air and other potential sources of contamination. To ensure that collected samples were representative of the aquifer, pH, specific conductance, dissolved-oxygen concentration, and water temperature were monitored until they became stable. When possible, this was done using a Hydrolab Surveyor II, which provided a closed flow-through chamber. Samples of snow were allowed to melt at room temperature, and the snowmelt was processed similar to samples of water from wells and springs.

A 0.45-micrometer pore-size filter was used in a prerinsed filtration apparatus to collect samples for the analysis of dissolved constituents, common ions, trace elements, nutrients, and strontium (<sup>87</sup>Sr/<sup>86</sup>Sr). Nitric acid (1.0 normal HNO<sub>3</sub>) was used on site to acidify samples to a pH of less than 2 as a preservative for trace elements, most cations, and <sup>87</sup>Sr/<sup>86</sup>Sr.



**Figure 10**. Locations of selected wells, springs, and surface-water and snowmelt sites where water samples were collected for chemical and isotope analysis, Flagstaff, Arizona.

Raw unfiltered samples were collected for the determination of isotopes of oxygen  $(^{18}O/^{16}O)$ , hydrogen  $(^{2}H/^{1}H)$ , carbon-14  $(^{14}C)$ , carbon-13  $({}^{13}C/{}^{12}C)$ , tritium (<sup>3</sup>H), and some common ions and nutrients. Samples for <sup>18</sup>O/<sup>16</sup>O and <sup>2</sup>H/<sup>1</sup>H analyses were collected in 60-milliliter glass bottles that were filled to the top and sealed to prevent evaporation. Samples for determination of  ${}^{14}C$  and  ${}^{13}C/{}^{12}C$  were collected by filling 15.5-gallon containers slowly from the bottom and covering the top to prevent ambient carbon from dust and air mixing with the sample. Samples for <sup>3</sup>H analysis were collected in a 1-liter polyethylene bottle. Water for field-alkalinity determination was filtered through a 0.45-micrometer pore-size filter. Some alkalinity determinations were made at the field office in Flagstaff, and some were performed at the site. Alkalinity determinations made at the field office were done within 2 hours of sample collection.

The USGS National Water Quality Laboratory (NWQL) in Arvada, Colorado, analyzed samples for common ions, nutrients, and trace elements, and  ${}^{18}O/{}^{16}O$ ,  ${}^{2}H/{}^{1}H$ , and  ${}^{3}H$ . Analyses for  ${}^{14}C$  and  ${}^{13}C/{}^{12}C$  were done by the University of Arizona in Tucson. Analyses for  ${}^{87}Sr/{}^{86}Sr$  were done by the USGS National Research Program (NRP) laboratory in Denver, Colorado. USGS laboratories in Menlo Park, California, and Reston, Virginia, analyzed samples for  ${}^{18}O/{}^{16}O$  and  ${}^{2}H/{}^{1}H$ , respectively.

#### **Common lons, Trace Elements, and Nutrients**

Analyses of samples for common ions, trace elements, and nutrients were used to estimate the chemical processes and reactions that determine the chemical composition of the ground water. Variations in water composition can provide information on hydrologic relations between water-bearing units and on ground-water movement.

#### **Stable Isotopes**

Stable-isotope data are useful in delineating recharge areas and the hydrologic relations of different water-bearing units. Stable isotopes of an element are measured relative to a standard in which the ratio of the two isotopes (for example  $^{18}O/^{16}O$ ) are known. The standard used is the Vienna Standard Mean Ocean Water (SMOW), prepared and distributed by the International Atomic Energy Agency (1969).

Deviation of the sample from the standard is expressed by a delta ( $\delta$ ) notation, in per mil, which is parts per thousand ( $\infty$ ). The delta notation is computed from the equation

$$\delta = \frac{R_x - R_{std}}{R_{std}} \times 1,000, \qquad (1)$$

where

 $\delta$  = delta notation,  $R_x$  = ratio of isotopes measured in sample, and  $R_{std}$  = ratio of same isotopes in the standard.

The water molecule, H<sub>2</sub>O, typically undergoes a physical fractionation called evaporation. The lighter <sup>16</sup>O and <sup>1</sup>H molecules will preferentially move from the water phase to the vapor phase leaving behind the heavier <sup>18</sup>O and <sup>2</sup>H molecules. This action will affect the isotopic signature of the water sample by making it more positive or enriched in the heavier water molecules.

Craig (1961) generated an *x*-*y* plot of  $\delta^2$ H and  $\delta^{18}$ O for about 400 samples of water from rivers, lakes, and precipitation from various places in the world. Data from these samples fell on a line defined as

$$\delta^2 H = 8\delta^{18} O + 10$$
 (2)

and called the global meteoric water line. Dansgaard (1964) subsequently studied large bodies of data gathered by the International Atomic Energy Commission (1969) and determined that temperature is the single most important component that directly determines the isotopic signature for precipitation. The composition of precipitation depends on the temperature at which the ocean water is evaporated and more importantly the temperature of the condensation at which clouds and rain or snow are formed. This *temperature effect* is important in determining which regions with summer and winter precipitation may have summer or winter recharge (Mazor, 1991).

#### **Radiogenic Isotopes**

The geochemical model NETPATH was used to translate <sup>14</sup>C data from percent modern carbon (pmc) to years (Plummer and others, 1991). For the specification of this particular ground-water flow

system, the model by Fonts and Garnier (1979) was used on the assumption of (1) an open system (gassolution equilibrium) so that the model can back calculate an initial  $\delta^{13}$ C for soil CO<sub>2</sub>, and (2) 0.0 ‰  $\delta^{13}$ C is the inorganic carbon signature for the carbonate rocks.

Natural background <sup>3</sup>H levels are about 5 tritium units (TU); however, anthropogenic <sup>3</sup>H was produced from atmospheric thermonuclear tests that began in 1952. Anthropogenic <sup>3</sup>H peaked in about 1963 before atmospheric testing was banned (Mazor, 1991). Consequently, semiquantitative age dating of ground water is possible as follows:

- Water having less than 0.5 TU was recharged before 1952,
- Water having more than 10 TU typically can be assumed to have recharged after 1952, and
- Water having more than 0.5 TU and less than 10 TU probably is a mixture of pre-1952 and post-1952 water.

Strontium (Sr) has an ionic radius of 1.13 angstroms (Å), which is only slightly larger than the ionic radius of calcium (Ca, 0.99 Å). This slight difference in size allows Sr to replace Ca in many minerals. The isotopic abundance of the stable isotopes of Sr is variable because of the decay of naturally occurring rubidium (<sup>87</sup>Rb), which makes the precise isotopic composition of Sr in a rock or mineral dependent on the age of the rock and the <sup>87</sup>Rb/<sup>87</sup>Sr ratio of that rock.

#### HYDROGEOLOGIC SETTING

The study area is at the southern edge of the Colorado Plateau in northern Arizona. Structural warping has caused the repeated advance and withdrawal of oceans across this area resulting in the deposition of several thousand feet of sediments over hundreds of millions of years. Uplift and crustal compression from the late Cretaceous to early Tertiary ages has raised this part of the Colorado Plateau to near its present altitude, created broad regional faults and folds, and resulted in volcanic activity that began in the Paleocene age and has continued to the present. Basin and Range development and its associated crustal extension from the late Tertiary age to the present has resulted in development of many additional faults, joints, and grabens.

The study area is underlain by plutonic and metamorphic rocks, a bedded sequence of sedimentary rocks, and alluvial and volcanic rocks that range in age from Precambrian to Quaternary (fig. 11, pl. 1). The lithology and hydrologic characteristics of the rocks vary among units and within individual units in the study area. Although more ground water can be contained volumetrically in the fine-grained sediments, ground water moves slowly through these types of sediments. The medium- to coarse-grained sediments contain less water volumetrically, however, they transmit the water more readily through the primary pore spaces in the rock. Secondary physical and chemical alteration of the sedimentary rocks also affect their hydrologic character. Geologic structures, such as folds, faults, and joints affect the regional ground-water flow system in some places.

#### **Hydrogeologic Units**

The plutonic and metamorphic rocks are Precambrian in age and are buried deep beneath the study area. The rocks are inferred to be the same rocks of Precambrian age exposed in the Grand Canyon to the north and northwest and consist of plutonic igneous rocks, mafic schist, and gneiss (Barnes, 1989). Where found in oil and gas test wells in the study area, the plutonic and metamorphic rocks typically are massive red granites or granite rubble. Because of their massive crystalline nature, the Precambrian rocks represent the lower confining layer to ground-water flow on the southern Colorado Plateau. Water probably does not penetrate these rocks except where they are extensively fractured.

The Tapeats Sandstone and Bright Angel Shale (Noble, 1922) are Cambrian in age and overlie the plutonic and metamorphic rocks of Precambrian age. The Tapeats Sandstone is a very coarse- to mediumgrained, thin-bedded conglomeratic sandstone that is tan to brown to reddish brown in color. The Bright Angel Shale is micaceous shale, siltstone, and minor amounts of fine-grained sandstone that varies in color from green to blue to gray. Because of the lack of deep well data, however, little is known about the waterbearing characteristics of the Tapeats Sandstone or Bright Angel Shale in the study area.

The Muav Limestone, which is Cambrian in age, and the Temple Butte (Martin) Formation, which is Devonian in age (McKee and Resser, 1945), overlie the Tapeats Sandstone and (or) Bright Angel Shale.



Modified from Billingsley and others (1980)

Figure 11. Generalized stratigraphic section of rock units, Flagstaff, Arizona.

In some areas, however, only one of the two formations is present. The Muav Limestone (Noble, 1922) is a thin-bedded, gray, medium- to fine-grained, mottled dolomite; a coarse- to medium-grained grayish-white, sandy dolomite; and a fine-grained limestone. The Temple Butte (Martin) Formation is a grayishbrown to grayish-red to grayish-purple coarse- to medium-grained dolomite and dolomitic limestone with thin interbeds of limey siltstone and shale. The Muav Limestone and (or) the Temple Butte (Martin) Formation typically are zero to as much as 400 ft thick in the study area. These units, where present, are assumed to be fully saturated.

Overlying the Temple Butte (Martin) Formation or the Muav Limestone is the Redwall Limestone of Mississippian age. As found in wells in the study area, the Redwall Limestone is a fine-grained light-gray to gray limestone or dolomite that is occasionally thin bedded and occasionally oolithic (McKee, 1963). The formation typically is from 50 to 300 ft thick in the study area, and, in a few cases, rests directly on top of Precambrian rocks. The Redwall Limestone is fully saturated and is hydraulically connected to the Temple Butte (Martin) Formation and (or) the Muav Limestone.

The Supai Group lies unconformably on and in sharp contrast to the gray limestones of the Redwall Limestone and is divided into three formations-upper, middle, and lower (Blakey, 1990). The Lower Supai Formation is mainly red and purple sandstone and siltstone, and gray limestone and dolomite. In some places, the bottom of the formation contains conglomerate or breccia-type material composed of cherty limestone, chert clasts, and mudstone or claystone. This formation is a confining unit for ground water in the Redwall Limestone. Overlying this unit, is the orange, rounded, very fine-grained calcereous sandstone of the Middle Supai Formation. The Upper Supai Formation is mainly reddish-brown to tan, finegrained sandstone, red-brown siltstone, occasional thin-bedded mudstone and limestone, hard white to pale-red fine- to medium-grained sandstone, and a complex series of red beds that are mostly fine-grained sandstone, siltstone, and mudstone. The Supai Group is typically 600 to 2,000 ft thick in the study area and is exposed on the east flank of Mount Elden where it is unsaturated (pl. 1). The Supai Group is partly to fully saturated throughout the rest of the study area and is hydraulically connected to saturated parts of overlying formations in the southern half of the study area.

The Hermit Formation is Permian in age and, where present north of the study area, overlies the Supai Group. The formation is a red-brown siltstone to silty sandstone to an interbedded sandy mudstone and sandy siltstone and has almost no true shale (Beus and Billingsley, 1989). The similarity in lithology between the Supai Group and Hermit Formation in this part of the Colorado Plateau make the distinction between these units difficult (Blakey, 1990). The Hermit Shale is not recognized in cuttings from wells in the study area; therefore, it is not included in the stratigraphic section shown in **figure 11**.

The Schnebly Hill Formation, which is Permian in age, overlies the Supai Group in the study area and can be seen in the upper part of Oak Creek Canyon at the south end of the study area. Blakey (1990) indicated that the Flagstaff area was near the northwestern limit of deposition of the Schnebly Hill Formation. The Schnebly Hill Formation comprises a sequence of reddish-brown to reddish-orange very fine to silty sandstone, mudstone, limestone, and dolomite (Blakey, 1990). This classification was based on clear stratigraphic, paleontologic, sedimentologic, and tectonic differences between these sediments and adjacent geologic units. Before the new classification, these sandstones and siltstones were either included as part of the lower Coconino Sandstone, which overlies the Schnebly Hill Formation, or were grouped with underlying units. In many cases, they were described as a transitional zone between the Coconino Sandstone and the Supai Group (Pierce and others, 1977; Elston and Dipaolo, 1979). Because there generally is enough information in drillers' logs and well cuttings to make the distinction, the formation is identified in the study area where appropriate. Within the study area, the Schnebly Hill Formation varies in thickness from a few feet to as much as 800 ft and thins and intertongues with the Coconino Sandstone to the west (pl. 3). Where the Schnebly Hill Formation is not present, the Coconino Sandstone lies unconformably on top of older units (pl. 3). The Schnebly Hill Formation is partly to fully saturated in the southern half of the study area and is hydraulically connected to the Coconino Sandstone above it and to units below. In the northern half of the study area, the Schnebly Hill Formation is mostly unsaturated.

The Coconino Sandstone (Darton, 1910) is a tan to white to light brown, cross-stratified, nearly pure, eolian, fine-grained quartz sandstone. This formation is Permian in age (Blakey, 1990), ranges from 300 to
1,100 ft thick in the study area, and thins to the westnorthwest (fig. 11; pl. 3). Where faulted, the Coconino Sandstone can be extensively fractured to unconsolidated. Where saturated, the most productive parts of the Coconino Sandstone are in the fracture zones where permeability is greatest. The Coconino Sandstone is fully to partly saturated in the southern half of the study area and unsaturated in the northern half. Outcrops of the Coconino Sandstone are found at the north end of the Lake Mary graben, in Walnut Canyon, on the east flank of Mount Elden, and in Oak Creek Canyon (pl. 1). In most of the study area, the regional aquifer is formed by the Supai Group, Schnebly Hill Formation, and Coconino Sandstone. The Coconino Sandstone is the principal water-bearing unit of the aquifer.

The Toroweap Formation, which overlies the Coconino Sandstone, is Late Permian in age (Sorauf and Billingsley, 1991) and comprises carbonate sandstone, red beds, silty sandstone, siltstone, limestone, and thin layers of gypsum. In the Flagstaff area, an abrupt transition occurs from the upper part of the Coconino Sandstone to the Toroweap Formation (Sorauf and Billingsley, 1991). Where distinct, the transition changes from the quartz sandstone of the Coconino Sandstone to the carbonate sandstones and red beds of the Toroweap Formation. In areas where the Toroweap Formation and the Coconino Sandstone cannot be distinguished, the two units generally are described as undifferentiated Coconino Sandstone.

The Kaibab Formation, which is Late Permian in age, overlies the Toroweap Formation on an erosional unconformity (fig. 11, pl. 3). On the basis of more recent stratigraphic and paleontologic information, the Kaibab Limestone (McKee, 1938) was reclassified as the Kaibab Formation by Sorauf and Billingsley (1991). The Kaibab Formation has lower and upper members called the Fossil Mountain and Harrisburg Members, respectively. The Fossil Mountain is a light grey, cherty, thick-bedded limestone to sandy limestone. The chert occurs as nodules, or lenses and layers of intraformational breccia. The Harrisburg Member is an interbedded sequence of light-red to gray limestone, dolomite, siltstone, sandstone, and gypsum (Sorauf and Billingsley, 1991). If enough information is available from drillers' logs or well cuttings, both units can be distinguished in the study area; otherwise, the units are referred to as the Kaibab Formation. The Kaibab Formation ranges from 100 to about 650 ft in thickness. The upper surface of the Kaibab Formation

also is erosional and exposed at land surface in much of the southern and eastern parts of the study area (pl. 1). In some cases, the Kaibab Formation has been removed by erosion. Where exposed at land surface, the Kaibab Formation is undulatory. The formation has welldeveloped joint fractures, many of which are widened by solution, as well as small sinkholes and depressions caused by dissolution of the rock. Near fault zones, the formation is heavily fractured in the subsurface, and many cavities and caverns are widened by dissolution of the rock. Where fully to partly saturated and hydrologically connected to the units below, the Kaibab Formation represents the uppermost geologic unit of the regional aquifer. In other areas, perched waterbearing zones in the Kaibab Formation can be hundreds to more than 1,000 ft above the regional water table (pl. 3).

The Moenkopi Formation is Triassic in age (McKee, 1954) and is composed of red to dark-red to reddish-brown siltstone, silty sandstone, fine- to very fine-grained sandstone, mudstone, and gypsum. The formation occurs as a discontinuous erosional remnant where protected by overlying volcanic rocks (pl. 1). Where present and where not highly fractured or faulted, the Moenkopi Formation generally acts as a confining layer that impedes the downward flow of water. The formation varies in thickness from zero to about 150 ft. If sandstone beds are present, wells completed in this formation may yield small amounts of water.

Overlying the Moenkopi Formation are volcanic rocks of Miocene to Quaternary age (Ulrich and others, 1984; Wolfe and others, 1987; fig. 11, pl. 1, this report). These volcanic rocks are aphanitic basalt and cinder cones; dacite flows and domes; dacite pyroclastic-flow breccia; andesite flows, flow breccia, and tuff breccia; and benmoreitic flows, cinder cones, and domes (pl. 1). These rocks range in thickness from zero to more than 5,000 ft under San Francisco Mountain. Within the study area, the average thickness of the volcanic rocks is about 150 ft. Where sufficiently fractured, or where underlain by clay, the volcanic rocks can be waterbearing. The yield of water from these rocks, however, is small and seasonally variable.

The unconsolidated sediments are the youngest deposits in the study area and consist of alluvium, colluvium, and glacial and landslide material either as a thin veneer or as thicker but discontinuous deposits. The alluvium is thin soils or thicker deposits of silt, clay, and fine sand in stream channels, lakebeds, grabens, and meadows. The colluvium generally is coarse-grained material that is confined to steep slopes and mountainsides. A few landslide deposits are on the southern flanks of San Francisco Mountain (Wolfe and others, 1987). Glacial outwash occurs in the Inner Basin of San Francisco Mountain and on the east and north slopes. Most of the unconsolidated sediments are waterbearing but because of their limited areal extent and discontinuous character yield only small amounts of water to wells.

## **Geologic Structure**

In the study area, all of the geologic formations have been affected to some degree by tectonic activity on and adjacent to the Colorado Plateau (pl. 1). Compressional or tensional stresses can result in folds that change the structure of the lithologic matrix. In general, fractures formed under compressional stress tend to remain fairly tight and closed, which results in little if any increase in ground-water flow. Fractures formed under tensional stress tend to be more open, which results in increases in ground-water flow in places. In some cases, the blocks on either side of a fault can grind the sedimentary rock into a fine powder that fills the fault zone and substantially reduces ground-water flow. Information on displacement of faults also is necessary to determine the continuity of water-bearing zones and confining layers. Fractures can be widened by dissolution of formational material as water moves through them thus increasing groundwater flow in some places. Chemical alteration of the sediments, either by dissolution or precipitation of minerals, also can affect ground-water flow.

The oldest structures, which are pre-Laramide in age, are fractures that strike north and northeast. These fractures are vertical to near vertical and propagate upward from Precambrian basement rocks to the surface. These fractures are inferred to be related to reactivation of Precambrian faults to the west of the study area during a time of tensional stress on the Colorado Plateau (Shoemaker and others, 1978; Wolfe and others, 1987).

The Laramide orogeny, which began in the Late Cretaceous age, resulted in widespread uplift and regional compression of the Colorado Plateau. The flatlying sedimentary rocks were tilted 1–2° to the east and north. The regional compression resulted in large anticlinal, synclinal, and monoclinal structures throughout the Colorado Plateau (Huntoon, 1989). At least one of these features, the Mormon Mountain anticline south of Lake Mary, trends northwestward through the study area and has imposed local dips of as much as 5° on the sedimentary rocks (pl. 1). Parallel to subparallel fractures are associated with these compressional structures and may be deep seated.

All faults in the study area are younger in age than the pre-Laramide fractures (G.H. Billingsley, geologist, USGS, oral commun., 1997). Most of the faults are normal faults with vertical to near-vertical dips; a few are reverse faults, or strike-slip faults that have little horizontal motion. Some of the normal faults exhibit reverse drag (Dutton, 1882; Davis, 1901; Powell, 1957), which is a downturning of the beds in the downthrown block toward the fault plane in opposition to motion along the fault (fig. 12). Reverse drag is an important feature of the local structure because researchers have determined that normal faults develop by displacement under tension of adjacent blocks and create voids that are filled in by the sagging of the downthrown block (Huntoon, 1974). The best example of reverse drag in the study area can be seen in exposures of the Oak Creek Fault in Oak Creek Canyon. Some of the highest yielding wells in the study area are along the north end of the Oak Creek Fault in the Woody Mountain well field.

In the study area, the two principal strikes of faults are north-northeast and north-northwest. The north to northeastward-striking faults are interpreted as reactivation of structure that originates deep in the Precambrian unit by compressional stresses (Shoemaker and others, 1978). The Oak Creek Fault, which is the principal fault of this type, currently has offsets of 200 to 500 ft along the strike of the fault. In the study area, most of the faults strike north to northwest. The north- to northwest-striking faults are one of the youngest structural features on the Colorado Plateau. Some of these faults are the result of basin and range extension that postdates the Laramide orogeny. Many of these features are within the still active Cataract Fault zone. A few of these faults extend through the volcanic rocks and recent alluvial material, which indicates that they are still active. The mechanism for these faults and associated fractures are current extensional stress fields and processes now active on the Colorado Plateau (G.H. Billingsley, geologist, USGS, oral commun., 1997).











**Figure 12**. Conceptual model of the development of reverse drag. *A*, Geometry before faulting. *B*, Faulting without sag of hanging wall. *C*, Faulting with sag of hanging wall.

Sedimentary rocks of the regional aquifer are all fractured and folded to varying degrees. Most of the fracturing is related to major fault zones. Although most faults extend through the whole aquifer thickness, other fractures may be formation specific. Thus, these fractures can act as either conduits or barriers to ground-water flow. Shattered rock in these fractured zones is permeable; however, gouge zones, which consist of fine-grained to clay-sized material produced by grinding along the fault plane, are impermeable. In addition, the Kaibab Formation is brittle and contains many joints, solution channels, and other openings that can act as conduits for the flow of water. The lithology of the regional aquifer changes from formation to formation and also vertically and laterally within the formations. The most productive water-bearing material tends to be the fine- to medium-grained sandstones. Because of these structural and lithologic characteristics, the regional aquifer is heterogeneous and anisotropic and has a complex ground-water flow system.

Remote-sensing data and surface-geologic mapping aided in determining the structural framework of the study area. A Thematic-Mapper (TM) image taken on January 15, 1983, was processed at a resolution of about 100 ft (fig. 3). Although there is snow cover in this view, many prominent north- andnorthwestward striking structures are clearly visible, such as the Oak Creek, Anderson Mesa, and Munds Park Faults, as well as many previously unrecognized enechelon and subparallel features. The area bounded by the northern ends of the Anderson Mesa and Munds Park Faults appears especially fragmented as does the area south of Upper and Lower Lake Mary. The digitalelevation model (DEM) complements the TM image and was used to show structural features unobscured by cultural, vegetation, and soil information (fig. 4). The DEM shows structural trends west of the north end of the Anderson Mesa Fault and just to the south and southeast of the airport that are not as apparent in the TM image. A SPOT image pair was made of the Fisher Point-Lower Lake Mary area. SPOT data are similar to TM data; however, SPOT data have much better resolution (about 30 ft) and allow for more detailed images and enlargements. An enlargement was made of part of a SPOT image pair collected on November 7-8, 1995 (fig. 5). Pronounced fractures (joints) are evident south of Lower Lake Mary and west of Fisher Point that are not as apparent in the TM image or the DEM. Where needed, the remote-sensing data were

supplemented by additional analysis of low-altitude aerial photographs from the early 1940s. These photographs were used because the forest cover was still fairly open, and development was limited at that time.

G.M. Mann and Dr. A.E. Springer (geologists, NAU, written commun., 1997) found that origin and physiography of the major structural trends near Flagstaff are consistent with origin and physiography proposed by past researchers for the surrounding region (Shoemaker and others, 1978; Ulrich and others, 1984; Wolfe and others, 1987; Huntoon, 1989). These researchers found that (1) north- to northeastwardstriking fractures originate from compressional stress, (2) north- to northwestward-striking fractures originate from and are related to tensional stresses, and (3) some northeastward-striking fractures are related to reactivation of deep-seated faults caused by regional extension. Further analysis by G.M. Mann and Dr. A.E. Springer (geologists, NAU, written commun., 1997) suggest that recent and possibly still active tensional stress on the Colorado Plateau results in pull-apart basins that are identified by grabens and enechelontype normal faulting extending deep into the subsurface. Northeastward-striking fractures generally parallel the direction of ground-water flow and surface drainage. Surface drainage may be better developed along these older structural features, and dissolution of formational material may have increased ground-water flow along these structures.

Gravity data also were used to identify major structural features and trends (**fig. 13**). These data indicated (1) a predominantly northeastward gravity trend that probably represents deep, old, near-vertical faults and (2) a subtle secondary northwestward gravity trend that represents younger structural trends (G.H. Billingsley, geologist, USGS, written commun., 1996).

# **GEOPHYSICAL INVESTIGATIONS**

## Lake Mary

The Lake Mary area is south of Flagstaff and contains two of the City of Flagstaff's four main sources of water supply—surface water in Upper Lake Mary and ground water in the regional aquifer that is withdrawn from wells in the Lake Mary well field. Investigation sites in this area were most suited to testing the application of GPR and SAR methods because of the varied surface geology that includes volcanic rocks and alluvium overlying the Kaibab Formation, and exposures of the Kaibab Formation at land surface, and the subsurface information available from well logs for corroboration. Remote-sensing data, photogrammetry, and surface-geologic mapping indicated a significant amount of large and small structural features that previously were unrecognized (**pl. 1**). Two areas of particular interest were the unnamed drainage just to the east of Howard Draw where the City of Flagstaff drilled wells LM-8 and LM-9 and the upper end of Lower Lake Mary (**fig. 6**).

#### **Ground-Penetrating Radar**

GPR is well suited for shallow investigations in this type of geologic environment as shown by the results of a survey profile about 65 ft northeast of Lake Mary well 8 (LM-8) in the Lake Mary well field (fig. 14A). The survey line was run perpendicular to the northeastward trend of the surface drainage and the surficial-structural features (fig. 6). Interbedding or near-horizontal and bedding-plane fractures in the Kaibab Formation, which is just beneath the alluvial cover and at land surface, are indicated in the survey profile. Interbeds of the Kaibab Formation are disrupted and offset from about 60 to 105 ft from the west end of the survey line. The center of this zone underlies the principal northeastward-striking fracture and the surface drainage. Other high-angle discontinuities are indicated at 210 ft and 230 to 240 ft from the west end of the survey line. Although a single GPR profile may be interpreted in different ways, these data indicate a heavily fractured zone and near-vertical fractures. The lithologic log for well LM-8, which projects into the profile at the west edge of the main fracture zone, shows the alluvium-Kaibab Formation contact is about 24 ft below land surface, which also is indicated by the GPR survey profile.

Data for another GPR profile were collected about 1 mi southeast of LM-8 in a drainage that has similar northeastward and northwestward-striking fractures. This profile indicates a disruption at about 400 to 410 ft from the north end of the survey line (fig. 14B) that closely corresponds to the surface location of a fracture identified photogrammetically and in field reconnaissance. Repositioning of the bedded rock in the fracture zone or minor faulting that extends deeper into the subsurface is shown in the survey profile at 35–40 ft below land surface at 370 and 410 ft from the north end of the survey line. Additional GPR surveys in the Lake Mary area indicated extensive fracturing in the Kaibab Formation and led to the use of GPR as a reconnaissance tool at sites selected for further study as a result of the remote-sensing and geologic investigations.



**Figure 13**. Color edge-enhanced image and simple Bouguer gravity data on a 2.49-mile square grid of the Flagstaff area, Arizona (U.S. Geological Survey, 1993). Universal Transverse Mercator projection. Central meridian = 111°W, and Base latitude = 0°. Note the predominant northeastward trend (N. 45° E.) and a secondary northwestward trend, (N. 45°W.) north of latitude N. 35° and the gravity high in the south west corner of the grid. Due-north trends are evident south of latitude N. 35°. The east-west line at latitude N. 35° may be an artifact of merging the existing grids.



**Figure 14**. Selected interpreted ground-penetrating radar data for the Lake Mary area. *A*, Radar profile near Lake Mary well 8. *B*, Middle part of the radar profile for site about 1 mile southeast of Lake Mary well 8, 346–458 feet. Interpreted fractures are shown in red and interpreted bedding planes are gray fills. Hyperbolic events are interpreted as airwaves from surface features or openings or open horizontal fractures between bedding planes.

### **Square-Array Resistivity**

The SAR data collected at Lower Lake Mary (LLM; fig. 6; table 1) for the 16.4- to 92.8-foot square arrays form a rough circle (see "Supplemental Data, Part A" at the back of the report). This pattern is expected for flat-lying isotropic sediments where the measured apparent resistivity is the same in all horizontal directions. Apparent resistivity data from the 131.2-foot square describes an ellipse when plotted on polar coordinates. The graphically derived apparent strike for fractures at this site is the oblate or the smaller axis of the ellipse (roughly N. 60° W.), which is the primary strike of fractures in the Kaibab Formation and corresponds with one of the predominant structural trends on the Colorado Plateau. The Lake Mary graben is an expression of this structural trend and is exposed on the east side of Lower Lake Mary. Geologic work by Ulrich and others (1984) and maximum horizontal gradients derived from the Bouguer gravity data for the area indicate a similar trend (fig. 13). This northwestward trend holds for the 164-, 328.1-, and 492.1 ft square arrays. Because of limited space, the 928.5-ft square array was collected in the crossed-array configuration (Habberjam, 1975) and does not have a

corresponding polar plot; however, the calculated apparent strike is N. 58.8° W. (fig. 15). Deviations between the graphically derived and calculated apparent-strike directions are less than 15° and typically are less than 5°.

Square-array L8 was in a narrow limestone valley that trends roughly N. 40° E. and is about 262 ft northeast of LM-8 (figs. 6 and 16; table 1). The narrow limestone valley limited the square size to 492.1 ft. Polar coordinates for the 16.4- and 32.8-foot square arrays show ellipses with an oblate axis that trends northwestward (N. 60° W.). This trend is similar to the trend seen on the LLM soundings for squares that were greater than 131.2 ft. Unlike the data from Lower Lake Mary, data from even the smallest square sizes at L8 plot as ellipses because the sounding starts on limestone that has no lakebed cover. In addition, the many small fractures described on the structure maps for the area also strike N. 60° W. The strike changes as the depth of investigation increases. The apparent strike of fractures changes to N. 84° E. at 46.3 ft. The northeast fracture orientation indicated by data from the 65.6–492.1-foot square arrays is in line with the northeast orientation of fractures suggested by the valley structure.

#### Table 1. Data from surface-geophysical investigation sites, Flagstaff, Arizona

[Dashes indicate method not used. SAR, square-array resistivity; GPR, ground-penetrating radar; SEISMIC, seismic reflection or seismic refraction]

| Site | Location name          | Latitude,<br>in decimal<br>degrees | Longitude,<br>in decimal<br>degrees | Ground-<br>penetrating<br>radar<br>maximum<br>depth, in<br>feet | Maximum<br>square-<br>array size,<br>in feet <sup>1</sup> | Seismic<br>reflection/<br>seismic<br>refraction<br>maximum<br>depth, in feet | Depth to<br>water,<br>in feet | Specific<br>conduc-<br>tance, in<br>micromhos<br>per<br>centimeter | Methods<br>used      |
|------|------------------------|------------------------------------|-------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|----------------------|
| LLM  | Lower Lake Mary        | 35.0922                            | 111.5447                            |                                                                 | 928                                                       |                                                                              | 1,153                         | 254                                                                | SAR                  |
| L8   | Lake Mary well 8       | 35.0950                            | 111.5764                            | 65                                                              | 492                                                       |                                                                              | <sup>2</sup> 671              | 488                                                                | SAR, GPR             |
| L9   | Lake Mary well 9       | 35.0808                            | 111.5894                            | 65                                                              | 492                                                       |                                                                              | 226                           | 635                                                                | SAR, GPR             |
| W10  | Woody Mountain well 10 | 35.1456                            | 111.7342                            |                                                                 | 2,785                                                     |                                                                              | 1,139                         | 199                                                                | SAR                  |
| W11  | Woody Mountain well 11 | 35.1344                            | 111.7308                            |                                                                 | 2,785                                                     |                                                                              | 1,106                         | 233                                                                | SAR                  |
| SC   | Skunk Canyon           | 35.1458                            | 111.6047                            | 90                                                              | 2,320                                                     | 3,600                                                                        | 920                           | <sup>3</sup> 490                                                   | SAR, GPR,<br>SEISMIC |
| FG   | Foxglenn               | 35.1897                            | 111.5997                            | 60                                                              | 492                                                       | 3,400                                                                        | 1,312                         | 465                                                                | SAR, GPR,<br>SEISMIC |
| BP   | Continental            | 35.2072                            | 111.5731                            | 140                                                             | 492                                                       | 2,400                                                                        | 1,305                         | 450                                                                | SAR, GPR,<br>SEISMIC |

<sup>1</sup>Depth of investigation is roughly equivalent to size of square array (Habberjam, 1979).

<sup>3</sup>Possibly a mixed water. Several days before this sample was collected, the City of Flagstaff pumped several hundred thousand gallons of water from Lake Mary into the well to cause hydrofracting of the formation.

<sup>&</sup>lt;sup>2</sup>Pumping water level.



**Figure 15**. Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data, Lower Lake Mary site (LLM). Apparent strike values are in degrees for each square size (16.4, 24.6, 32.8.....). Coefficient of anisotropy is a dimensionless number where a number larger than one indicates increasing anisotropy. For comparison to the interpreted resistivity curve, depth to water was about 1, 150 feet on the basis of data from Lake Mary wells 6 and 7. Interpretation was done using ATO, which is a vertical electrical-sounding (VES) program by Zohdy (1989).



**Figure 16**. Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data, Lake Mary well 8 site (L8). Apparent strike values are in degrees for each square size (16.4, 24.6, 32.8.....). Coefficient of anisotropy is a dimensionless number where a number larger than one indicates increasing anisotropy. For the interpreted resistivity curve, depth to water was recorded at 671 feet on the day of the sounding (pumping water level). Interpretation was done using ATO, which is a vertical electrical-sounding (VES) program by Zohdy (1989). The interpreted resistivity-curve maxima is at about 312 feet; Lake Mary well 8 was being pumped at about 1,700 gallons per minute, and the pumping water level was about 394 feet.

The strike of major fractures changes with increasing depth from N 60° W. to N. 45° E. Although the sounding did not reach the pumping water level of 671 ft below land surface, the largest square array of 492.1 ft shows increasing coefficient of anisotropy and increasing secondary porosity from 328.1 to 492.1 ft and suggests that there are saturated fractures that provide water to the well (fig. 16).

The square array, L9, near Lake Mary well 9 (LM-9) was about 1.25 mi southwest of LM-8 in the same narrow limestone valley (figs. 6 and 17; table 1). The L9 array was about 328 ft southwest of LM-9 and within 328 ft of the intersection of two orthogonalfracture sets-one that strikes northeastward (N. 45° E.) and one that strikes northwestward (N. 45° W.). The narrow limestone valley and vegetation in the area limited the size of the square array to 492.1 ft; however, the depth of investigation exceeded the depth to water (226 ft) measured at LM-9 on the day of the sounding. Data from the smallest square array (16.4 ft) plots as an ellipse that indicates a predominant fracture strike of roughly west-northwest. Fracture strikes for squares of 24.6 to 131.2 ft change gradually in a clockwise direction to the north. Data for the 164-foot square array indicate a northwestward strike (N. 35° W.), and data for the 328.1-foot square array indicate two apparent strikes-one northwestward (N. 30° W.) and one northeastward (N. 45° E.). The ellipse for the 492.1-foot square array also apparently has two trends-one northwestward (N. 30° W.) and one northeastward (N. 70° E.). Doe and others (1982) describe this type of ellipse as being caused by multiple joint and fracture geometries. Both trends are within the natural variations of the regional trends mapped in the Kaibab Formation. The calculations (Habberjam, 1975) show a low coefficient of anisotropy (<1.06) and a low secondary porosity (<0.5 percent) at square arrays 164, 328.1, and 492.1 ft just above and below the water table (fig. 17). The low secondary porosity may explain why less water is available to well LM-9 than to well LM-8.

## Borehole

Wells LM-6 and LM-7 (City of Flagstaff) are near the SAR site near the upper end of Lower Lake Mary (fig. 6). Borehole lithology was the only information collected from these wells (fig. 18A–B). As a result, little information is available to correlate with the SAR results collected near here. The plotted resistivity for the LLM site (**fig. 15**) reaches a maximum at the limit of investigation (928.5 ft), which is above the water table (1,150 ft) in this area.

Logs for well LM-8 included lithologic, caliper, gamma, and spontaneous potential (fig. 18C). The hole rugosity indicated by the upper part of the caliper log (350 to 500 ft) correlates well with SAR anisotropy (L8), especially beginning at about 300 ft where the hole size and roughness increase at the transition into the Coconino Sandstone. Secondary porosity as estimated by the SAR data also increases at this point. The plotted interpreted resistivity (fig. 16) reached a maximum at about 312 ft, which is consistent with static water levels in this area at the time of the survey.

Wells LM-8 and LM-9 are in the same drainage that presumably has the same structural trend at each well site; however, LM-9 has considerably different hydraulic properties. Borehole information for this well consists of lithology interpreted from drill cuttings (fig. 18D). The change in SAR anisotropy and secondary-porosity estimates (L9) at about 164 ft is consistent with the change from the Kaibab Formation to the Coconino Sandstone shown in the lithologic log (figs. 17 and 18D). The resistivity at this site reached a maximum at 226 ft, which is consistent with the static water level in LM-9 (210 ft below land surface) at the time of the survey.

## **Woody Mountain**

The Woody Mountain well field is southwest of Flagstaff on the northern end of the Oak Creek Fault. The Oak Creek Fault is uplifted about 300 ft to the west, strikes roughly north-northwest through the area, and is intersected near the middle of the well field by the northwestward-striking Dunnam Fault. Volcanic rocks overlie the consolidated sediments of the Colorado Plateau throughout this area and range from about 300 to 500 ft thick. This area is poorly suited for GPR surveying because of extensive volcanic-rock overburden. The City of Flagstaff drilled two wells near the south end of this well field between 1996 and 1998. The SAR technique was applied to two areas in the south end of the well field to complement the borehole information (fig. 6; table 1). Lithologic and borehole-geophysical logs correlate with SAR results.



**Figure 17**. Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data, Lake Mary well 9 site (L9). Apparent strike values are in degrees for each square size (16.4, 24.6, 32.8.....).Coefficient of anisotropy is a dimensionless number where a number larger than one indicates increasing anisotropy. For the interpreted resistivity curve, depth to water was recorded as 226 feet on the day of the sounding (pumping water level). Interpretation was done using ATO, which is a vertical electrical-sounding (VES) program by Zohdy (1989). The interpreted resistivity-curve maxima is at about 207 feet.



Figure 18. Lithologic and borehole-geophysical logs, Lake Mary sites. A, Well LM-6. B, Well LM-7. C, Well LM-8. D, Well LM-9.



Figure 18. Continued.

#### **Square-Array Resistivity**

SAR data at Woody Mountain well 10 (WM-10) for the 32.8- and 65.6-foot square arrays (W10) show a circular pattern that indicates isotropic material that may be volcanic ash or pumice (see "Supplemental **Data**. Part A" at the back of the report). The ellipses for the 65.6- and 164-foot square arrays show a northnorthwestward fracture strike (N. 15° W.) that probably is associated with the strike of the Oak Creek Fault. Ellipses for the square arrays of 492.1, 928.5, 1,391.1, and 1,857 ft indicate a northwestward fracture strike  $(N. 45^{\circ} W.)$  that is consistent with the predominant structural trends of the Colorado Plateau. Ellipses for the square arrays of 2,319.6 and 2,785.4 ft indicate a predominant fracture strike of about N. 60° W. This orientation parallels the nearby Dunnam Fault and indicates that the Dunnam Fault is the major structural feature at depth at this site (see "Supplemental Data, Part A" at the back of the report). Variation between the resistivity maxima and depth to water is about 9 percent at this site. The resistivity decreases below the depth of the regional water table (fig. 19).

The square array W11 near Woody Mountain well 11 (WM-11) was about 0.75 mi east of the Oak Creek Fault (figs. 6 and 3; table 1). The data for the 32.8 and 65.6-ft square arrays indicated fracture strikes of N. 45° W. and N. 4° W. (fig. 20). Data from the 164-, 328.1-, and 492.1-ft square arrays indicate complex fracture patterns (fig. 20; see section entitled "Supplemental Data, Part A" at the back of the report). The square arrays of 328.1 and 492.1 ft indicate strikes of N. 30° W. and N. 45° W., respectively. The data from the 928.5-, 1,391.1-, 1,857-, 2,319.6-, and 2,785.4-ft square arrays show an increased complexity of fracture patterns at depth. Apparent strike direction at 928.5 ft is N. 2° E., and average strike direction at the 1,391.1-, 1,857-, 2,319.6-, and 2,785.4-ft square arrays is N. 45° W. Fracture strikes vary widely from due west to due north at the 1,391.1- and 2,319.6-ft square arrays, respectively.

The resistivity maxima at 702 ft is shallower than the depth to water (1,103 ft) measured in WM-11 (fig. 20). This relation may indicate locally perched water. A video log showing water pouring past the end of the well casing indicates that ground water enters the borehole above the 800-foot level. The low secondary porosity and coefficient of anisotropy measured using the square arrays of 492.1 and 928.5 ft indicate that rocks at those corresponding depths are less fractured than rocks above and below.

## Borehole

Lithologic, caliper, natural gamma, and video logs were made for WM-10 (**fig. 21**A). The natural gamma log correlated well with lithology. The borehole video shows multiple fractures and openings below the bottom of the casing (446 ft; fig. 21A). The fracture density and the number of openings increases downhole to about 950 ft, which is consistent with the caliper log. Most of the fractures are high angle to near vertical with dips that range from 63° to 88°. A significant amount of high-angle fracturing begins to appear at about 1,300 ft in the Coconino Sandstone, and one large, open, near-vertical fracture extends to 1,370 ft where the borehole was collapsed or bridged. The high-angle fractures from 1,300 to 1,370 ft are interpreted to be part of the Oak Creek Fault.

The caliper and video logs for WM-10 compare well with results of the nearby SAR survey. Secondary porosity (fig. 19) was greatest (10.5 percent) at about 330 ft, which is consistent with the presence of fractured basalt in the borehole at this depth. The coefficient of anisotropy (fig. 19) is greatest at a depth of about 930 ft where significant fracturing in the Kaibab Formation was noted in the borehole. The resistivity maxima (fig. 19) at about 1,030 ft is within 10 percent of the static water level for WM-10 (1,139 ft).

Lithologic, natural gamma, and video logs were made for WM-11 (fig. 21B). The natural gamma log correlates well with the lithology to 1,000 ft where the natural gamma log ends. The video log shows multiple fractures and openings from the start of the log at 800 ft to about 1,040 ft. Openings are defined as irregularly shaped cavities that range from less than 1 in. to several feet or more in size and are commonly associated with fractures. The interval from 1,107 to 1,337 ft was not imaged by video because caving and collapse of the borehole necessitated the casing of this interval. The fracture density and number of openings increase with depth from about 950 ft to just above the water level at 1,103 ft. Water enters the hole at 1,103 ft from a large, open, high-angle fracture that extends downhole. The video of the borehole below 1,340 ft (bottom of the casing at the time of the video) also shows an increase in fractures and many horizontal fractures and openings to about 1,550 ft. The fractures range from thin and closed to large and open and vary from horizontal to near vertical. Some fractures are infilled with unconsolidated material or secondary minerals.



**Figure 19**. Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data, Woody Mountain well 10 site (W10). Apparent strike values are in degrees for each square size (32.8, 65.6, 164.0.....). Coefficient of anisotropy is a dimensionless number where a number greater than one indicates increasing anisotropy. For the interpreted resistivity curve, depth to water recorded at Woody Mountain well 10 was 1,138 feet. Interpretation was done using ATO, which is a vertical electrical-sounding (VES) computer program by Zohdy (1989). The interpreted resistivity-curve maxima is at about 1,033 feet.



**Figure 20**. Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data, Woody Mountain well 11 site (W11). Apparent strike values are in degrees for each square size (32.8, 65.6, 164.0.....). Coefficient of anisotropy is a dimensionless number where a number greater than one indicates increasing anisotropy. For the interpreted resistivity curve, depth to water recorded at Woody Mountain well 11 was 1,106 feet. Interpretation was done using ATO, which is a vertical electrical-sounding (VES) computer program by Zohdy (1989). The interpreted resistivity-curve maxima is at about 702 feet.

A. Woody Mountain well WM-10



NOTE: Well WM-10 was backfilled to 1,790 feet.

Figure 21. Lithologic and borehole-geophysical logs, Woody Mountain site. A, Well 10. B, Well 11.

B. Woody Mountain well WM-11



Figure 21. Continued.

No horizontal fractures or openings were observed below 1,550 ft; however, many high-angle fractures occur throughout the remainder of the borehole. Most of the high-angle fractures imaged in WM-11 dip at angles significantly less than high-angle fractures found in other boreholes. The dip of high-angle fractures ranged from 45 to 89° but only averaged 76°. Because this borehole video was not azimuthally referenced, fracture strikes in the subsurface could not be determined for comparison to strikes determined from the SAR survey at this site. The SAR ellipses, however, become much more complex from 1,400 to 1,860 ft where fracture density in the borehole is greatest. Secondary porosity and coefficient of anisotropy begin to increase at about 1,400 ft where video logs show an increase in fracture density, number of openings, and hole rugosity (figs. 20 and 21 B). Below about 1,860 ft, resistivity, secondary porosity, and coefficient of anisotropy begin to decrease. This decrease corresponds to the decreasing number of fractures shown in the borehole video.

Borehole data for WM-10 and WM-11 indicate that previously unrecognized horizontal to nearhorizontal open fractures in the shallow subsurface and below the water table probably are a significant component of the fracture-flow system. Another feature only observed in the video logs is the number of high-angle fractures that have been filled with material washed in from the land surface or with mineral precipitates. The many openings common in limestones, such as the Kaibab Formation, also were imaged in the sandstone and siltstone units of the Coconino Sandstone, Schnebly Hill Formation, and Supai Group. Calcite and other calcareous material are sometimes present as a cementing agent in the Coconino Sandstone, Schnebly Hill Formation, and Supai Group, and the dissolution of this material probably creates some of these openings.

# **Skunk Canyon**

Structural features of Skunk Canyon inferred from remotely sensed data, photogrammetry, and surfacegeologic mapping are multiple northwestward-striking fractures intersected by a few minor northeast-striking fractures (**fig. 8**). Outcrops of the Kaibab Formation at this site are well jointed showing significant vertical and horizontal fracturing that probably is not deep seated. The low-lying areas are covered with alluvial material of varied thickness. The principal northwesttrending valley is interpreted as a small graben. GPR, seismic-reflection, seismic-refraction, and SAR surveys were done at this site (**figs. 6** and 8). Data from six GPR surveys and two seismic lines were collected. One SAR survey was completed at about the middle of the site where the two most prominent structures intersect.

## **Ground-Penetrating Radar**

GPR data for Skunk Canyon profile 1 were collected along a northwestward-trending alignment (N. 46° W.) perpendicular to the principal drainage (figs. 8, 22A). The near subsurface appears to be substantially fractured along the entire profile. Multiple fractures with minor bed offsets are indicated by the disruption and offset of the survey profile from 140 to 225 ft from the southeast end of the survey line. Seismic data collected later at this site parallel to profile 1 correlate well with the GPR data. Jaasma and others (1997) indicate that this alignment has extensive faulting along its entire length in the shallow subsurface and at depth.

Data for GPR profiles 2 and 3 were collected perpendicular to profile 1 (figs. 8, 22B and C). Profile 2, similar to profile 1, indicates multiple fractures, minor faults, and inward-dipping beds toward the topographic low centered on the main northwest structural trend. Bedding planes indicated in the profile survey are dipping inward toward the center of the valley to a

70-ft-wide zone of chaotic and disrupted radar signal and are shifted upward in the profile on the northeast side. This shift indicates the inward collapse of the shallow bedrock over a possibly deeper heavily fractured zone. Seismic data collected parallel to profile 2 correlate well with the GPR data. Profile 3 is parallel to and just west of the main drainage, and data from this profile are significantly different from the data from the other two profiles. Interbedded alluvial material is shown in the upper 10 to 30 ft of this survey profile. Below this zone, the chaotic and disrupted character of the profile indicates significantly fractured rock. Several small, broad hyperbolic features occur on this survey profile (fig. 22C) that do not appear on the other two profiles shown (fig. 22A-B). Deng and others (1994) proved that hyperbolic features like these can indicate openings or caves in the shallow subsurface in the absence of other surface or subsurface features, such as pipes, powerlines, or trees. Hyperbolic features, such as these, also are produced when fractures are crossed by the radar at acute angles as would be possible with the general northwestward structural trend that is parallel to subparallel to this profile.







**Figure 22**. Selected interpreted ground-penetrating radar data for the Skunk Canyon area. *A*, Radar profile 1, 0–300 feet. *B*, Radar profile 2, 0–620 feet. *C*, Radar profile 3, 0–600 feet. Interpreted fractures are show in red, and interpreted bedding planes are gray fills. Hyperbolic events are interpreted as small openings or open horizontal fractures in bewtween bedding planes.



NOTE: Selected GPR data were collected with a 1,000-volt pulsar and 50-megahertz antenna, 12.0foot spacing, 2.0-foot step, and a total time window of 1,200 nanoseconds (ηs). The data were gain adjusted and filtered to improve the visual presentation, and corrected for elevation changes along the profile. Vertical resolution of these images is about 1.0 to 2.0 ft. The vertical scale represents the two-way travel time of the radar signal.

Figure 22. Continued.

#### **Seismic Reflection and Seismic Refraction**

Two seismic-reflection images were collected in the Skunk Canyon area—a northeast-trending image and a northwest-trending image (**fig. 8**). The northwestward-trending image runs roughly down the center of the small graben (**fig. 23**). Many of the fractures observed in this seismic cross section dip at steep angles to near vertical. Only a few of the inferred faults extend along a single plane through the entire depth of the section. Many small zones of disruption extend from a few to several tens of feet. From evidence discussed in more detail in the section on the Continental seismic surveys, these features are inferred to be small caves, large solution openings, or large open fractures that extend well below the surface and would be target zones for water exploration if they extend below the water table. Unlike fractures imaged in other areas, these features do not appear to be well connected.

## **Square-Array Resistivity**

Polar-coordinate graphs for the 32.8 and 65.6-foot square arrays at Skunk Canyon (SC) indicate a northwestward-striking fracture (N. 50° W.; see "**Supplemental Data**, Part A" at the back of the report). Data for the 164-foot square array indicate a north-south fracture pattern, and data for the 328.1- and 492.1-foot square arrays indicate a northwestward-striking fracture (N. 60° W. and N. 75° W., respectively). Data for the square arrays of 928.5 to 2,319.6 ft plotted in polar coordinates show an almost square pattern, which suggests an orthogonal-fracture set (Doe, 1982) that strikes north and west.



Figure 23. Stacked seismic image of the Skunk Canyon North profile No. 1. Many of the faults in the section are highlighted, but no major, through-going faults are apparent.

The calculated fracture strike for the square arrays of 32.8 and 65.6 ft is northwestward (N. 84° W. and N. 77° W., respectively; fig. 24; table 1). The strike is due north for the 164-foot square array. The square arrays of 328.1 and 492.1 ft show fracture strikes similar to those shown by the 32.8- and 65.6-foot square arrays. The square arrays of 928.5 to 2,319.6 ft indicate a northwestward strike (about N. 50° W.) that is close to the primary regional trend on the Colorado Plateau. The coefficient of anisotropy generally is flat at a ratio of 1.1:1 with one value of 1.2:1 at the square array of 492.1 ft. Secondary porosity (8.6 percent) is highest at the surface and decreases to less than 1 percent at 2,319.6 ft. Resistivity reached a maximum at 860 ft, which is consistent with the depth to the regional water table (920 ft) at this location (fig. 24).

#### Borehole

Borehole data for the Skunk Canyon well are correlative with formation lithology and fracturing in the subsurface identified from surface-geophysical surveys (**fig. 25**). The video log shows about 60 fractures above the water table (927 ft below land surface). Most of these fractures occur from 79 to 602 ft in the Kaibab Formation and upper Coconino Sandstone, and only three high-angle fractures are noted from 602 ft to the bottom of the video log at 934 ft. The lowermost of these fractures begins at 925 ft and was discharging water just above the water table in the well. About 34 of the fractures identified on the video log are horizontal to near-horizontal beddingplane fractures. Most of these fractures are open, and a few are thin to closed. Most of the remaining 26 fractures imaged by the video log are high-angle fractures that dip 76 to 88°, and the rest are lower-angle fractures that dip 40 to 60°. Roughly half of the highangle fractures are open, and the rest are thin to closed. This video log was not referenced azimuthally; therefore, the orientation of the fractures could not be determined. Data from the caliper logs indicate that additional fracturing occurs from 1,035 to 1,251 ft and from 1,350 to 1,775 ft. Large openings are apparent from the sonic log (not shown) at about 1,200, 1,400 to 1,450, and 1,720 to 1,740 ft.



**Figure 24**. Calculated apparent strike of major fractures, coefficent of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data, Skunk Canyon site (SC). Apparent strike values are in degrees for each square size (32.8, 65.6, 164.0.....). Coefficient of anisotropy. For the interpreted resistivity curve, depth to water was recorded as 919 feet. Interpretation was done using ATO, which is a vertical electrical-sounding (VES) computer program by Zohdy (1989). The interpreted resistivity-curve maxima is at about 860 feet.



Figure 25. Lithologic and borehole-geophysical logs, Skunk Canyon well.



Figure 25. Continued.

In order to determine zones contributing flow to the well, a borehole-flowmeter log was run using a heatpulse flow-meter while injecting water at a constant 10 gal/min. The flowmeter log indicates that most of the water flowed out of the hole from about 1,000 to 1,300 ft below land surface, and only minor amounts of water flowed out of the borehole from about 1,400 to 1,700 ft. These data correlate well with the location of fractures in the borehole inferred from the caliper and sonic logs. Heavily fractured zones in the borehole documented by the well logs correlate well with the zones of lateral disruption and minor vertical displacement shown on the seismic profile (fig. 23).

Peaks in secondary porosity and the coefficient of anisotropy at about 492 ft and at about 1,856 ft (fig. 24) correlate with significant disruption of the lithologic units indicated by seismic data from about the same depths (fig. 23) and fractures indicated by borehole-geophysical logs (fig. 25).

# Foxglenn

Foxglenn is at the north end of the Anderson Mesa Fault, and evaluation of data from surficial investigations indicated the possibility of several structural features that could enhance water-bearing potential in the subsurface (figs. 6, 8, and 26). Among these features are multiple northwestward-striking faults and grabens intersected by a prominent northeastward-striking fracture. Outcrops of the Kaibab Formation in this area show significant vertical fracturing and horizontal bedding-plane fracturing (fig. 27). Fourteen GPR surveys, two seismic surveys, and one SAR survey were completed (fig. 8).

#### **Ground-Penetrating Radar**

GPR data for profile 1 were collected along a northwest-southeast line (N. 62° W.) that bends to an east-west line that is nearly perpendicular to the graben and the bounding fault (figs. 8 and 28A). The ends of the profile—from 0 to 120 ft from the east end and from 560 to 912 ft (not shown)—contain a chaotic radar record with short-segment horizontal bedding planes broken and offset several times. This type of chaotic record is consistent with heavily fractured rock that is found in the near-surface portion of a fault zone. The alluvial-bedrock contact on profile 1 at about 20 ft from the east end is consistent with the contact identified from a lithologic log of an observation well (MW-3) about 100 ft to the north (fig. 28A).

A short test profile (N. 60° E.) was made directly on bedrock at the north end of the Anderson Mesa Fault (fig. 28B). Three prominent bedding planes are at 2, 22, and 40 ft below land surface in the survey profile, dip shallowly to the east, and are consistent with the trend of the beds exposed at the surface. All three beds are offset downward in step fashion from west to east. At 244 ft from the west end of the profile, the beds are offset as much as 2 to 3 ft and are consistent with the offset on the Anderson Mesa Fault that is exposed downhill from this profile. Also noted deep in the profile are the crossing tails of two hyperbolic features. The location of these features at 60 to 62 ft below land surface suggests that they are not noise from manmade structures on or near the surface but are more likely openings at about 70 to 80 ft from the west end of the profile.

Profile 8 is aligned to the southeast (S. 57° E.) down the west side of the Rio de Flag Valley and is perpendicular to the northeastward-striking fracture zone in this area (fig. 28C). Bedding planes along the north end of the survey line are disrupted, which is consistent with heavy fracturing in the shallow subsurface.

#### **Seismic Reflection and Seismic Refraction**

Seismic profile, Foxglenn East, is aligned to the northeast and is set roughly perpendicular to a northwest-trending graben (figs. 8 and 29). Seismic profile, Foxglenn North, is roughly in the middle of the area in the flood plain of the Rio de Flag and crosses the Anderson Mesa Fault to the south (fig. 8). Many of the fractures observed on the seismic profile, Foxglenn East, dip at steep to near-vertical angles. Many of the fractures do not extend along a single plane; however, several fractures are interconnected. Three of the more prominent fracture zones extend from the surface or near the surface to as deep as 3,400 ft. Target areas for water exploration would be where these major fracture zones intersect the water table. The seismic-reflection data also appear to have imaged solution openings and caves. In some places, the horizontal layers are disrupted. Such disruption or low-coherence zones extend for tens to hundreds of feet horizontally and vertically throughout the profile above and below the zone of saturation. A well was drilled near the major through-going inferred fault near the center of the section (fig. 29). Well logs show caverns and abundant fractures in the upper 1,640 ft of the borehole where the seismic image is disrupted. The seismic and GPR data show characteristics that are consistent with heavily fractured rocks in the subsurface.



NOTE: Offset is 2-3 feet down to the east.

Figure 26. North end of the Anderson Mesa Fault and bedding-plane fractures in the Foxglenn area.



NOTE: Horizontal fractures in beds to the right and tilt of beds to the left.

Figure 2. Northeastward-striking fracture zone and possible faults in the Foxglenn area.



**Figure 28**. Selected interpreted ground-penetrating radar data for the Foxglenn area. *A*, Radar profile 1, 0–400 feet. *B*, Radar profile, Foxglenn test line, 0–268 feet. *C*, Radar profile 8, 0–500 feet. Interpreted fractures are showin in red, and interpreted bedding planes are gray fills. Hyperbolic events not identified as corregated metal pipe are interpreted as openings or open horizontal fractures.



NOTE: Data for GPR were collected with a 1,000-volt pulsar and 50-megahertz antenna, 12.0-foot spacing, 2.0-foot step, and a total time window of 1,600 ηs, except for Foxglenn profile 1. Data for profile 1 were collected with a 25-megahertz antenna and a total time window of 1,800 nanoseconds (ηs). The data were gain adjusted and filtered to improve the visual presentation, and corrected for elevation changes along the profile. Vertical resolution of these images is about 1.0 to 2.0 feet. The vertical scale represents the two-way travel time of the radar signal.

Figure 28. Continued.



**Figure 29**. Stacked seismic image of the Foxglenn East profile. The major, through-going fault near the center of the section is shown as a solid red line, but any other faults can be seen on the section where reflectors are offset vertically. A well log also is showin in section. Caverns and other openings were determined from video and borehole-acoustic-teleview logs in the upper 1,640 feet of the borehole. Note that the seismic image shows missing reflections at the depths of caverns and other openings.

#### **Square-Array Resistivity**

In the Foxglenn area, the square array (FG) was in a narrow northeastward-trending (N. 15° E.) limestone valley along the Rio de Flag (figs. 8 and 30; table 1). The narrow limestone valley, vegetation, and cultural features limited the square array to a maximum square size of 492.1 ft (see "Supplemental Data, Part A"at the back of the report). The first plot of data from the square array at 32.8 ft shows a rough circular pattern typical of that for valley fill, and data for the 65.6- and 492.1-foot square arrays show that the small axes of the ellipses generally trend east and west.

The trend observed on the polar plots correlates with the calculated fracture strikes (fig. 30; **table 2**). The coefficient of anisotropy generally increases gradually with depth, and secondary porosity generally decreases gradually with depth. The reason for the eastwest fracture strike is not clear. Generally, fractures in the Kaibab Formation at Foxglenn have northwestward and northeastward strikes (N.  $45^{\circ}$  W. and N.  $45^{\circ}$  E.). The high mean apparent resistivity (7,000 ohm-meters) may indicate open fractures or voids at depth.

#### Borehole

Video and borehole-acoustic-televiewer logs of the Foxglenn test well imaged about 35 fractures and several large openings from 33 to 1,605 ft below land surface (fig. 31). The only other logs available for this well are a lithologic log and a deviation log of the pilot hole. Other logs were not made for this well because collapses and bridging in the borehole during drilling necessitated the placement of casing for stabilization. Fourteen of the fractures imaged were open, horizontal to near-horizontal fractures. The remainder were mostly high-angle fractures that had dips of greater than 80°. A few fractures had dips of 57°. Several large openings also were detected in the borehole. One opening extends as much as 100 ft along the axis of a high-angle fracture from 476 to 582 ft. Another highangle fracture from 699 to 789 ft was filled with silt and clay that possibly washed in from the surface through interconnected fractures. The video log was not referenced azimuthally; therefore, orientation or strike of the fractures could not be determined. The borehole-acoustic televiewer imaged five prominent fractures below the water table from 1,545 to 1,605 ft (fig. 31). A large opening extends from about 1,545 to about 1,550 ft. Two open horizontal fractures occur above a washout that extends from about 1,558 to about 1,567 ft. A set of high-angle fractures extends from 1,570 to about 1,582 ft, dips 90°, and strikes northwest (N. 49° W.). One other

prominent high-angle fracture is at about 1,590 ft, dips 90°, and strikes northwest (N. 42° W.). Another highangle fracture is at about 1,600 ft, dips 87°, and strikes northwest (N. 49° W.).

The Foxglenn well is 574 ft from the southwest end of the seismic profile, Foxglenn East (fig. 29). The fractures and openings in the well correlate with similar features imaged by the seismic profile. The well generally parallels and in places intersects a prominent near-vertical fault inferred from the seismic profile. The bottom of the well is in a zone of lateral disruption in the seismic profile that is similar to zones above that are associated with open fractures and caves. These features may account for bridging, caving, and flowing sand that occurred during the well drilling. The Foxglenn well is in a northwestward-trending graben, and the fractures imaged by the borehole-acoustic televiewer at depth are consistent with this trend.

## **Continental**

The Continental area is at the intersection of two prominent structural trends. The first trend is the Continental graben, which trends northwestward and has been previously mapped by Ulrich and others (1984). The second trend is a series of three previously unmapped lineaments identified photogrammetically and with remotely sensed data that probably are surface fractures overlying deep-seated older northeastwardstriking faults similar to those described by Shoemaker and others (1978). The Continental graben appears to be offset laterally to the southwest by the middle of these three lineaments. Displacement on the eastbounding fault of the graben is about 100 ft down to the west. At least two sinkholes are in the Continental graben. One of these sinkholes is referred to locally as the Bottomless Pits, which appear to be a series of northeastward-striking fractures truncated by a minor offset parallel to the main northwestward trend of the graben (fig. 8C). All of these fractures have been widened by solution, and the alluvial material overlying the fractures and a minor northwestward-striking fault has slumped and created a depression that is about 30 ft deep. Overflow from Rio de Flag that is intercepted by the Bottomless Pits is diverted under ground. During February and March 1995, runoff from Rio de Flag into the Bottomless Pits continued inter-mittently for 31 days at flow rates of as much as 70  $ft^3/s$ . The estimated total volume of flow during that period was about 610 acre-ft, or about 10 percent of the ground water currently pumped by the City of Flagstaff.



**Figure 30**. Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and interpreted resistivity from the square-array sounding data, Foxglenn site (FG). Apparent strike values are in degrees for each square size (32.8, 65.6, 164.0.....). Coefficient of anisotropy is a dimensionless number where any number larger than one indicates increasing anisotropy. For the interpreted resistivity curve, depth to water recorded at the Foxglenn well was 1,312 feet. Interpretation was done using ATO, which is a vertical electrical-sounding (VES) computer program by Zohdy (1989). The interpreted resistivity-curve depth of exploration was 492.1 feet.

# Table 2. Physical and chemical data for water from selected wells and springs, for surface water, and for precipitation, Flagstaff, Arizona Physical and chemical data for water from selected wells and springs, for surface water, and for precipitation,

[R, regional aquifer; P, perched ground water; S, surface water; SN, snowmelt; deg C, degrees Celsius; mg/L, milligrams per liter;  $\mu$ g/L, micro-grams per liter;  $\mu$ S/cm, microsiemens per centimeter at 25°C; pCi/L, picocuries per liter; TU, tritium units; pmc, percent modern carbon; <sup>14</sup>C, carbon-14; <sup>13</sup>C, carbon-13; modern, less than 200 years; <, less than. Dashes indicate no data]

| Well, spring,<br>or owner<br>name | Site identifier | Latitude                  | Longitude               | Water<br>source | Date     | Tempera-<br>ture water<br>(deg C) | pH water<br>whole field<br>(standard<br>units) | Alkalinity<br>wat distot it<br>field (mg/L as<br>CaCO3) | Hardness<br>total (mg/L<br>as CaCO3) | Alkalinity<br>wat dis fix<br>end field<br>(mg/L as<br>CaCO <sub>3</sub> ) | Specific<br>conduct-<br>ance field<br>(µS/cm) |
|-----------------------------------|-----------------|---------------------------|-------------------------|-----------------|----------|-----------------------------------|------------------------------------------------|---------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|
| LM-4                              | (A-20-08)19aba  | 35°06'25"                 | 111°35'05"              | R               | 07-01-96 | 11.2                              | 7.8                                            | 131                                                     | 140                                  | 130                                                                       | 254                                           |
| Do.                               | Do.             | Do.                       | Do.                     | Do.             | 02-20-97 | 11.4                              | 7.9                                            |                                                         |                                      |                                                                           | 253                                           |
| Do.                               | Do.             | Do.                       | Do.                     | Do.             | 08-20-97 | 11.2                              | 7.9                                            |                                                         |                                      |                                                                           | 250                                           |
| LM-8                              | (A-20-08)20cca  | 35 <sup>°</sup> 05 ' 47 " | 111°34'30"              | R               | 07-01-96 | 11.0                              | 7.3                                            | 262                                                     | 280                                  | 258                                                                       | 488                                           |
| LM-9                              | (A-20-08)30cda  | 35°04 ' 51 "              | 111°35'25"              | R               | 07-01-96 | 10.9                              | 7.2                                            | 364                                                     | 380                                  | 359                                                                       | 635                                           |
| Upper Lake<br>Mary                |                 | 35°04 ' 16"               | 111°31'02"              | S               | 07-08-96 | 20.6                              | 7.2                                            |                                                         |                                      |                                                                           | 60                                            |
| WM-1                              | (A-21-06)35cba  | 35°09 ' 24 "              | 111°44′01″              | R               | 07-01-96 | 11.3                              | 8.0                                            | 106                                                     | 100                                  | 103                                                                       | 211                                           |
| WM-6                              | (A-20-06)02bdb  | 35°08 ' 47 "              | 111°44′04″              | R               | 07-01-96 | 12.8                              | 8.1                                            | 104                                                     | 100                                  | 103                                                                       | 199                                           |
| WM-9                              | (A-20-06)11bdc  | 35°07 ' 45 "              | 111°43'56"              | R               | 07-01-96 | 12.8                              | 7.3                                            | 118                                                     | 120                                  | 117                                                                       | 233                                           |
| Do.                               | Do.             | Do.                       | Do.                     | Do.             | 02-25-97 | 12.2                              | 8.2                                            |                                                         |                                      |                                                                           | 209                                           |
| Do.                               | Do.             | Do.                       | Do.                     | Do.             | 08-26-97 | 12.6                              | 8.1                                            |                                                         |                                      |                                                                           | 212                                           |
| Continental-2                     | (A-21-08)17bca2 | 35°12'23"                 | 111°34'28"              | R               | 04-17-97 | 11.5                              | 7.8                                            | 128                                                     | 130                                  | 128                                                                       | 273                                           |
| Foxglenn-1                        | (A-21-07)24aad  | 35°11'37"                 | 111°35'48"              | R               | 06-01-97 | 14.5                              | 7.5                                            | 227                                                     | 220                                  | 226                                                                       | 428                                           |
| Pine Grove                        | (A-19-09)17dcd  | 35°01 '24"                | 111°27'35"              | R               | 06-10-96 | 15.0                              | 6.7                                            | 254                                                     | 240                                  | 252                                                                       | 475                                           |
| NPS Walnut<br>Canyon              | (A-21-08)26dab  | 35°10'25"                 | 111°30'37"              | R               | 06-11-96 | 14.6                              | 7.5                                            | 199                                                     | 200                                  | 197                                                                       | 409                                           |
| Mountainaire                      | (A-20-07)28bcc  | 35°05 ' 11 "              | 111°40'00"              | R               | 06-12-96 | 10.6                              | 6.9                                            | 205                                                     | 200                                  | 199                                                                       | 379                                           |
| Hidden Hollow                     | (A-21-07)19aca  | 35°11'30"                 | 111°41'16"              | R               | 06-14-96 | 19.0                              | 8.1                                            | 102                                                     | 94                                   | 103                                                                       | 209                                           |
| Flag Ranch                        | (A-21-06)25bcd  | 35°10'25"                 | 111°42′52″              | R               | 06-13-96 | 13.2                              | 7.9                                            |                                                         | 81                                   |                                                                           | 187                                           |
| Purl                              | (A-21-07)25bbd  | 35°10'43"                 | 111°36'37"              | R               | 06-18-96 | 13.1                              | 7.1                                            | 247                                                     | 280                                  | 245                                                                       | 450                                           |
| Henden                            | (A-21-06)23aad  | 35°11'35"                 | 111°43'10"              | R               | 06-18-96 | 14.1                              | 8.0                                            | 74                                                      | 82                                   | 77                                                                        | 168                                           |
| NPS Wupatki<br>HQ <sup>1</sup>    | (A-25-10)30bdb  | 35°31'10"                 | 111°22'20"              | R               | 06-26-96 | 20.5                              | 7.2                                            | 196                                                     | 450                                  | 191                                                                       |                                               |
| Do. <sup>1</sup>                  | Do.             | Do.                       | Do.                     | Do.             | 07-09-96 | 20.6                              | 7.5                                            | 205                                                     | 450                                  | 205                                                                       |                                               |
| IB-9                              | (A-23-07)33aab2 | 35°20 ' 27 "              | 111°39'00"              | Р               | 07-02-96 | 5.3                               | 7.6                                            | 26                                                      | 19                                   | 25                                                                        | 571                                           |
| IB snowmelt                       |                 | 35°20'27"                 | 111°39'00"              | SN              | 01-29-97 |                                   |                                                |                                                         |                                      |                                                                           |                                               |
| Babbitt Spring                    | (A-20-08)34cdb  | 35 <sup>°</sup> 04 ' 01 " | 111°32'16"              | R               | 06-14-96 | 8.5                               | 7.2                                            | 336                                                     | 350                                  | 336                                                                       | 637                                           |
| Clark Spring                      | (A-20-08)32cca  | 35°04 ' 02 "              | 111°34'44"              | R               | 06-13-96 | 11.0                              | 7.2                                            | 261                                                     | 240                                  | 259                                                                       | 462                                           |
| Rio de Flag<br>MW-1               | (A-21-07)23cac  | 35°11'20"                 | 111°38'00"              | Р               | 06-13-96 | 11.5                              | 6.9                                            | 214                                                     | 270                                  | 210                                                                       | 588                                           |
| FH-5                              | (A-20-06)24abb  | 35°06 ' 25 "              | 111°42'03"              | R               | 06-25-96 | 12.6                              | 7.0                                            | 218                                                     | 220                                  | 217                                                                       | 395                                           |
| Parks Sch.                        | (A-22-04)27aad  | 35°15'46"                 | 111°56'58"              | Р               | 06-25-96 | 12.2                              | 7.8                                            | 129                                                     | 110                                  | 126                                                                       | 254                                           |
| Quarry                            |                 | 35°12'01"                 | 111°49'31"              | S               | 06-21-96 | 13.6                              |                                                | 159                                                     | 35                                   | 161                                                                       | 351                                           |
| Old Town<br>Spring                | (A-21-07)16cdb  | 35°11'53"                 | 111°39'38"              | Р               | 07-08-96 | 12.5                              | 7.4                                            | 108                                                     | 100                                  | 108                                                                       | 244                                           |
| Rio de Flag<br>MW-3               | (A-21-07)25bba2 | 35°10'52"                 | 111°36'33"              | Р               | 06-12-96 | 11.2                              | 7.3                                            | 332                                                     | 400                                  | 326                                                                       | 909                                           |
| Sterling<br>Springs               | (A-19-06)15ddd1 | 35°01 ' 30"               | 111°44'22"              | R               | 06-18-96 | 11.0                              | 7.7                                            | 122                                                     | 140                                  | 122                                                                       | 270                                           |
| NAD-1                             | (A-21-05)11abc  | 35°13'15"                 | 111 <sup>°</sup> 50'00" | Р               | 06-21-96 | 8.7                               | 7.3                                            | 138                                                     | 130                                  | 136                                                                       | 325                                           |
| BBDP-MVR-1                        | (A-21-09)06baa  | 35°14 ' 16"               | 111°28′50″              | R               | 06-11-96 | 17.9                              | 7.7                                            | 135                                                     | 170                                  | 132                                                                       | 436                                           |
| Do.                               | Do.             | Do.                       | Do.                     | Do.             | 04-08-97 | 18.5                              | 7.8                                            | 131                                                     | 180                                  | 131                                                                       | 403                                           |
| Do.                               | Do.             | Do.                       | Do.                     | Do.             | 08-26-97 | 18.0                              | 7.7                                            |                                                         |                                      |                                                                           | 410                                           |
| BBDP-Marijka                      | (A-22-08)23abb  | 35°16'56"                 | 111°30′52″              | R               | 06-11-96 | 6.6                               | 6.6                                            | 250                                                     | 250                                  | 248                                                                       | 484                                           |
| Mtn Dell-1                        | (A-21-07)32bbc1 | 35°09'46"                 | 111°40′53″              | R               | 06-19-96 | 12.0                              | 7.1                                            | 239                                                     | 270                                  | 234                                                                       | 444                                           |
| Do.                               | Do.             | Do.                       | Do.                     | Do.             | 03-11-97 | 10.6                              | 7.2                                            |                                                         |                                      |                                                                           | 506                                           |
| Do.                               | Do.             | Do.                       | Do.                     | Do.             | 08-28-97 | 11.9                              | 7.3                                            |                                                         |                                      |                                                                           | 501                                           |
| Mtn Dell-2                        | (A-21-07)32bbc2 | 35°09'48"                 | 111°40 ' 52 "           | R               | 06-19-96 | 12.0                              | 7.3                                            | 184                                                     | 220                                  | 182                                                                       | 370                                           |
| Center<br>snowmelt                |                 | 34°12'27"                 | 111°37'57"              | SN              | 01-15-97 |                                   |                                                |                                                         |                                      |                                                                           |                                               |

**Table 2**. Physical and chemical data for water from selected wells and springs, for surface water, and for precipitation, Flagstaff, Arizona—Continued

| Well, spring,<br>or owner<br>name | Date     | Calcium,<br>dissolved<br>(mg/L as Ca) | Magnesium,<br>dissolved<br>(mg/L as Mg) | Sodium,<br>dissolved<br>(mg/L as Na) | Potassium,<br>dissolved<br>(mg/L as K) | Chloride,<br>dissolved<br>(mg/L as Cl) | Fluoride,<br>dissolved<br>(mg/L as F) | Sulfate,<br>dissolved<br>(mg/L as<br>SO4) | Silica,<br>dissolved<br>(mg/L as<br>SiO <sub>2</sub> ) | Arsenic,<br>dissolved<br>(µg/L as<br>As) | Barium,<br>dissolved<br>(µg/L as<br>Ba) |
|-----------------------------------|----------|---------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------------------------|------------------------------------------|-----------------------------------------|
| LM-4                              | 07-01-96 | 27                                    | 17                                      | 2.0                                  | 0.30                                   | 0.70                                   | 0.20                                  | 2.5                                       | 7.7                                                    | 6                                        | 66                                      |
| Do.                               | 02-20-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| Do.                               | 08-20-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| LM-8                              | 07-01-96 | 53                                    | 36                                      | 3.7                                  | .60                                    | 2.0                                    | <.10                                  | 1.5                                       | 9.4                                                    | 3                                        | 380                                     |
| LM-9                              | 07-01-96 | 70                                    | 49                                      | 3.5                                  | .90                                    | 2.6                                    | .10                                   | 1.3                                       | 12                                                     | 3                                        | 650                                     |
| Upper Lake<br>Mary                | 07-08-96 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| WM-1                              | 07-01-96 | 22                                    | 12                                      | 4.5                                  | 1.2                                    | 1.7                                    | <.10                                  | 2.2                                       | 19                                                     | 4                                        | 400                                     |
| WM-6                              | 07-01-96 | 20                                    | 12                                      | 4.8                                  | 1.4                                    | 1.6                                    | <.10                                  | 1.6                                       | 19                                                     | 6                                        | 840                                     |
| WM-9                              | 07-01-96 | 25                                    | 13                                      | 4.8                                  | 1.2                                    | 1.5                                    | <.10                                  | 1.5                                       | 17                                                     | 6                                        | 580                                     |
| Do.                               | 02-25-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| Do.                               | 08-26-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| Continental-2                     | 04-17-97 | 26                                    | 16                                      | 5.6                                  | .59                                    | 2.0                                    | .19                                   | 4.2                                       | 9.1                                                    | 2                                        | 505                                     |
| Foxglenn-1                        | 06-01-97 | 49                                    | 25                                      | 4.8                                  | 1.1                                    | 1.7                                    | <.10                                  | 1.5                                       | 11                                                     | 1                                        | 480                                     |
| Pine Grove                        | 06-10-96 | 52                                    | 27                                      | 7.4                                  | 1.0                                    |                                        |                                       |                                           | 24                                                     | 6                                        | <sup>2</sup> 2,000                      |
| NPS Walnut<br>Canyon              | 06-11-96 | 45                                    | 22                                      | 4.7                                  | .90                                    | 5.8                                    | .10                                   | 2.8                                       | 11                                                     | <1                                       | 280                                     |
| Mountainaire                      | 06-12-96 | 44                                    | 21                                      | 3.3                                  | .50                                    | 2.9                                    | .20                                   | .80                                       | 15                                                     | 2                                        | 36                                      |
| Hidden<br>Hollow                  | 06-14-96 | 21                                    | 10                                      | 4.9                                  | 1.5                                    | 2.4                                    | <.10                                  | 1.7                                       | 18                                                     | 17                                       | 160                                     |
| Flag Ranch                        | 06-13-96 | 18                                    | 8.6                                     | 6.4                                  | 1.4                                    | 1.4                                    | .10                                   | 1.8                                       | 18                                                     | 28                                       | 210                                     |
| Purl                              | 06-18-96 | 56                                    | 33                                      | 3.1                                  | .90                                    | 2.0                                    | <.10                                  | 1.4                                       | 12                                                     | <1                                       | 63                                      |
| Henden                            | 06-18-96 | 18                                    | 8.9                                     | 4.9                                  | 1.5                                    | 1.9                                    | .10                                   | 1.9                                       | 18                                                     | 20                                       | 660                                     |
| NPS Wupatki<br>HQ <sup>1</sup>    | 06-26-96 | 71                                    | 67                                      | 260                                  | 4.6                                    | 430                                    | .30                                   | <sup>3</sup> 250                          | 11                                                     | <1                                       | 22                                      |
| Do. <sup>1</sup>                  | 07-09-96 | 71                                    | 67                                      | 250                                  | 4.4                                    | 410                                    | .30                                   | 220                                       | 12                                                     | <1                                       | 21                                      |
| IB-9                              | 07-02-96 | 4.3                                   | 2.1                                     | 2.7                                  | 2.1                                    | .40                                    | .40                                   | 1.5                                       | 39                                                     | 2                                        | <2.0                                    |
| IB snowmelt                       | 01-29-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| Babbitt Spring                    | 06-14-96 | 76                                    | 38                                      | 8.0                                  | .50                                    | 10                                     | .20                                   | 3.4                                       | 23                                                     | <1                                       | 25                                      |
| Clark Spring                      | 06-13-96 | 49                                    | 28                                      | 3.3                                  | .50                                    | 1.5                                    | .10                                   | 2.0                                       | 14                                                     | <1                                       | 46                                      |
| Rio de Flag<br>MW-1               | 06-13-96 | 62                                    | 28                                      | 17                                   | 1.9                                    | 52                                     | <.10                                  | 22                                        | 27                                                     | 1                                        | 38                                      |
| FH-5                              | 06-25-96 | 48                                    | 25                                      | 3.8                                  | 1.1                                    | 2.3                                    | .10                                   | .80                                       | 13                                                     | 1                                        | 950                                     |
| Parks Sch.                        | 06-25-96 | 29                                    | 9.5                                     | 13                                   | 2.2                                    | 4.7                                    | .10                                   | 2.0                                       | 29                                                     | 1                                        | 24                                      |
| Quarry                            | 06-21-96 | 5.6                                   | 5.0                                     | 63                                   | 12                                     | 7.5                                    | .60                                   | 3.1                                       | 3.2                                                    | 2                                        | 12                                      |
| Old Town<br>Spring                | 07-08-96 | 20                                    | 12                                      | 11                                   | 1.6                                    | 6.8                                    | .10                                   | 8.6                                       | 34                                                     | <1                                       | 11                                      |
| Rio de Flag<br>MW-3               | 06-12-96 | 78                                    | 50                                      | 17                                   | 1.9                                    | 31                                     | .20                                   | 24                                        | 17                                                     | 2                                        | 46                                      |
| Sterling<br>Springs               | 06-18-96 | 31                                    | 14                                      | 2.8                                  | .60                                    | 1.3                                    | <.10                                  | .50                                       | 14                                                     | 2                                        | 120                                     |
| NAD-1                             | 06-21-96 | 30                                    | 14                                      | 14                                   | 2.0                                    | 4.9                                    | .10                                   | 14                                        | 23                                                     | <1                                       | 10                                      |
| BBDP-MVR-1                        | 06-11-96 | 36                                    | 20                                      | 8.2                                  | 1.8                                    | 29                                     | .10                                   | 4.8                                       | 13                                                     | <1                                       | 1,200                                   |
| Do.                               | 04-08-97 | 34                                    | 23                                      | 11                                   | 1.9                                    | 34                                     | <.10                                  | 5.0                                       | 13                                                     | <1                                       | 1,310                                   |
| Do.                               | 08-26-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| BBDP-<br>Marijka                  | 06-11-96 | 53                                    | 28                                      | 6.3                                  | 1.8                                    | 6.1                                    | .20                                   | 2.8                                       | 19                                                     | 2                                        | 1,200                                   |
| Mtn Dell-                         | 06-19-96 | 61                                    | 28                                      | 4.2                                  | .80                                    | 3.1                                    | <.10                                  | 2.1                                       | 14                                                     | 3                                        | 34                                      |
| Do.                               | 03-11-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| Do.                               | 08-28-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |
| Mtn Dell-                         | 06-19-96 | 50                                    | 22                                      | 3.3                                  | .80                                    | 5.7                                    | <.10                                  | 2.4                                       | 15                                                     | 4                                        | 25                                      |
| Center<br>snowmelt                | 01-15-97 |                                       |                                         |                                      |                                        |                                        |                                       |                                           |                                                        |                                          |                                         |

| Table 2.  | Physical and chemical data for water from selected wells and springs, for surface water, and for p | precipitation, Flagstaff, |
|-----------|----------------------------------------------------------------------------------------------------|---------------------------|
| Arizona—( | ontinued                                                                                           |                           |

| Well, spring,<br>or owner<br>name | Date     | Beryllium,<br>dissolved<br>(μg/L as<br>Be) | Boron,<br>dissolved<br>(μg/L as B) | Cadmium,<br>dissolved<br>(µg/L as<br>Cd) | Chromium<br>, dissolved<br>(µg/L as<br>Cr) | Cobalt,<br>dissolved<br>(µg/L as<br>Co) | Copper,<br>dissolved<br>(µg/L as<br>Cu) | Iron,<br>dissolved<br>(µg/L as<br>Fe) | Lead,<br>dissolved<br>(µg/L as<br>Pb) | Manganese<br>, dissolved<br>(μg/L as<br>Mn) | Molybdeum<br>, dissolved<br>(µg/L as<br>Mo) | Nickel,<br>dissolved<br>(µg/L as<br>Ni) |
|-----------------------------------|----------|--------------------------------------------|------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------|
| LM-4                              | 07-01-96 | < 0.50                                     | 4.5                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Do.                               | 02-20-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| Do.                               | 08-20-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| LM-8                              | 07-01-96 | <.50                                       | <4.0                               | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| LM-9                              | 07-01-96 | <.50                                       | 7.0                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | 1.0                                         | <10                                         | <10                                     |
| Upper Lake<br>Mary                | 07-08-96 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| WM-1                              | 07-01-96 | <.50                                       | 5.5                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 3.0                                   | <10                                   | 2.0                                         | <10                                         | <10                                     |
| WM-6                              | 07-01-96 | <.50                                       | 6.0                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| WM-9                              | 07-01-96 | <.50                                       | 6.0                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 76                                    | <10                                   | 32                                          | <10                                         | <10                                     |
| Do.                               | 02-25-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| Do.                               | 08-26-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| Continental-2                     | 04-17-97 | <.50                                       | 6.6                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Foxglenn-1                        | 06-01-97 | <.50                                       | 18.9                               | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 13                                    | <10                                   | 1.3                                         | <10                                         | <10                                     |
| Pine Grove                        | 06-10-96 | <.50                                       |                                    | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| NPS Walnut<br>Canyon              | 06-11-96 | <.50                                       | 9.7                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 3.0                                   | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Mountainaire                      | 06-12-96 | <.50                                       | 6.3                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Hidden Hollow                     | 06-14-96 | <.50                                       | 10                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Flag Ranch                        | 06-13-96 | <.50                                       | 8.8                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 5.0                                   | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Purl                              | 06-18-96 | <.50                                       | 15                                 | <1.0                                     | <5.0                                       | 4.0                                     | <10                                     | 4.0                                   | <10                                   | 1.0                                         | 10                                          | <10                                     |
| Henden                            | 06-18-96 | .60                                        | 17                                 | 2.0                                      | <5.0                                       | 7.0                                     | <10                                     | 6.0                                   | <10                                   | 32                                          | <10                                         | <10                                     |
| NPS Wupatki<br>HQ <sup>1</sup>    | 06-26-96 | <1.5                                       | 94                                 | <3.0                                     | <15                                        | <9.0                                    | <30                                     | <9.0                                  | <30                                   | <3.0                                        | <30                                         | <30                                     |
| Do. <sup>1</sup>                  | 07-09-96 | <1.5                                       | 96                                 | <3.0                                     | <15                                        | <9.0                                    | <30                                     | 14                                    | <30                                   | 3.0                                         | <30                                         | <30                                     |
| IB-9                              | 07-02-96 | <.50                                       | 5.8                                | 2.0                                      | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| IB snowmelt                       | 01-29-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| Babbitt Spring                    | 06-14-96 | <.50                                       | 8.2                                | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Clark Spring                      | 06-13-96 | <.50                                       | 10                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 44                                    | <10                                   | 17                                          | <10                                         | <10                                     |
| Rio de Flag<br>MW-1               | 06-13-96 | <.50                                       | 44                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 8.0                                   | <10                                   | 1.0                                         | <10                                         | <10                                     |
| FH-5                              | 06-25-96 | <.50                                       | 11                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 3.0                                   | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Parks Sch.                        | 06-25-96 | <.50                                       | 19                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 20                                    | <10                                   | 4.0                                         | <10                                         | <10                                     |
| Quarry                            | 06-21-96 | <.50                                       | 42                                 | 1.0                                      | <5.0                                       | <3.0                                    | <10                                     | 54                                    | <10                                   | 7.0                                         | <10                                         | <10                                     |
| Old Town<br>Spring                | 07-08-96 | <.50                                       | 25                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | 10                                          | <10                                     |
| Rio de Flag<br>MW-3               | 06-12-96 | <.50                                       | 45                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 17                                    | 20                                    | <1.0                                        | <10                                         | <10                                     |
| Sterling<br>Springs               | 06-18-96 | <.50                                       | 4.7                                | <1.0                                     | <5.0                                       | 3.0                                     | 20                                      | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| NAD-1                             | 06-21-96 | <.50                                       | 31                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| BBDP-MVR-1                        | 06-11-96 | <.50                                       | 16                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | 5.0                                   | <10                                   | <sup>4</sup> 78                             | <10                                         | <10                                     |
| Do.                               | 04-08-97 | <.50                                       | 20                                 | 1.1                                      | 5.9                                        | <3.0                                    | 13                                      | 6.9                                   | 13                                    | 16                                          | <10                                         | 15                                      |
| Do.                               | 08-26-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| BBDP-Marijka                      | 06-11-96 | <.50                                       | 19                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | 10                                    | <1.0                                        | <10                                         | <10                                     |
| Mtn Dell-                         | 06-19-96 | <.50                                       | 13                                 | <1.0                                     | <5.0                                       | <3.0                                    | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Do.                               | 03-11-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| Do.                               | 08-28-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |
| Mtn Dell-                         | 06-19-96 | <.50                                       | 9.4                                | <1.0                                     | <5.0                                       | 5.0                                     | <10                                     | <3.0                                  | <10                                   | <1.0                                        | <10                                         | <10                                     |
| Center<br>snowmelt                | 01-15-97 |                                            |                                    |                                          |                                            |                                         |                                         |                                       |                                       |                                             |                                             |                                         |

**Table 2**. Physical and chemical data for water from selected wells and springs, for surface water, and for precipitation, Flagstaff, Arizona—Continued

| Well, spring,<br>or owner<br>name | Date     | Silver,<br>dissolved<br>(µg/L as Ag) | Strontium,<br>dissolved<br>(µg/L as Sr) | Vanadium,<br>dissolved<br>(µg/L as V) | Antimony,<br>dissolved<br>(µg/L as Sb) | Lithium,<br>dissolved<br>(µg/L as Li) | Selenium,<br>dissolved<br>(µg/L as Se) | Nitrogen,<br>nitrate<br>dissolved<br>(mg/L as N) | Nitrogen,<br>ammonia<br>dissolved<br>(mg/L as N) | Nitrogen,<br>nitrite<br>dissolved<br>(mg/L as N) | Nitrogen,<br>ammonia+<br>organic total<br>dissolved<br>(mg/L as N) |
|-----------------------------------|----------|--------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|
| LM-4                              | 07-01-96 | <1.0                                 | 25                                      | <6                                    | 2.0                                    | <4                                    | <1                                     |                                                  | 0.03                                             | < 0.01                                           | < 0.20                                                             |
| Do.                               | 02-20-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| Do.                               | 08-20-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| LM-8                              | 07-01-96 | <1.0                                 | 62                                      | <6                                    | 1.0                                    | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| LM-9                              | 07-01-96 | <1.0                                 | 80                                      | <6                                    | 1.0                                    | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| Upper Lake<br>Mary                | 07-08-96 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| WM-1                              | 07-01-96 | <1.0                                 | 110                                     | <6                                    | 2.0                                    | <4                                    | <1                                     |                                                  | .04                                              | <.01                                             | <.20                                                               |
| WM-6                              | 07-01-96 | <1.0                                 | 91                                      | <6                                    | 2.0                                    | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| WM-9                              | 07-01-96 | <1.0                                 | 86                                      | <6                                    | 2.0                                    | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| Do.                               | 02-25-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| Do.                               | 08-26-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| Continental-2                     | 04-17-97 | <1.0                                 | 36                                      | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | <.02                                             | <.01                                             | <.20                                                               |
| Foxglenn-1                        | 06-01-97 | <1.0                                 | 66                                      | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | <.02                                             | <.01                                             | <.20                                                               |
| Pine Grove                        | 06-10-96 | <1.0                                 | 300                                     | <6                                    | 1.0                                    | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| NPS Walnut<br>Canyon              | 06-11-96 | <1.0                                 | 71                                      | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .02                                              | <.01                                             | <.20                                                               |
| Mountainaire                      | 06-12-96 | <1.0                                 | 110                                     | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .05                                              | <.01                                             | <.20                                                               |
| Hidden Hollow                     | 06-14-96 | <1.0                                 | 70                                      | <6                                    | 2.0                                    | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| Flag Ranch                        | 06-13-96 | <1.0                                 | 77                                      | <6                                    | <sup>5</sup> 7.0                       | <4                                    | <1                                     |                                                  | .02                                              | <.01                                             | <.20                                                               |
| Purl                              | 06-18-96 | <1.0                                 | 60                                      | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| Henden                            | 06-18-96 | <1.0                                 | 70                                      | <6                                    | <sup>5</sup> 6.0                       | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| NPS Wupatki<br>HQ <sup>1</sup>    | 06-26-96 | <3.0                                 | 1,100                                   | <18                                   | <1.0                                   | 26                                    | 4                                      |                                                  | <.02                                             | <.01                                             | <.20                                                               |
| Do. <sup>1</sup>                  | 07-09-96 | <3.0                                 | 1,100                                   | <18                                   | <1.0                                   | 23                                    | 4                                      |                                                  | .03                                              | <.01                                             | <.20                                                               |
| IB-9                              | 07-02-96 | <1.0                                 | 18                                      | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .04                                              | <.01                                             | <.20                                                               |
| IB snowmelt                       | 01-29-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| Babbitt Spring                    | 06-14-96 | <1.0                                 | 140                                     | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | <.02                                             | <.01                                             | 1.1                                                                |
| Clark Spring                      | 06-13-96 | <1.0                                 | 87                                      | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .120                                             | <.01                                             | <.20                                                               |
| Rio de Flag<br>MW-1               | 06-13-96 | <1.0                                 | 160                                     | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .04                                              | <.01                                             | <.20                                                               |
| FH-5                              | 06-25-96 | <1.0                                 | 110                                     | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | <.02                                             | <.01                                             | <.20                                                               |
| Parks Sch.                        | 06-25-96 | <1.0                                 | 260                                     | 15                                    | <1.0                                   | <4                                    | <1                                     | .30                                              | <.02                                             | .01                                              | <.20                                                               |
| Quarry                            | 06-21-96 | <1.0                                 | 48                                      | <6                                    | 1.0                                    | <4                                    | <1                                     |                                                  | .03                                              | .02                                              | .80                                                                |
| Old Town Spring                   | 07-08-96 | <1.0                                 | 200                                     | <6                                    | <1.0                                   | <4                                    | <1                                     | 1.58                                             | .38                                              | .02                                              | <.20                                                               |
| Rio de Flag<br>MW-3               | 06-12-96 | <1.0                                 | 130                                     | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .03                                              | <.01                                             | <.20                                                               |
| Sterling Springs                  | 06-18-96 | <1.0                                 | 80                                      | 7                                     | <1.0                                   | <4                                    | <1                                     |                                                  | .02                                              | <.01                                             | <.20                                                               |
| NAD-1                             | 06-21-96 | <1.0                                 | 320                                     | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .04                                              | <.01                                             | <.20                                                               |
| BBDP-MVR-1                        | 06-11-96 | <1.0                                 | 120                                     | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .04                                              | <.01                                             | <.20                                                               |
| Do.                               | 04-08-97 | 1.5                                  | 139                                     | <6                                    | <1.0                                   | 4                                     | <1                                     |                                                  | <.02                                             | <.01                                             | <.20                                                               |
| Do.                               | 08-26-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| BBDP-Marijka                      | 06-11-96 | <1.0                                 | 160                                     | <6                                    | <1.0                                   | 5                                     | 1                                      |                                                  | .03                                              | <.01                                             | <.20                                                               |
| Mtn Dell-                         | 06-19-96 | <1.0                                 | 67                                      | <6                                    | <1.0                                   | <4                                    | <1                                     |                                                  | .04                                              | <.01                                             | <.20                                                               |
| Do.                               | 03-11-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| Do.                               | 08-28-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
| Mtn Dell-                         | 06-19-96 | 1.0                                  | 100                                     | 9                                     | 1.0                                    | <4                                    | <1                                     |                                                  | .02                                              | <.01                                             | <.20                                                               |
| Center snowmelt                   | 01-15-97 |                                      |                                         |                                       |                                        |                                       |                                        |                                                  |                                                  |                                                  |                                                                    |
**Table 2**. Physical and chemical data for water from selected wells and springs, for surface water, and for precipitation, Flagstaff, Arizona—Continued

| Well, spring,<br>or owner<br>name | Date     | Nitrogen,<br>NO2+NO3<br>dissolved<br>(mg/L as N) | Phosphorus,<br>total<br>(mg/L as P) | Phosphorus,<br>dissolved<br>(mg/L as P) | Phosphorus<br>ortho,<br>dissolved<br>(mg/L as P) | Solids,<br>sum of<br>constituents,<br>dissolved<br>(mg/L) | Tritium,<br>total (pCi/L) | Tritium,<br>units (TU) | Tritium 2<br>sigma water,<br>whole total<br>(pCi/L) | $\delta^2$ H<br>(per mil) | $\delta^{18}$ 0<br>(per mil) |
|-----------------------------------|----------|--------------------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------------------------|---------------------------|------------------------|-----------------------------------------------------|---------------------------|------------------------------|
| LM-4                              | 07-01-96 | 0.17                                             | < 0.01                              | 0.02                                    | 0.03                                             | 137                                                       | 24                        | 7.5                    | 2.0                                                 | -72.3                     | -9.23                        |
| Do.                               | 02-20-97 |                                                  |                                     |                                         |                                                  |                                                           | 26                        | 8.2                    | 1.9                                                 | -74.5                     | -9.27                        |
| Do.                               | 08-20-97 |                                                  |                                     |                                         |                                                  |                                                           | 24                        | 7.5                    | 1.9                                                 | -74.0                     | -9.27                        |
| LM-8                              | 07-01-96 | .21                                              | <.01                                | <.01                                    | .01                                              | 265                                                       | <1.0                      | <.31                   | 1.0                                                 | -87.5                     | -12.18                       |
| LM-9                              | 07-01-96 | .14                                              | .02                                 | <.01                                    | .01                                              | 359                                                       | <1.0                      | <.31                   | 1.0                                                 | -85.6                     | -11.77                       |
| Upper Lake Mary                   | 07-08-96 |                                                  |                                     |                                         |                                                  |                                                           | 21.4                      | 6.7                    | 1.6                                                 | -42.4                     | -3.18                        |
| WM-1                              | 07-01-96 | .18                                              | <.01                                | .01                                     | .02                                              | 127                                                       | 12                        | 3.8                    | 1.0                                                 | -86.0                     | -12.28                       |
| WM-6                              | 07-01-96 | .16                                              | <.01                                | <.01                                    | .02                                              | 125                                                       | 2.0                       | .63                    | 1.0                                                 | -83.5                     | -11.95                       |
| WM-9                              | 07-01-96 | .14                                              | .07                                 | .06                                     | .07                                              | 136                                                       | <1.0                      | <.31                   | 1.0                                                 | -85.6                     | -12.00                       |
| Do.                               | 02-25-97 |                                                  |                                     |                                         |                                                  |                                                           | 1.3                       | <.41                   | 1.0                                                 | -85.4                     | -12.02                       |
| Do.                               | 08-26-97 |                                                  |                                     |                                         |                                                  |                                                           | 1.0                       | <.31                   | .6                                                  | -86.8                     | -12.13                       |
| Continental-2                     | 04-17-97 | 1.7                                              | .072                                | .023                                    | .01                                              | 153                                                       | 8.6                       | 2.7                    | 1.0                                                 | -90.7                     | -12.33                       |
| Foxglenn-1                        | 06-01-97 | .19                                              | .038                                | <.01                                    | <.01                                             | 242                                                       | <1.0                      | <.31                   | 1.0                                                 | -90.2                     | -12.43                       |
| Pine Grove                        | 06-10-96 | .17                                              | <.01                                | <.01                                    | .01                                              |                                                           | <1.0                      | <.31                   | 1.0                                                 | -84.4                     | -11.73                       |
| NPS Walnut<br>Canyon              | 06-11-96 | 1.6                                              | <.01                                | <.01                                    | .01                                              | 220                                                       | <1.0                      | <.31                   | 1.0                                                 | -83.8                     | -11.88                       |
| Mountainaire                      | 06-12-96 | .51                                              | .03                                 | <.01                                    | .02                                              | 213                                                       | 7.0                       | 2.2                    | 1.0                                                 | -82.8                     | -11.91                       |
| Hidden Hollow                     | 06-14-96 | .26                                              | .03                                 | .01                                     | .03                                              | 122                                                       | <1.0                      | <.31                   | 1.0                                                 | -87.9                     | -12.38                       |
| Flag Ranch                        | 06-13-96 | .22                                              | .04                                 | .03                                     | .03                                              | 115                                                       | <1.0                      | <.31                   | 1.0                                                 | -85.7                     | -11.87                       |
| Purl                              | 06-18-96 | .23                                              | <.01                                | <.01                                    | .01                                              | 258                                                       | <1.0                      | <.31                   | 1.0                                                 | -85.8                     | -11.69                       |
| Henden                            | 06-18-96 | .20                                              | <.01                                | <.01                                    | .02                                              | 102                                                       | <1.0                      | <.31                   | 1.0                                                 | -85.5                     | -11.88                       |
| NPS Wupatki<br>HQ <sup>1</sup>    | 06-26-96 | .23                                              | <.01                                | <.01                                    | <.01                                             | 1,220                                                     |                           |                        |                                                     | -73.5                     | -10.20                       |
| Do. <sup>1</sup>                  | 07-09-96 | .26                                              | <.01                                | .01                                     | <.01                                             | 1,160                                                     | <1.0                      | <.31                   | 1.0                                                 | -75.2                     | -10.18                       |
| IB-9                              | 07-02-96 | .11                                              | .04                                 | .04                                     | .05                                              | 69                                                        | 33                        | 10.3                   | 3.0                                                 | -93.8                     | -13.05                       |
| IB snowmelt                       | 01-29-97 |                                                  |                                     |                                         |                                                  |                                                           |                           |                        |                                                     | -114.1                    | -15.94                       |
| Babbitt Spring                    | 06-14-96 | .30                                              | .30                                 | .02                                     | .04                                              | 362                                                       | 27                        | 8.5                    | 2.0                                                 | -86.3                     | -12.12                       |
| Clark Spring                      | 06-13-96 | <.05                                             | .04                                 | <.01                                    | .02                                              | 255                                                       | 25                        | 7.8                    | 2.0                                                 | -68.6                     | -9.95                        |
| Rio de Flag MW-<br>1              | 06-13-96 | 1.1                                              | .18                                 | .13                                     | .17                                              | 344                                                       | 19                        | 6.0                    | 2.0                                                 | -77.1                     | -10.38                       |
| FH-5                              | 06-25-96 | .09                                              | <.01                                | <.01                                    | .02                                              | 226                                                       | <1.0                      | <.31                   | 1.0                                                 | -86.9                     | -11.95                       |
| Parks Sch.                        | 06-25-96 | .31                                              | .04                                 | .04                                     | .03                                              | 169                                                       |                           |                        |                                                     |                           |                              |
| Quarry                            | 06-21-96 | <.05                                             | .03                                 | .01                                     | .02                                              | 152                                                       | 27                        | 8.5                    | 2.0                                                 | -7.9                      | 6.04                         |
| Old Town Spring                   | 07-08-96 | 1.6                                              | .12                                 | .13                                     | .18                                              | 167                                                       | 16                        | 5.0                    | 1.0                                                 | -79.3                     | -10.84                       |
| Rio de Flag MW-<br>3              | 06-12-96 | 18.0                                             | .06                                 | .06                                     | .06                                              | 499                                                       | 29                        | 9.1                    | 2.0                                                 | -86.1                     | -11.66                       |
| Sterling Springs                  | 06-18-96 | .14                                              | <.01                                | <.01                                    | .01                                              | 138                                                       | 2.0                       | .63                    | 1.0                                                 | -82.9                     | -11.88                       |
| NAD-1                             | 06-21-96 | 3.3                                              | .07                                 | .06                                     | .09                                              | 200                                                       | 31                        | 9.7                    | 2.0                                                 | -83.8                     | -11.44                       |
| BBDP-MVR-1                        | 06-11-96 | 4.6                                              | .01                                 | <.01                                    | .01                                              | 216                                                       | 14                        | 4.4                    | 1.0                                                 | -80.8                     | -11.07                       |
| Do.                               | 04-08-97 | 4.8                                              | <.01                                | <.01                                    | <.01                                             | 230                                                       | 15                        | 4.7                    | 1.3                                                 | -80.4                     | -10.88                       |
| Do.                               | 08-26-97 |                                                  |                                     |                                         |                                                  |                                                           | 16                        | 5.0                    | 1.3                                                 | -80.2                     | -10.82                       |
| BBDP-Marijka                      | 06-11-96 | 1.1                                              | <.01                                | <.01                                    | .02                                              | 274                                                       | <1.0                      | <.31                   | 1.0                                                 | -82.8                     | -11.70                       |
| Mtn Dell-1                        | 06-19-96 | 1.0                                              | .02                                 | <.01                                    | .03                                              | 262                                                       | 3.0                       | .94                    | 1.0                                                 | -87.2                     | -12.10                       |
| Do.                               | 03-11-97 |                                                  |                                     |                                         |                                                  |                                                           |                           |                        |                                                     | -86.7                     | -12.15                       |
| Do.                               | 08-28-97 |                                                  |                                     |                                         |                                                  |                                                           | 4.2                       | 1.3                    | 1.0                                                 | -87.4                     | -12.12                       |
| Mtn Dell-2                        | 06-19-96 | 1.8                                              | .01                                 | <.01                                    | .03                                              | 218                                                       | 9.0                       | 2.8                    | 1.0                                                 | -86.8                     | -12.01                       |
| Center snowmelt                   | 01-15-97 |                                                  |                                     |                                         |                                                  |                                                           |                           |                        |                                                     | -106.9                    | -15.19                       |

See footnotes at end of table.

Physical and chemical data for water from selected wells and springs, for surface water, and for precipitation, Flagstaff, Table 2. Arizona—Continued

| Well, spring,<br>or owner<br>name | Date     | <sup>14</sup> C<br>(pmc) | $\delta^{13}$ C<br>(per mil) | Corrected ground-water age from $^{14} m C$ data $^6$ |  |  |
|-----------------------------------|----------|--------------------------|------------------------------|-------------------------------------------------------|--|--|
| LM-4                              | 07-01-96 | 76.2                     | -9.6                         | MODERN                                                |  |  |
| Do.                               | 02-20-97 |                          |                              |                                                       |  |  |
| Do.                               | 08-20-97 |                          |                              |                                                       |  |  |
| LM-8                              | 07-01-96 | 113.1                    | -9.8                         | MODERN                                                |  |  |
| LM-9                              | 07-01-96 | 71.4                     | -9.0                         | MODERN                                                |  |  |
| Upper Lake Mary                   | 07-08-96 |                          |                              |                                                       |  |  |
| WM-1                              | 07-01-96 | 44.0                     | -10.8                        | 2,089                                                 |  |  |
| WM-6                              | 07-01-96 | 46.0                     | -11.6                        | 2,263                                                 |  |  |
| WM-9                              | 07-01-96 | 41.6                     | -11.0                        | 2,949                                                 |  |  |
| Do.                               | 02-25-97 |                          |                              |                                                       |  |  |
| Do.                               | 08-26-97 |                          |                              |                                                       |  |  |
| Continental-2                     | 04-17-97 | 52.9                     | -7.9                         | MODERN                                                |  |  |
| Foxglenn-1                        | 06-01-97 | 59.5                     | -9.2                         | MODERN                                                |  |  |
| Pine Grove                        | 06-10-96 | 47.6                     | -12.4                        | 2,603                                                 |  |  |
| NPS Walnut Canyon                 | 06-11-96 | 58.6                     | -11.1                        | 230                                                   |  |  |
| Mountainaire                      | 06-12-96 | 50.0                     | -10.5                        | 830                                                   |  |  |
| Hidden Hollow                     | 06-14-96 | 58.4                     | -10.7                        | 275                                                   |  |  |
| Flag Ranch                        | 06-13-96 | 35.8                     | -10.9                        | 4,041                                                 |  |  |
| Purl                              | 06-18-96 | 70.2                     | -8.3                         | MODERN                                                |  |  |
| Henden                            | 06-18-96 | 26.2                     | -9.7                         | 5,860                                                 |  |  |
| NPS Wupatki HQ <sup>1</sup>       | 06-26-96 | 18.7                     | -4.3                         | 5,026                                                 |  |  |
| Do. <sup>1</sup>                  | 07-09-96 |                          |                              |                                                       |  |  |
| IB-9                              | 07-02-96 | 99.4                     | -15.9                        | MODERN                                                |  |  |
| IB snowmelt                       | 01-29-97 |                          |                              |                                                       |  |  |
| Babbitt Spring                    | 06-14-96 | 81.6                     | -10.8                        | MODERN                                                |  |  |
| Clark Spring                      | 06-13-96 | 100.9                    | -12.6                        | MODERN                                                |  |  |
| Rio de Flag MW-1                  | 06-13-96 |                          |                              |                                                       |  |  |
| FH-5                              | 06-25-96 | 62.1                     | -10.8                        | MODERN                                                |  |  |
| Parks Sch.                        | 06-25-96 |                          |                              |                                                       |  |  |
| Quarry                            | 06-21-96 | 110.8                    | -16.3                        | MODERN                                                |  |  |
| Old Town Spring                   | 07-08-96 | 102.3                    | -12.9                        | MODERN                                                |  |  |
| Rio de Flag MW-3                  | 06-12-96 |                          |                              |                                                       |  |  |
| Sterling Springs                  | 06-18-96 | 57.7                     | -10.9                        | MODERN                                                |  |  |
| NAD-1                             | 06-21-96 | 91.0                     | -12.5                        | MODERN                                                |  |  |
| BBDP-MVR-1                        | 06-11-96 | 40.8                     | -8.6                         | 1,805                                                 |  |  |
| Do.                               | 04-08-97 |                          |                              |                                                       |  |  |
| Do.                               | 08-26-97 |                          |                              |                                                       |  |  |
| BBDP-Marijka                      | 06-11-96 | 28.8                     | -6.9                         | 3,452                                                 |  |  |
| Mtn Dell-1                        | 06-19-96 | 72.5                     | -10.4                        | MODERN                                                |  |  |
| Do.                               | 03-11-97 |                          |                              |                                                       |  |  |
| Do.                               | 08-28-97 |                          |                              |                                                       |  |  |
| Mtn Dell-2                        | 06-19-96 | 66.5                     | -9.2                         | MODERN                                                |  |  |
| Center snowmelt                   | 01-15-97 |                          |                              |                                                       |  |  |

<sup>1</sup>Water sample may have contained some water from the on-site storage tank. Control valves used to prevent backflow were highly encrusted and may not have been fully closed

during sampling. <sup>2</sup>Maximum Contaminant Level for barium in drinking water is 2 milligrams per liter (2,000 micrograms per liter; U.S. Environmental Protection Agency, accessed June 12, 2000).

 <sup>3</sup>Secondary Maximum Contaminant Level for sulfate in drinking water is 250 milligrams per liter (U.S. Environmental Protection Agency, accessed June 12, 2000).
 <sup>4</sup>Secondary Maximum Contaminant Level for manganese in drinking water is 0.05 milligrams per liter (50 micrograms per liter; U.S. Environmental Protection Agency, accessed June 12, 2000).

<sup>5</sup>Maximum Contaminant Level for antimony in drinking water is 0.006 milligrams per liter (6 micrograms per liter; U.S. Environmental Protection Agency, accessed June 12, 2000).

<sup>6</sup>Calculated using 100 percent modern carbon for soil gas carbon-14 in model.



Figure 31. Lithologic, video, and borehole-acoustic-televiewer logs, Foxglenn well.

The other sinkhole is an elongated depression that overlies the east-bounding graben fault. This depression has alluvium throughout its bottom that varies in depth from a few feet to as much as 15 ft. Although the depression is not as well developed as the Bottomless Pits, it is inferred to be a similar feature because of its coincidence with the northwestward-trending structure. These depressions and several other sinkholes that occur throughout the study area represent significant points of periodic recharge to the regional aquifer (**pl. 1**). Eleven GPR surveys, two seismic surveys, and one SAR survey were completed at the site (fig. 8). The two seismic surveys were oriented perpendicular and parallel to principal structural trends in the area.

#### **Ground-Penetrating Radar**

GPR was applied to determine the location and orientation of geologic structure in the near-surface bedrock in the interior part of the graben. Profile 2 is just south of the Bottomless Pits (figs. 8 and 32A). The image of profile 2 is chaotic indicating highly fractured bedrock near land surface. Three bedding planes about 20, 30, and 40 ft below land surface can be followed laterally across the profile. The Bottomless Pits project into the profile at about 300 ft from the westnorthwest end and are seen as a down-dropped block. Other fractures with minor offsets leading into the pits are shown in this profile from 200 to 260 ft from the west-northwest end. Profile 3 is about 600 ft north of the Bottomless Pits and is aligned to the westnorthwest roughly parallel to profile 2 between the two principal sinkholes in the area (fig. 32B). The image for profile 3 is chaotic with multiple bedding planes that can be traced for some distance but that are disrupted in several places. At least one prominent zone of offset occurs between 150 and 200 ft from the east-southeast end of the survey line. Profile 9 is aligned to the southwest (S. 18° W.) rough-ly parallel to the bounding graben faults and between the two sinkholes (fig. 32C). Principal zones of disrup-tion along profile 9 occur from 0 to 200 ft and from 700 to 850 ft (not shown) from the northeast end of the survey line where the profile is close to or crosses the bounding graben faults. At these same locations, shallow hyperbolas occur at depths of 120 and 130 ft.







**Figure 32**. Selected interpreted ground-penetrating radar data for the Continental area. *A*, Radar profile 2, 0–450. *B*, Radar profile 3, 0–480 feet. *C*, Radar profile 9, 0–360 feet. Interpreted fractures are shown in red and interpreted bedding planes are gray fills. Hyperbolic events are interpreted as openings or open horizontal fractures.



NOTE: Data for GPR were collected with a 1,000-volt pulsar and 50-megahertz antenna, 12.0foot spacing, 2.0-foot step, and a total time window of 1,600 nanoseconds (ηs). The data were gain adjusted and filtered to improve the visual presentation, and corrected for elevation changes along the profile. Vertical resolution of these images is about 1.0 to 2.0 feet. The vertical scale is the two-way travel time of the radar signal.



Because of their proximity to the sinkholes, these hyperbolas probably indicate openings associated with the sinkholes at about 100 feet below land surface.

#### **Seismic Reflection and Seismic Refraction**

Two seismic-reflection and seismic-refraction images were collected in the Continental area—one oriented to the northeast (line 1) and one oriented to the northwest (line 2; fig. 8). Many of the faults observed on the seismic sections dip at steep angles; however, some faults have dips as low as 60° (figs. 33 and 34). Commonly, the faults intersect or connect with other faults at slightly different angles. Most faults also do not extend to land surface. Some of the more pronounced faults, however, extend from the near surface to depths of more than 2,000 ft and would be the target faults for water exploration (figs. 33 and 34).

In addition to faults, the seismic-reflection data also appear to have imaged subsurface caverns (figs. 33 and 34). In some locations, laterally continuous layers contain zones that did not reflect the seismic energy; low-coherence zones extend for several feet to about 100 feet laterally and vertically and are largest on line 1 of the Continental area. Because these zones of missing reflectors correlate with the surface location of the Bottomless Pits, the extensive zones of missing reflec-tors are inferred to represent subsurface caverns (figs. 33–35).



**Figure 33**. Stacked seismic image along Continental line 1. Low-frequency reflectors continuous over distances of several tens of feet are presumed to correspond to major layers within the subsurface. Vertical offsets in the apparent layers are presumed to be faults. Areas with blurred or missing reflectors in the southwestern half of the section correltate with the location of the Bottomless Pits solution caverns. Missing reflectors in the upper 656 feet from 1,128 to 1,640 feet correspond to an area where surface-shot points were skipped because of locally steep topography.



Figure 34. Stacked seismic image along Continental line 2.



NOTE: Offsets in exposed Kaibab Formation. Upthrown side is to the right and unconsolidated alluvium is on the left side of the pit.



On all other seismic lines, the frequency content of the seismic data is much higher; therefore, the cavern system along line 1 is inferred to be largely responsible for the loss of frequency of the seismic waves. A third line of evidence, which corroborates the idea that the missing zones of reflections correspond to caverns, is in the low seismic velocities (about 2,600 ft/s) of the Kaibab Formation in the shallow subsurface near these zones.

The Kaibab Formation is about 32 ft below land surface at the entrance to the Bottomless Pits and has seismic velocities as low as 2,600 ft/s. On the adjacent hills, however, the Kaibab Formation has a near-surface velocity that ranges from about 7,200 ft/s to about 9,175 ft/s (**fig. 36**). The low velocity is inferred to be the result of seismic waves that travel through the air in the cavern system near the Bottomless Pits. As compressional-wave velocities in the air are about 1,100 ft/s, velocities as low as 2,600 ft/s near the Bottomless Pits suggest that the near surface includes more open space than rock.

The cavern probably does not extend to 1,000 ft below land surface as inferred on the seismic-reflection sections (figs. 33 and 34). The apparent depth on the seismic-reflection section may result from the lower seismic velocity of the air in the caverns relative to the velocity of the adjacent rocks. Seismic-velocity modeling determines an average velocity of the seismic waves as they travel through and around the caverns; therefore, individual cavern depths are not correctly calculated on the seismic-reflection sections. Comparison of the seismic image with the velocity model suggests that the caverns probably extend to only about 130 ft deep because below 130 ft the seismic velocity is consistent with that of the Kaibab Formation on the adjacent hill (fig. 36).



**Figure 36**. Velocity model for Continental line 1 derived from inversion of seismic-refraction data. Note the low velocities (less than 6,555 feet per second0 within the upper 131 feet in the southwestern half of the velocity model and the high velocities (greater than 7,210 feet per second) at the surface in the northeastern half of the velocity model.

### **Square-Array Resistivity**

The square-array site for Continental (BP) is just south of the Rio de Flag (figs. 6, 8, and 37; table 1). The polar-coordinate plots for the 16.4- to 92.8-foot square arrays are roughly circular and correspond to alluvial material and volcanic rocks in the upper 130 ft (see "Supplemental Data, Part A" at the back of the report). The 131.2- to 492.1-foot square arrays show a northwestward trend (N.  $45^{\circ}$  W.) for the resistivity ellipses consistent with local structural trends in the Kaibab Formation. The depth of investigation at the 492.1-foot square array includes the Toroweap Formation. The strong northwestward trend (N.  $45^{\circ}$  W.) is supported by a large through-going fault seen on line 1 of the high-resolution seismic-reflection profile (fig. 33).

Fractures at the Continental site strike northwest (fig. 37). The minima in the interpreted resistivity curve at 65.6 ft roughly corresponds to the minimum coefficient of anisotropy and minimum secondary porosity at that depth (fig. 37). The low resistivity values (10–20 ohm-meters) are indicative of a clay layer. Some of the highest secondary-porosity and mean apparent-resistivity values recorded in the study area were measured at this site. The 13-percent secondary-porosity value for the 32.8-foot square array

indicates coarse sand or gravel in the upper alluvial interval. Fences and other cultural features limited the depth of investigation to 492.1 ft. The depth to the regional water table is about 1,303 ft at this site.

# Borehole

Two wells (wells 1 and 2) were drilled at Continental (fig. 8). Well 1 was drilled to 1,650 ft; however, this hole was abandoned because of a collapse at about 725 ft (fig. 38A). Well 2 is 42 ft east of well 1 and was completed to a total depth of 2,160 ft (fig. 38B). The only logs available for well 1 are a lithologic log and a video log (fig. 38A). The video log from well 1 shows extensive fracturing and openings throughout the open part of the hole. Over 55 fractures were imaged, and about 26 of these fractures were horizontal to near horizontal. The vertical to near vertical fractures had dips that ranged from 63° to as much as 87°. A few fractures and many small openings were observed in the Kaibab Formation. Most of the fractures and several large openings were observed in the Coconino Sandstone. Openings at 604 and 708 ft were about 10 and 20 ft deep, respectively, and were developed along fractures. The lateral extent of these openings is unknown.



**Figure 37**. Calculated apparent strike of major fractures, coefficient of anisotropy, secondary porosity, and apparent resistivity for the square-array sounding data, Continental site (BP). Apparent strike values are in degrees for each square size (16.4, 24.6, 32.8....). Coefficient of anisotropy is a dimensionless number where a number larger than one indicates increasing anisotropy. The interpreted resistivity depth of exploration was 492.1 feet. Interpretation was done using ATO which is a vertical electrical-sounding (VES) computer program by Zohdy (1989). Depth to water recorded at the Continental well 2 was 1,303 feet.

#### B. Continental Well 2



Figure 38. Lithologic and borehole-geophysical logs, Continental site. A, Well 1. B, Well 2.

## B. Continental well 2 continued





Logs of well 2 consist of lithologic, video, borehole-acoustic televiewer, resistivity, spontaneous potential, caliper, and gamma (fig. 38B). The video and borehole acoustic-televiewer log for well 2 imaged about 94 fractures and many small to large openings to a depth of about 2,000 ft. Only 24 of the fractures were horizontal to near horizontal. The vertical to nearvertical fractures had dips that were from 75° to as much as 85°. A few fractures had dips that were from 40 to 60°. As in well 1, the Kaibab Formation in this borehole had many small openings and minor fracturing, and the Coconino Sandstone had several large openings and abundant fracturing. The water level at 1,303 ft is near the bottom of the largely unfractured Schnebly Hill Formation. The most significant fracturing occurs in the Supai Group below 1,640 ft, which is below the water table. Many medium to large open fractures that range from several inches to 8 ft wide are a significant component of the borehole in the Supai Group. The largest openings appear to be horizontal fractures from 1,715 to 1,977 ft below land surface. Comparison of lithology from well 1 to well 2 (fig. 38 A and B) indicates that the wells are separated by a fault that has a vertical offset of 140 ft. Wells 1 and 2 are on or near the main northeastward-striking fault that crosses the area (**pl. 1**). The structural trend below the water table in well 2 is indicated by the boreholeacoustic-televiewer log. Most of this structure trends to the northwest: a few fractures strike to the northeast. North to northwestward-striking open fractures are at 1,560, and 1,667 ft (N. 2° W. and N. 26° W.), and one northeastward-striking open fracture is at 1,720 ft (N. 30° E.; fig. 38*B*). A few mostly minor fractures strike eastward. The video log was not referenced azimuthally; therefore, the orientation of the fractures higher in the borehole is not known. The wells project into the seismic profile 285 ft to the west at about 537 ft from the southwest end of the seismic survey line (fig. 34). The fault zone is observed in the seismic profile from 328 to 381 ft from the southwest end of the seismic survey line (fig. 34). The fractured zones and openings in the wells (fig. 38) are more consistent with the chaotic structure represented from 328 to 381 ft from the southwest end of the seismic line than the more coherent structure at 537 ft from the southwest end. The bottom of the well is just below the zone imaged by seismic methods.

# HYDROGEOLOGY OF THE REGIONAL AQUIFER

Ground water occurs in three general zones throughout the study area: (1) perched ground water that is close to the land surface, (2) ground water in the regional-aquifer system, and (3) ground water in a deep limestone aquifer that underlies the regional-aquifer system. Perched ground water is found close to land surface in unconsolidated alluvium and volcanic rocks and in the interbedded sandstones in either the Moenkopi or the Kaibab Formations (Appel and Bills, 1981; McGavock and others, 1986). These perched zones generally are small and discontinuous. As a result, they are not suitable for the long-term high-yield withdrawals that are needed by large municipal water systems. One exception to these conditions is the perched water-bearing zone in glacial outwash and volcanic rocks in the Inner Basin of San Francisco Mountain. Although this water-bearing zone yields from 150 to as much as 800 gal/min to wells, it has limited areal extent and is seasonally dependent on recharge from snowmelt. This water-bearing zone is already fully developed by the City of Flagstaff for public supply (Harshbarger and Associates and John Carollo Engineers, 1974). Other, smaller perched water-bearing zones in Flagstaff have been outgrown by the City of Flagstaff.

Ground water in the regional-flow system is in the fine-grained to medium-grained sediments of the Kaibab Formation, Coconino Sandstone, Schnebly Hill Formation, and Supai Group (pl. 3). These formations are hydraulically connected and generally function as one water-bearing zone.

In previous studies, this aquifer system has been referred to as the Coconino aquifer (Mann, 1976; McGavock and others, 1986), C-aquifer system (Cooley and others, 1969), or the regional aquifer (Levings, 1980; Owen-Joyce and Bell, 1983). This aquifer system is referred to as the regional aquifer in this report. The regional aquifer is the most extensive and productive aquifer underlying the study area and is the source of most of the municipal and public groundwater supply. Regional studies indicate that water recharges the regional aquifer from precipitation and runoff throughout the area and along the Mogollon Rim (McGavock, 1968; Levings, 1980; Owen-Joyce and Bell, 1983; McGavock and others, 1986). Water that does not infiltrate directly to the regional water table is contained for a time in the perched water-bearing zones mainly in the volcanic rocks close to land surface. The water moves downgradient along the fracture

zones underlying the volcanic rocks or to discharge points at land surface. After reaching the regional water table, the water then moves laterally and vertically until it discharges as springs along the Little Colorado and Colorado Rivers to the north, Oak Creek to the south, or is pumped out of the ground to wells. Areas of greater permeability in the water-bearing units and concentrated flow in rocks that are highly fractured or faulted affect this general flow of ground water. On the basis of information obtained from recent drilling, the most productive part of the regional aquifer appears to be in a zone of medium to coarse flowing sand in fracture zones near the lower part of the Middle Supai Formation at depths of 2,200 to 2,600 ft. Because of drilling difficulties, information is limited on the hydraulic properties of this water-bearing zone.

The underlying Redwall and Muav Limestones and the Martin Formation form a confined limestone aquifer (J.M. Montgomery Consulting Engineers, Inc., 1982). Little is known about the occurrence and movement of ground water in this aquifer. Ground water in the deep limestone aquifer is separated from the overlying regional aquifer by siltstones and mudstones in the Lower Supai Formation. Coarsergrained material in the Redwall and Muay Limestones functions as the water-bearing zone. Movement of water depends on fracture and solution-channel openings in the formation to facilitate ground-water flow. Well-test data for LM-8 and an oil and gas test well (Federal 1) indicate that this aguifer has hydraulic heads comparable to those in the regional aquifer (J.M. Montgomery Consulting Engineers, Inc., 1982). Few well-yield data, however, are available for the limestone aquifer. Because of the depth of this aquifer and the productivity of the overlying regional aquifer, the Redwall and Muav Limestones are not used as a source of water supply in the study area.

# Water Levels and Saturated Thickness

A map of potentiometric contours was constructed using static water levels measured in wells and altitude data from springs from 1994 through 1997 (**pl. 2**). Additional wells are shown on plate 2 for which waterlevel measurements precede 1994 (**pl. 4**). In some areas, particularly those outside the main areas of ground-water pumping, historical water levels at these additional wells could be representative of conditions during 1994–97.

Two mounds of ground water are indicated by the potentiometric-contour data (pl. 2). One of these mounds is south of Lake Mary and has a peak altitude

of about 7,000 ft. The other less well-defined mound is west of Woody Mountain and has a peak altitude of about 6,100 ft. A small area of confined ground water is south of Lake Mary coincident with the southern ground-water mound. This area is overlain by several hundred feet of basalt that forms the upper confining layer. The ground-water mound is south of the Lake Mary graben coincident with the Mormon Mountain anticline. Data on the confined part of the aquifer are from a few private wells and observation wells and from springs south of Lake Mary that discharge at the contact between the volcanic rocks and the upper part of the regional aquifer.

From depth-to-water and lithologic information, the saturated thickness of the regional aquifer is estimated to vary from 600 ft in the northern part of the study area to 2,200 ft in the southern part. The average thickness is about 1,200 ft. Hydrographs of selected observation wells completed in the regional aquifer (figs. 39–41) are indicative of the types of water-level changes that occur. The saturated thickness of the aquifer at these sites ranges from 110 ft (Henden well) to 914 ft (LM-8; figs. 39–41). LM-8 and Federal 1 are the only wells in the study area that fully penetrate the regional aquifer.

Ground-water withdrawals and seasonal recharge can cause fluctuations in the water table of as much as several hundred feet in some places. Hydrographs for wells WM-5, LM-2, and LM-8 show several hundred feet of decline when several other wells in the City of Flagstaff well fields are being pumped (fig. 39). These hydrographs also show a general decline in the water level of about 100 ft in the Lake Mary area and several tens of feet in the Woody Mountain area in the last 20 to 40 years. The hydrograph for the Forest Highlands 1 well to the southeast of the Woody Mountain well field shows about 85 ft of decline in the water level since 1985 (fig. 39). The hydrograph for the Henden well north of the Woody Mountain well field is variable and shows no discernible trend (fig. 39); however, the period of record is short. The water level in the Navajo Army Depot well (NAD-1) at the west end of the study area responds quickly to seasonal recharge in the area. Measured flow in the sinkhole about 800 ft east of this well in 1996 was directly correlated to a 35-foot rise in the water level in the well (Randy Wilkerson, geology student, NAU, written commun., 1997; fig. 40, this report). Hydrographs for Little America well 1, Black Bill-Doney Park- Sunset well, and ADOT-Winona well in the northeastern part of the study area show fluctuating water levels and no discernible trend despite withdrawals of about 1,000 acre-ft annually in this area for public supply (fig. 41).



Figure 39. Water levels in selected observation wells, Flagstaff, Arizona.



**Figure 40**. Relation of water level in the Navajo Army Depot well (NAD–1) to the flow rate of Lake Atherton into a nearby sinkhole (Randy Wilkerson, geology student, Northern Arizona University, written commun., 1997).



**Figure 41**. Water levels in selected observation wells in the northeastern part of the study area near Flagstaff, Arizona.

# Well Yield and Specific Capacity

Well yields were determined from well and aquifer tests for 76 wells in the study area (**pl. 4**). Several other tests were completed for wells in the study area; however, the pumping periods were too short and often the pumping rates were too low to produce accurate well-yield estimates. In other cases, pumping rates were high for short time periods also leading to inaccurate well-yield estimates.

For the 76 wells with usable well or aquifer test data, well yields vary from 4 to 1,700 gal/min and average 175 gal/min. Several factors contribute to this large range in values: (1) formation lithology, (2) degree and type of fracturing, (3) degree of secondary mineralization of the aquifer, (4) penetrated saturated thickness, (5) well efficiency, and (6) pump design and lift. Degree and type of fracturing probably has the greatest effect on well yield. Wells yielding less than 100 gal/min typically are not completed in or near faults or other fractures; whereas, wells yielding more than 100 gal/min typically are completed in or near known faults or fractures.

Specific capacity, which is a useful indicator of well and aquifer performance, was calculated for 58 wells by dividing well discharge by measured drawdown (fig. 42D). Specific-capacity values range from 0.014 to 13.0 (gal/min)/ft of drawdown and average 2.16 (gal/min)/ft (pl. 4). In conjunction with well yield and other hydraulic properties, specificcapacity data can be useful in analyzing well performance in relation to aquifer characteristics. Specific capacity was used to estimate transmissivity for 17 single well tests. Because these data reflect well and pump efficiencies and effects of casings in addition to aquifer characteristics, this information needs to be evaluated carefully. These data also are affected by transient conditions in the well that cast additional doubt on the use of this data as indicators of hydraulic properties.

A general relation exists between specific capacity and geology (pl. 1). Specific capacity is highest for wells completed in the Coconino Sandstone and (or) Supai Group close to fractures. Wells generally have a low specific capacity when developed in the Coconino Sandstone and (or) the Supai Group where fractures are not apparent at land surface. One exception to this general relation is the Black Bill-Doney Park Marijka (BBDP-Marijka) well that was developed in the Upper and Middle Supai Formations where no apparent fractures are visible on the land surface. Well logs, however, show significant horizontal and beddingplane fracturing in the water-bearing units at this site. Specific capacities are lowest for wells developed in the water-bearing units of the Kaibab or Schnebly Hill Formations regardless of whether or not the wells are close to fractures.

# **Hydraulic Properties**

The hydraulic properties—transmissivity, hydraulic conductivity, and storage coefficient—are important components of aquifer assessments because they provide information that is useful for the development of wells and for predicting aquifer response to stress. Formation lithology and the type and degree of fracturing affect hydraulic properties. Faults may be areas of high permeability because of the heavily fractured nature of the rock in the fault zone. Faults also may be areas of low permeability surrounded by areas of more heavily fractured rocks that have higher permeability. Consequently, wells drilled along faults do not always have high well yields. Hydraulic properties of the regional aquifer for this study were developed from historical information and the analysis of field data collected for this study.

# **Transmissivity and Hydraulic Conductivity**

Transmissivity values were calculated from 43 of the 76 well and aquifer tests. Twenty-two of these values were from previously published or reported tests, 17 values were estimated from specific-capacity values for single-well tests re-evaluated for this study, and 4 values were determined from single-well tests completed during this study. The typical response to pumping of wells in the study area indicates that the regional aquifer is anisotropic and unconfined. Well tests in parts of the aquifer unaltered by fractures have drawdown responses consistent with radial flow to a well from fine-grained porous media. This condition is indicated by semilog-drawdown curves plotted as straight lines with steep slopes out to 48 hours. Fortyeight hours is the maximum length of most of the well tests. Many of the well tests were terminated at 24 to 48 hours before equilibrium was reached and where delayed yield to the well may have affected the drawdown response. Some of the drawdown data for longer well tests indicated that declining water levels reached aquifer boundaries related to lithology or geologic structure. These boundary conditions were typically indicated by a change in the slope of the drawdown data (fig. 43). Where the aquifer was extensively fractured or faulted, two types of drawdown response were typically measured. In some cases, the semilog-drawdown curves resulted in stepped or multiple-slope drawdown curves in response to constant pumping. This type of response is characteristic of fractured rock that has only a few prominent fractures. Early in the pumping of wells, flow from fractures causes the rate of drawdown to increase with time. As pumping continues and fractures are dewatered, flow from the rock matrix into fractures results in slower drawdown. As pumping continues, the drawdown increases again as flow to the wells is from both fractures and the rock matrix. Where the aquifer is extensively fractured and the fractures are well connected, the drawdown response to constant pumping is consistent with that of unfractured porous media. The response curve of drawdown on a semilog plot is a straight line but with a much shallower slope.



**Figure 42**. Distribution of data from well and aquifer tests, Flagstaff, Arizona. *A*, Well-yield data. *B*, Transmissivity data from water-level recovery. *C*, Hydraulic-conductivity data from water-level recovery. *D*, Specific-capability data.



A. Drawdown for pumped test well

Figure 43. Drawdown and recovery data for a typical well test in the Flagstaff area. A, Walnut Canyon well. B, Recovery, Wlanut Canyon well.

RATIO t/t' (t=TIME AFTER PUMPING STARTED,

t'=TIME AFTER PUMPING STOPPED)

Several general relations are noted when comparing transmissivity and hydraulic-conductivity data to lithology and geologic structure. Transmissivity and hydraulic conductivity generally are higher at wells developed in the Coconino Sandstone and the Supai Group, especially in areas that are extensively fractured. Transmissivity and hydraulic conductivity are low at wells developed in the Kaibab and Schnebly Hill Formations even where these units are extensively fractured. Transmissivity and hydraulic conductivity generally are higher where extensive fracturing occurs regardless of lithology. The lowest transmissivity and

hydraulic-conductivity values have been obtained from parts of the aquifer that are far removed from any observed fracturing in the surface or subsurface.

From the drawdown data, transmissivity values range from about 100 to 31,200 (gal/d)/ft and average 6,400 (gal/d)/ft (pl. 4). Transmissivity values from the recovery data range from 100 to 35,000 (gal/d)/ft and average 8,600 (gal/d)/ft (pl. 4). Factors contributing to the wide range of values are (1) short-duration or lowdischarge single well tests that do not fully define the hydraulic characteristics of the aquifer, (2) the different volumes of aquifer tested (use of wells that only partially penetrate the water-bearing units), and (3) fracture flow that substantially enhances the aquifer characteristics contributing flow to the well.

Hydraulic-conductivity values were calculated from 41 of the 42 transmissivity values derived from drawdown data and range from 0.14 to 51.5  $(gal/d)/ft^2$ and average 11.9 (gal/d)/ft<sup>2</sup> (pl. 4). Hydraulicconductivity values also were calculated from the 30 transmissivity values derived from recovery data and range from 0.14 to 79.1 (gal/d)/ft<sup>2</sup> and average  $17.4 (gal/d)/ft^2$  (pl. 4). Hydraulic-conductivity values calculated from transmissivity values determined from well and aquifer tests lasting two or more days probably are more reliable than hydraulic-conductivity values determined from shorter tests.

Data for transmissivity and hydraulic conductivity show a distribution similar to that of the well-yield data (fig. 42A–C). Most of the transmissivity data are less than 5,000 (gal/d)/ft, and nine values were greater than 10,000 (gal/d)/ft. Most hydraulic-conductivity values are less than 10  $(gal/d)/ft^2$ , and 13 values were greater than 10  $(gal/d)/ft^2$  (fig. 42C).

Regression plots were made of transmissivity, hydraulic conductivity, and specific capacity as functions of well yield (fig. 44A–C). A good correlation exists between low well yield and low hydraulic conductivity; however, the variability and scatter in the data increases with increasing yield and hydraulic conductivity (fig. 44A–B). These data indicate possible effects on the wells from formation grain size and (or) secondary permeability from fractures that cause greater scatter and variability in the data at higher well yields. Well construction also may influence results.



**Figure 44**. Relation of well yield to transmissivity, hydraulic conductivity, and specific capability, Flagstaff, Arizona. *A*, Transmissivity. *B*, Hydraulic conductivity. *C*, Specific capacity.

#### **Storage Coefficients and Aquifer Storage**

Specific storage, and specific yield are related to geologic structure and the potentiometric surface of the regional aquifer (pl. 2). Three values of specific storage average 0.023 and range from 0.00023 to 0.05. Eight specific-yield values average 0.077 and range from 0.0002 to 0.14. Although there are few data to define a relation of storage to lithology and geologic structure, some general trends are apparent. Storage coefficients generally are greatest in the Coconino Sandstone. Specific yields also are high in the Supai Group and are lowest in the Kaibab and Schnebly Hill Formations. Storage coefficients for the regional aquifer are consistent with values calculated for the C aquifer that underlies the Navajo and Hopi Reservations (Cooley and others, 1969) and parts of southern Coconino County (McGavock and others, 1986) and comprises rock units contemporaneous with the regional aquifer. On the basis of the average specific yield and average saturated thickness, the water in storage in the study area is estimated to be about 4,800,000 acre-ft.

## **Ground-Water Flow System**

North of the ground-water divide coincident with the two ground-water mounds to the south and southwest of Flagstaff, ground water moves laterally and vertically to the north, northeast, and northwest toward the Grand Canyon and the Little Colorado River (pl. 2). South of the divide, ground water generally moves laterally and vertically to the south and southwest toward Oak Creek and Verde Valley. Locally, ground-water flow is diverted, disrupted, reduced, or enhanced by subsurface changes in lithology and geologic structure. Both of the main pumping centers near Flagstaff are on or just north of the ground-water divide.

The rate and direction of ground-water movement is partly a function of the hydraulic gradient derived from the slope of the potentiometric surface (pl. 2). Hydraulic gradients in the regional aquifer near Flagstaff vary from about 40 to 1,000 ft/mi. The varied hydraulic gradient indicates that ground-water flow does not flow uniformly from topographically high areas to topographically low areas and that the flow is controlled in some places by fractures. This condition is evinced by the moderate to low gradients between the Woody Mountain and Lake Mary well fields and north of the Lake Mary well field coincident with the Anderson Mesa Fault. Faults also can impede the lateral movement of ground water as shown by the steep gradient to the northeast of the Lake Mary well field (**pls. 2** and **3**). Anderson Mesa is uplifted several hundred feet by the fault to the northeast of the Lake Mary well field and has positioned fine-grained sediments of the lower part of the Supai Group into contact with water-bearing units of the regional aquifer in the Lake Mary graben. As a result, flow across the fault in this area is slow and results in steep hydraulic gradients. With the exception of Oak Creek, ground water does not discharge to streams in the study area. The direction of lateral ground-water flow, therefore, is not necessarily toward streams in the study area.

### **Recharge and Discharge**

Recharge to the regional aquifer occurs throughout the study area in the form of (1) infiltration of precipitation (rain and snowmelt) through unsaturated soil and rocks to the water table, (2) infiltration of surface water from significant storms into stream channels, solution channels, and sinkholes, (3) infiltration of treated effluent into the Rio de Flag, (4) seepage from lakes, and (5) downward leakage and overflow from perched water-bearing zones above the regional aquifer. Rio de Flag has one of the lowest calculated runoff values (0.04 in./yr) in Arizona (McGavock and others, 1986). Lateral movement of ground water from outside the study area into the study area (underflow) is not likely because of the location of the ground-water mounds at the south end of the study area.

Most of the recharge occurs near areas of highest precipitation at altitudes above 7,000 ft to the south of Lake Mary and on San Francisco Mountain. Infiltration and recharge are greater in the winter months when the ground is saturated for prolonged periods as a result of snowmelt and minimal evapotranspiration. Summer recharge generally is from intense thunderstorms that produce runoff into streams, solution channels, and sinkholes that direct the water rapidly to the water table. High evapotranspiration rates during the summer generally limit the amount of precipitation that reaches the water table.

Average annual precipitation for the City of Flagstaff is about 21.1 in. (Sellers and others, 1985). Evaporation and infiltration rates have been estimated, mainly for the Lake Mary area, by Blee (1988). Blee determined that evaporation losses of 27 percent of the average annual precipitation are possible, and as much as 45 percent of the average annual runoff into Lake Mary seeps out of the bottom of the lake. Errol L. Montgomery and Associates (1993) estimated that from 4 to 17 percent of the average annual precipitation is recharged to the regional aquifer in the area that contributes recharge to the Lake Mary well field. If 17 percent of the average precipitation (21.1 in./yr) is used as an estimate of recharge for the whole study area, then as much as 94,400,000,000 gallons or 290,000 acre-ft is recharged to the regional aquifer annually. Many of the other natural and manmade lakes in the area are suspected to have high seepage rates because of porous or highly fractured material underlying the lakes.

Most of this recharge is balanced by outflow from the aquifer to discharge areas outside the study area. The main points of natural discharge to the south of the study area are springs along Oak Creek, interformational flow downgradient into the Verde Valley, and springs in the Verde Valley (Levings, 1980; Owen-Joyce and Bell, 1983). To the north, ground water flows downgradient to discharge points along the Little Colorado and Colorado Rivers (McGavock and others, 1986). As of 1998, discharge from all regional aquifer wells and springs in the study area is about 7,500 acre-ft/yr. The combined natural discharge to areas north and south of the study area (about 400,000 acre-ft/yr; R.J. Hart, hydrologist, USGS, written commun., 1996) is greater than the estimated recharge to the study area, but these discharge areas receive additional ground-water flow from outside the study area. Some ground water also may be flowing out of the study area to the northwest in the direction of the Havasu Basin. Evapotranspiration of water directly from the regional aquifer is minimal and restricted to a few small areas to the south of Lake Mary and the upper part of Oak Creek where springs discharge. Vertical leakage to underlying water-bearing zones is likely to be restricted in most of the area by confining beds in the lower part of the Supai Group. Some ground-water exchange probably does occur along fault zones that propagate all the way to basement rocks. Little net exchange of water, however, is likely to occur because of high hydraulic pressure in the underlying limestone aquifer (J.M. Montgomery Consulting Engineers, Inc., 1982).

# Water Chemistry

The distribution of dissolved chemical constituents in the regional aquifer is mainly the result of naturally occurring processes. Dissolved-solids concentrations in ground water in the regional aquifer are small near recharge areas and increase downgradient as the water reacts with aquifer materials. Recharge from treated effluent along the Rio de Flag may be providing additional nutrients and chloride to some parts of the regional aquifer.

#### **Common Ions, Trace Elements, and Nutrients**

In the study area, ground water is predominantly a calcium (Ca2+) magnesium (Mg2+) bicarbonate (HCO3-) type (fig. 45). Water from wells, Black Bill-Doney Park MVR-1 (BBDP-MVR-1), Continental-2, Rio de Flag MW-1, and MW-3, has higher concentrations of chloride (Cl; figs. 45 and 46), which indicates that recharge may be occurring from the Rio de Flag. The Rio de Flag receives treated effluent from the wastewater-treatment plants. Ground water that discharges from Old Town Spring, NAD-1, Inner Basin well 9 (IB-9), and the well at Parks School that are developed in perched water-bearing units in the volcanic rocks yielded higher concentrations of sodium (Na+) and potassium (K+; fig. 45), which indicates dissolution of volcanic glass (Hearne and others, 1985; table 2, this report).

Major-ion data for wells and springs that discharge ground water from the regional aquifer generally fall into one of two groups—the Woody Mountain group or the Lake Mary group (**fig. 47**). The groupings represent, in part, certain water-rock reactions as water passes through the unsaturated zone (see "Supplemental Data, Part C" at the back of the report). Ground water in the Woody Mountain group receives recharge from infiltration of precipitation through volcanic rocks and yields lower concentrations of Ca<sup>2+</sup> and Mg<sup>2+</sup> (**fig. 48**A–B) and higher concentrations of silica (SiO<sub>2</sub>; **fig. 49**) than the water in the Lake Mary group, which receives recharge from infiltration of precipitation through limestones and volcanic rocks (fig. 49).

Chemistry of ground water from perched waterbearing zones generally plots either in the Woody Mountain or Lake Mary group. Perched ground water in the Kaibab Formation (Rio de Flag MW-1 and MW-3) yields concentrations of Ca and Mg similar to those in water from regional-aquifer wells in the Lake Mary group (fig. 48). Chemistry of perched water in volcanic rocks (Parks School well, IB-9, Old Town Spring, and NAD-1) plot with water from wells in the regional aquifer in the Woody Mountain group (fig. 48).

Barium (Ba) was the only trace metal present in significant concentrations in water from the regional aquifer. Concentrations of Ba in ground water from Pine Grove (2.0 mg/L) were at the Maximum Contaminant Level (MCL) for drinking water (U.S. Environmental Protection Agency, 1999). BBDP-MVR-1 (1.2 mg/L), BBDP-Marijka (1.2 mg/L), and Mtn Dell-1 (1.2 mg/L) also contained high concentrations of Ba, but were below the MCL (**table 2**). The high concentrations of Ba probably are the result of the dissolution of evaporites in the Supai Group (Appel and Bills, 1981; McGavock and others, 1986).

Concentrations of nitrate NO<sup>-</sup><sub>2</sub>+NO<sup>-</sup><sub>3</sub>) as N in ground water from most of the wells and springs were below the MCL of 10 mg/L (U.S. Environmental Protection Agency, 1993a, b). Ground water from Rio de Flag MW-3 contained 8.0 mg/L of NO<sup>-</sup><sub>2</sub>+NO<sup>-</sup><sub>3</sub>. BBDP-MVR-1 and Continental-2 along the Rio de Flag contained 4.6 and 1.7 mg/L of NO<sup>-</sup><sub>2</sub>+NO<sup>-</sup><sub>3</sub>, respectively, and NAD-1 contained 3.3 mg/L of NO<sup>-</sup><sub>2</sub>+NO<sup>-</sup><sub>3</sub>. Sites that have measureable concentrations of NO<sup>-</sup><sub>2</sub>+NO<sup>-</sup><sub>3</sub> may indicate recent local recharge from effluent sources. Water from the rest of the wells and springs contained less than 1.0 mg/L of NO<sup>-</sup><sub>2</sub>+NO<sup>-</sup><sub>3</sub>.

### **Stable Isotopes**

Ground-water samples collected from 23 wells and 3 springs that discharge water from the regional aquifer were analyzed for stable isotopes of oxygen and hydrogen. Samples from three wells and two springs that discharge water from perched water-bearing zones and two snowmelt samples also were analyzed. The small range of  $\delta^{18}$ O and  $\delta^{2}$ H in water from the regional aquifer and from perched ground-water zones indicate a common recharge source for the study area (fig. 50). Little or no evaporation occurs in most of the groundwater system; however, water from wells—LM- 4, BBDP-MVR-1, and Rio de Flag MW-1—have isotopic compositions that are indicative of local recharge from surface water that had undergone evaporation (fig. 50).



**Figure 45**. Relative composition of ground-water samples from the regional aquifer and perched water-bearing zones, Flagstaff, Arizona, 1995–97.



**Figure 46**. Concentrations of chloride as a function of concentrations of dissolved solids in water from the regional aquifer and perched water-bearing zones, Flagstaff, Arizona, 1995–97.



**Figure 47**. Areas of the regional aquifer in which wells and springs have similar water-chemistry characteristics, Flagstaff, Arizona, 1995–97.

#### A. Calcium



**Figure 48**. Concentrations of calcium and magnesium as a function of concentrations of dissolved solids in water from the regional aquifer and perched water-bearing zones, Flagstaff, Arizona, 1995–97. *A*, Calcium. *B*, Magnesium.



**Figure 49**. Concentrations of silica as a function of concentrations of dissolved solids in water from the regional aquifer and perched water-bearing zones, Flagstaff, Arizona, 1995–97.



Figure 50. Oxygen and hydrogen isotopes in water from the regional aquifer and perched water-bearing zones, and from surfacewater and precipitation sites, Flagstaff, Arizona, 1995–97.

All three sites are near surface water. LM-4 is near Lower Lake Mary, and BBDP-MVR-1, and Rio de Flag MW-1 are near parts of the Rio de Flag where treated effluent is discharged. The shallow well, Rio de Flag MW-3, and the deep Purl well are within 0.5 mi of each other along the Rio de Flag and yield water having similar isotopic compositions. The similarity in isotopic composition of water from all wells sampled indicates that recharge occurred at a similar altitude and temperature, which is consistent with a common source (fig. 50). Old Town Spring and NAD-1 discharge ground water from perched zones in the volcanic rocks, and this ground water has an isotopic composition that indicates evaporation of source water; whereas, none of the springs that discharge from the regional aquifer have this composition (fig. 50). Clark Spring, which discharges from the regional aquifer, has a distinctly different isotopic composition than that of Babbitt and Sterling Springs, which also discharge ground water from the regional aquifer. The different compositions indicate a different source of recharge (fig. 50). Repeat samples of ground water from BBDP-MVR-1, Mtn Dell-1, LM-4, and WM-9 showed no seasonal shifts in isotopic composition (table 3).

#### **Radiogenic Isotopes**

Samples of water from 20 wells and 2 springs that discharge water from the regional aquifer were collected for analysis of <sup>13</sup>C and <sup>14</sup>C (table 2). Samples also were collected from Old Town Spring, NAD-1, and IB-9 that discharge perched ground water from the

volcanic rocks. Estimated ages of the ground water in the regional aquifer indicate areas of modern waters (less than 200 years) and areas of older waters (greater than 5,000 years  $\pm 3,000$  years; table 2). Estimated ground-water ages indicate modern water in the Lake Mary area and older water (2,000 to greater than 5,000 years) in the Woody Mountain area (pl. 1). Differences in estimated ground-water ages between the two areas may reflect depth to ground water, travel times for ground-water movement, and (or) pumping effects that draw deeper, older waters from wells. Ground water is 200 to 900 ft below land surface in the Lake Mary area and is as much as 1,200 ft below land surface in the Woody Mountain area. Estimated ground-water ages for the Lake Mary area, Woody Mountain area, and Wupatki National Monument are in agreement with the ground-water flow directions as determined from the potentiometric surface.

Uncertainties for the estimated ages of ground water from selected wells were determined by a sensitivity analysis (table 4) for all the estimated components in the model calculation (Fonts and Garnier, 1979). Two components—the initial 14C for soil gas and the  $\delta$ 13C of carbonate—were the unknowns that would directly affect the estimated ages. The 14C for soil gas used in the model was 100 percent modern carbon (pmc). Sensitivity analysis was run for 115 pmc and 85 pmc (table 4). The  $\delta$ 13C of carbonates held constant at 0.0 ‰ for the models. The sensitivity was run using +1‰ and -1‰ for  $\delta$ 13C (table 4). The estimated uncertainty generated by the model is  $\pm$ 3,000–4,000 years.

**Table 3**. Temporal data for oxygen, deuterium, and tritium in water from selected wells that discharge water from the regional aquifer,Flagstaff, Arizona

[Isotope-composition values are in per mil. Dashes indicate no data. <, less than; <sup>18</sup>O, oxygen-18;  $\delta^2$ H, deuterium]

|            | Temporal samples       |       |                             |       |              |       |                  |                           |                |  |
|------------|------------------------|-------|-----------------------------|-------|--------------|-------|------------------|---------------------------|----------------|--|
|            | Oxygen and deuterium   |       |                             |       |              |       |                  | Tritium, in tritium units |                |  |
|            | Summer 1996            |       | Winter 1996/<br>Spring 1997 |       | Summer 1997  |       | 0                | <b>0</b>                  | 0              |  |
| Well name  | $\delta^{	extsf{18}}0$ | δ²Η   | $\delta^{_{18}}0$           | δ²Η   | δ18 <b>0</b> | δ²Η   | – Summer<br>1996 | Spring<br>1997            | Summer<br>1997 |  |
| BBDP-MVR-1 | -11.07                 | -80.8 | -10.88                      | -80.4 | -10.82       | -80.2 | 4.4              | 4.7                       | 5.0            |  |
| Mtn Dell-1 | -12.10                 | -87.2 | -12.15                      | -86.7 | -12.12       | -87.4 | .94              |                           | 1.3            |  |
| LM-4       | -9.23                  | -72.3 | -9.27                       | -74.5 | -9.27        | -74.0 | 7.5              | 8.2                       | 7.5            |  |
| WM-9       | -12.00                 | -85.6 | -12.02                      | -85.4 | -12.13       | -86.8 | <.31             | <.41                      | <.31           |  |
|            |                        |       |                             |       |              |       |                  |                           |                |  |

## **Table 4**. Sensitivity analysis for calculations of carbon-14 ages

[<sup>14</sup>C, carbon-14; <sup>13</sup>C, carbon-13]

|                   | <sup>14</sup> C soil gas at 85 pe             | rcent modern carbon                              | <sup>14</sup> C soil gas at 115 percent modern carbon |                                                  |  |  |
|-------------------|-----------------------------------------------|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--|--|
| Well site         | $\delta^{13}{\rm C}$ of carbonate, in per mil | Estimated age<br>of <sup>14</sup> C,<br>in years | $\delta^{13}{\rm C}$ of carbonate, in per mil         | Estimated age<br>of <sup>14</sup> C,<br>in years |  |  |
| WM- 6             | -1                                            | 370                                              | -1                                                    | 2,800                                            |  |  |
| Do.               | +1                                            | 1,400                                            | +1                                                    | 2,900                                            |  |  |
| Henden            | -1                                            | 3,900                                            | -1                                                    | 7,700                                            |  |  |
| Do.               | +1                                            | 5,200                                            | +1                                                    | 6,400                                            |  |  |
| BBDP-Marijka      | -1                                            | 1,400                                            | -1                                                    | 5,200                                            |  |  |
| Do.               | +1                                            | 2,700                                            | +1                                                    | 3,900                                            |  |  |
| NPS Wupatki HQ    | -1                                            | 2,000                                            | -1                                                    | 7,400                                            |  |  |
| Do.               | +1                                            | 4,900                                            | +1                                                    | 4,500                                            |  |  |
| Pine Grove        | -1                                            | 820                                              | -1                                                    | 4,100                                            |  |  |
| Do.               | +1                                            | 1,600                                            | +1                                                    | 3,300                                            |  |  |
| NPS Walnut Canyon | -1                                            | -1,700                                           | -1                                                    | 1,900                                            |  |  |
| Do.               | +1                                            | -640                                             | +1                                                    | 770                                              |  |  |

Samples of water for analysis of 3H were collected from 22 wells and 3 springs that discharge water from the regional aquifer (table 2). Samples also were collected at three wells and three springs that discharge water from volcanic rocks and from Upper Lake Mary and Quarry. Activities of 3H in water from the regional aquifer ranged from less than 0.31 tritium units (TU; detection limit) to 8.5 TU (table 2). The highest activities occurred at LM-4, BBDP-MVR-1, and Babbitt Spring. Activities of 3H at LM-4 (7.5, 8.2) suggest a component of recent recharge to the site or a possible connection to water from Lake Mary. Activity of 3H in water from BBDP-MVR-1 probably is related to infiltration of effluent along the Rio de Flag.

Samples of perched ground water generally had higher activities of 3H (range 5.0 to 10.3 TU) than samples from the regional aquifer. The highest activities of 3H were 9.1 TU for Rio de Flag MW-3, 9.7 TU for NAD-1, and 10.3 TU for IB-9. Older estimated 14C ground-water ages and measurable activity of 3H in the Woody Mountain area and other locations including Doney Park, Mountainaire, and Continental indicated mixing of deep older water and shallow recharge water throughout the regional aquifer.

Water samples were collected from 14 groundwater sites that yield water from the regional aquifer and 3 springs-Clark Spring, Babbitt Spring, and Sterling Spring-that yield water from the regional aquifer for analysis of Sr (table 5). Values of  $\delta 87$ Sr indicate recharge is occurring locally throughout the study area. The stable-isotope ratio  $\delta 87$ Sr in these samples (fig. 51A–B; table 5) correlates with the ratio found in carbonate rocks deposited in the Late Permian age (Peterman and others, 1970). This ratio is indicative of water-rock reactions that mainly occur in the unsaturated zone as water recharges the deeper regional aquifer. Chemical influence from the young volcanic rocks (Faure, 1977) is evident by the 87Sr/86Sr of 0.702 to 0.704 for wells near San Francisco Mountain (table 5, this report; M.M. Ort, associate professor, NAU, written commun., 1997). Ground water that recharges through volcanic rocks yields the lighter composition as found in water from Sterling Spring, WM-9, WM-1, Henden well, and the well in Hidden Hollow (Group A in fig. 51A-B). Water that recharges primarily through limestone yields the heavier composition as found in water from LM-4, LM-9, and the Purl well (Group C in fig. 51–B). Groups A and C partially coincide with the Woody

Mountain and Lake Mary areas, respectively (fig. 47). The  $\delta$ 87Sr values that plot in Group B—Babbitt Spring, Clark Spring, BBDP-Marijka, BBDP-MVR-1, Mountainaire, Mtn Dell-1, FH-5, Foxglenn-1, and Pine Grove—suggest a mixture of ground water from the volcanic rock and limestone recharge areas (fig. 51A–B).

# Effects of Geologic Structure on Ground-Water Flow

A large scatter exists in the orientation of surfacestructural features (**fig. 52**); however, two trends are dominant. A northwestward trend (N. 58° W.) accounts for 71 percent of the total structure, and a weaker north-northeastward trend accounts for 24 percent of the total structure. Weaker structural trends are concentrated north to south and east to west.

Acoustic-televiewer logs from selected wells verified multiple near-vertical fractures that, in many cases, did not correlate with the surface alignment of the associated structure. This change in the orientation of structural features with depth was further verified by the square-array resistivity data (see "Supplemental Data, Part A" at the back of the report). Many horizontal to near-horizontal fractures that had no surface expression were identified from the borehole data. These types of structural features, however, are not uncommon. Exposures of bedrock in steep-walled canyons, such as Walnut Canyon and some parts of the Rio de Flag, have prominent horizontal fractures along bedding planes in the Kaibab Formation (**fig. 53**); it does seem unusual that these horizontal fractures buried below 1,000 ft or more of overburden would be as large as indicated by the borehole-geophysical logs.

The most productive wells associated with structural trends have significant high-angle or horizontal fracturing (fig. 54). These wells include LM-8, WM-10, Foxglenn-1, Continental-2, and the BBDP-Marijka well. The least productive wells (LMEX-2, LMEX-6, BBDP-Cosnino, and ADOT-Winona) yield water from water-bearing zones that have not been altered by structural deformation. Available data are insufficient to define the dimensions of interconnected fracture-flow zones as of 1998; even in the Lake Mary well field where there is a wide distribution of wells and data, extended aquifer tests of as much as 90 days fail to show consistent response to pumping (Errol L. Montgomery and Associates, 1992).

**Table 5**.Stable-isotope data for strontium in water from selected wells and springs that discharge water from the regional aquifer,Flagstaff, Arizona

| Well or spring site | Sr, in<br>micro grams<br>per liter <sup>1</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr | $\delta^{87}$ Sr,<br>in per mil | Well or spring site | Sr, in<br>micrograms<br>per liter <sup>1</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr | $\delta^{87}$ Sr,<br>in per mil |
|---------------------|-------------------------------------------------|------------------------------------|---------------------------------|---------------------|------------------------------------------------|------------------------------------|---------------------------------|
| Babbitt Spring      | 140                                             | 0.70748                            | -2.43                           | Sterling Spring     | 84                                             | 0.70648                            | -3.84                           |
| Clark Spring        | 96                                              | .70706                             | -3.02                           | WM-9                | 93                                             | .70655                             | -3.74                           |
| BBDP-Marijka        | 163                                             | .70731                             | -2.66                           | WM-1                | 110                                            | .70588                             | -4.68                           |
| BBDP-MVR-1          | 125                                             | .70693                             | -3.20                           | FH-5                | 100                                            | .70702                             | -3.07                           |
| Purl                | 63                                              | .70816                             | -1.47                           | Foxglenn-1          | 68                                             | .70785                             | -1.90                           |
| Hidden Hollow       | 72                                              | .70663                             | -3.62                           | Henden              | 73                                             | .70632                             | -4.06                           |
| LM-4                | 27                                              | .70814                             | -1.49                           | Mtn Dell-1          | 79                                             | .70751                             | -2.38                           |
| LM-9                | 82                                              | .70882                             | 54                              | Pine Grove          | 292                                            | .70707                             | -3.00                           |
| Mountainaire        | 110                                             | .70723                             | -2.78                           |                     |                                                |                                    |                                 |

[Sr, strontium; <sup>87</sup>Sr, strontium-87; <sup>86</sup>Sr, strontium-86]

<sup>1</sup>Concentrations determined by U.S. Geological Survey National Research Program Laboratory and do not necessarily match concentrations listed in table 2 as determined by U.S. Geological Survey National Water-Quality Laboratory.

### A. Strontium



### B. Strontium-isotope data as a function of cation activity



**Figure 51**. Strontium-isotope data for water from the regional aquifer, Flagstaff, Arizona, 1995–97. *A*, Strontium. *B*, Strontium-isotope data as a function of cation activity.



Figure 52. Orientation of documented surface fractures, Flagstaff, Arizona, 1995–97.



Figure 53. Horizontal and bedding-plane fracturing in Walnut Canyon, Flagstaff, Arizona.



**Figure 54**. Relation of data from well and aquifer tests to structural orientation of surface geology, Flagstaff, Arizona. *A*, Well yield. *B*, Transmissivity. *C*, Hydraulic conductivity. *D*, Specific capacity.

# **Regional Structure**

Well yield and hydraulic properties indicate a relation between ground-water flow and geologic structure on a regional scale. Well yields are greatest and hydraulic properties are most favorable near regional-scale structural deformation, such as the Oak Creek and Anderson Mesa Faults, and are lowest and least favorable in areas with no structural deformation. The range of hydraulic-conductivity values spans the general range of values reported for well-cemented and lithified sedimentary rocks and for rocks that are fractured and friable (fig. 55). The range of hydraulicconductivity values is somewhat higher than the range reported for sandstone and unjointed crystalline limestone, which indicates fractures have an effect on hydraulic properties of the regional aquifer. Ground water moves from areas of high hydraulic head to areas of low hydraulic head generally along the path of least resistance; therefore, ground water will flow more easily and rapidly through those portions of an aquifer that have increased permeability due to fracturing. The direction of ground-water flow generally is parallel to subparallel to major structural trends in the Woody Mountain, Lake Mary, Foxglenn, and Continental areas (**pl. 2**). In wells that are near structural deformations, water-level fluctuations can be indicators of recharge from precipitation and runoff directly through fractures, sinkholes, and (or) solution-channel openings (fig. 40).

Average ground-water flow velocities were calculated as a product of the hydraulic conductivity, hydraulic gradient, and effective porosity after Lohman (1979) as a means of evaluating the effect of geologic structure on ground-water flow. As Lohman (1979) indicates, the average velocity does not necessarily equal the actual velocity between any two points in an aquifer. Average-flow velocities should not be used to predict the velocity and distance of water movement (travel time); however, they can be useful as estimates of flow (table 6). The estimated travel time from the Lake Mary area to the Continental area is much shorter than from the Woody Mountain area to Continental (table 6). Ground-water flow from Lake Mary to Continental is parallel to regional structure (Anderson Mesa Fault); whereas, flow from Woody Mountain to Continental is perpendicular to mostly local structural trends (**pl. 1**).



**Figure 55**. Comparison of hydraulic-conductivity data in the Flagstaff area with hydraulic-conductivity data for similar consolidated rocks (modified from Davis, 1969; Dunn and Leopold, 1978; and Freeze and Cherry, 1979).
**Table 6**.
 Average ground-water flow velocity and estimated travel times for ground water in selected parts of the study area, Flagstaff,

 Arizona
 Arizona

| Area                          | Average flow<br>velocity, in feet per<br>year | Distance, in feet | Estimated travel<br>time, in years |
|-------------------------------|-----------------------------------------------|-------------------|------------------------------------|
| Lake Mary to Woody Mountain   | 57.5                                          | 57,000            | 990                                |
| Lake Mary to Continental      | 33.1                                          | 54,920            | 1,700                              |
| Woody Mountain to Continental | 14.1                                          | 53,860            | 3,800                              |
| Continental to Doney Park     | 15.3                                          | 31,680            | 2,100                              |
| Continental to Wupatki        | 25.7                                          | 141,500           | 5,500                              |

These travel times roughly correlate with ground-water ages in these areas after the influences of more recently recharged waters and mixing are considered. Storagecoefficient and specific-yield data were not correlated with structural trends as transmissivity and hydraulic conductivity were because few storage-coefficient and specific-yield data exist for the study area. Storagecoefficient and specific-yield data obtained during the study are considered to be representative of aquifer conditions because they are similar to values determined in previous studies (Cooley and others, 1969; McGavock and others, 1986) and fall within the ranges given for similar geologic materials throughout the continental United States (table 7). The calculated secondary porosity from SAR surveys ranged from 0 to about 30 percent and compares well with the range of expected values for similar consolidated rocks (table 7) and the few measured porosities available (**pl. 4**). The calculated secondary porosity from the SAR surveys compares well with data from the seismic surveys and borehole-geophysical logs; for example, the calculated secondary porosity and coefficient of anisotropy and the resistivity maxima of the Foxglenn site had significant peaks at 328 to 492 ft (fig. 30). These data correlate well with the seismic-image disruption and

the multiple fractures in the same depth range. Data from the 164- to 492-foot range at the Continental site are similarly correlated to subsurface fractures (figs. 18, 37, 39). These fractures are well above the water table at the Foxglenn and Continental areas.

Specific capacity was compared with transmissivity to determine if specific capacity could be used to estimate aquifer properties. A correlation could not be made because well losses and well and pump efficiencies introduced errors in specificcapacity and transmissivity estimates. In the study area, transmissivity values are reflective of the screened interval open to the aquifer and may represent multiple rock formations. Specific capacity and hydraulic properties derived from pumped wells are affected by well radius, pumping period, and saturated thickness.

## **Local Structure**

Well yield and hydraulic conductivity for wells in the Woody Mountain and Lake Mary well fields are similar and are affected by nearby faults and other fractures (pl. 4). For these areas, well yields generally range from about 300 to 700 gal/min.

 Table 7.
 Porosity and specific yield for common consolidated rocks and for rock units of the regional aquifer near Flagstaff, Arizona

| Geologic unit                                              | Porosity,<br>in percent | Specific yield,<br>in percent |
|------------------------------------------------------------|-------------------------|-------------------------------|
| Sandstone                                                  | 5–30                    | 5–15                          |
| Limestone/dolomite (original and secondary porosity)       | 1–20                    |                               |
| Shale                                                      | 0–10                    | .5–5                          |
| Limestone                                                  |                         | 0.5–5                         |
| Dense, solid rock                                          | <1                      |                               |
| Rock units of the regional aquifer near Flagstaff, Arizona | 4–50                    | 1.6–33                        |

The wells in the Woody Mountain well field are near the Oak Creek Fault. WM-7, which is near the junction of the Oak Creek and Dunnam Faults, has the highest well yield in the well field (pls. 2 and 4). Well yields for the Lake Mary well field range from 57 gal/min to 1,700 gal/min. Most of the high-yield wells at Lake Mary are near either Anderson Mesa or the Lake Mary Faults (pl. 2). LM-8, which is the most productive well in the study area, is near northeastward-striking fractures that are connected to the Lake Mary graben (pl. 2). LM-3 and LMEX-6 have well yields of 167 and 57 gal/min, respectively, and are not near fractures. Well LMEX-2 has a well yield of only 69 gal/min even though the well is near surface fractures. Hydraulic conductivity for the Woody Mountain well field ranges from 20 to about  $80 (gal/d)/ft^2$ . WM-9 is anomalous because it has a well yield of 521 gal/min and the hydraulic conductivity was 2.33  $(gal/d)/ft^2$ ; however, the data may be suspect because pumping rates were not stable for any of the test periods. The well was pumped only at high rates, and recovery data were collected for only a short time. Hydraulic conductivity for the Lake Mary well field ranges from 0.14 to 28.8  $(gal/d)/ft^2$ .

In other areas, well yield and hydraulic conductivity generally are less than well yield and hydraulic conductivity at the Woody Mountain and Lake Mary well fields but still correlate with nearby faults and other fractures. The wells at Forest Highland have well yields of 200 to 300 gal/min, and the hydraulic conductivity in this area ranges from 3.0 to  $6.5 (gal/d)/ft^2$ . These wells are associated with a moderately fractured zone north and west of the Munds Park graben (pl. 2). The wells at Little America, Foxglenn, and Continental have well yields of 100 to 490 gal/min, and the hydraulic conductivity ranges from 1.84 to 6.9  $(gal/d)/ft^2$  (pl. 2). The yield of the Little America well is limited by well design, and the aquifer in this area may be capable of a greater yield as indicated by the hydraulic properties. These wells are in northwestward-trending grabens intersected by northeastward-striking fractures (pl. 2).

A few high-yield wells have no apparent surfacestructure relation, such as the BBDP-Marijka well, which is in the northeastern part of the study area. Data from this well indicate significant secondary permeability from fracturing at depth related to horizontal bedding-plane fractures. These same features were observed in video logs of the wells at Foxglenn and Continental.

Some wells near major surface fractures have unexpectedly low yields such as Skunk Canyon and LM-9. Data from remote-sensing and surfacegeophysical surveys indicated that Skunk Canyon was an optimal site for a high-yield well. Borehole data indicated many open fractures above and below the water table; however, the well yield of 150 gal/min was less than expected. A possible explanation for the low yield is a lack of connectivity of the fractures that contribute flow to the well. LM-9 is a low-yield well drilled along a northeastward-striking fracture alignment that should have had a high yield on the basis of data from previous drilling in the area. This well was located by referencing the surface structure and topography only. As a result, the open interval of the well may not be in the main fracture-flow zone at depth or may be in a low-permeability gouge zone along the structure at depth.

Many of the low-yield wells (less than 100 gal/min) have no apparent relation to surface structure. These wells generally are northeast of Flagstaff and in the area that is west of the city and east of Oak Creek Fault (pl. 2).

Data from the NAD-1 are indicative of how local structure can have a significant effect on the occurrence and movement of regional ground water. The NAD-1 responded to rainfall and runoff into adjacent fractures and sinkholes with a nearly immediate 35-foot rise in water level that declined to the previous level during the following two or three dry months (fig. 40).

In the Rio de Flag area, water-level changes indicate an increase in ground-water storage from the late 1980s to the mid-1990s (pl. 2). This area is heavily fractured and faulted at the surface allowing effluent along the Rio de Flag to recharge the regional aquifer. Near-continuous discharge of effluent began in the mid-1980s and continues to date. In addition, discharge along the Rio de Flag increased in the early to mid-1990s because of periods of above-normal rainfall.

## POTENTIAL FOR FUTURE GROUND-WATER DEVELOPMENT

Remotely sensed data, surface-geologic mapping, and surface-geophysical methods proved to be effective methods of determining potential high permeability at the depth of the regional aquifer. Areas of the aquifer that include northward- and northwestward-trending geologic structures, particularly where the structures intersect, have been shown to be more productive than areas of the aquifer that include other structures. Some parts of the aquifer (Continental, Foxglenn, and Doney Park areas) were shown to have significant horizontal and bedding-plane fractures that also result in higher permeabilities and greater aquifer productivity.

The east side of the Oak Creek Fault north and south of the Woody Mountain well field are areas where well yields could be similar to well yields in the Woody Mountain well field (about 300 to 750 gal/min). The Oak Creek Fault in this area is substantially fractured below the regional water table where encountered in wells. Recent geophysical surveys at the southern end of the Woody Mountain well field indicate that these trends continue in that area. Well data subsequently verified the results of the geophysical surveys. Small-diameter wells penetrating just the upper few hundred feet of the aquifer just to the south and east at the Woody Mountain well field where the Dunnam Fault and the Munds Park graben converge (**pl. 2**) consistently yield 100 to 200 gal/min.

The Lake Mary well field probably is fully developed as indicated by water-level declines over the last decade (**fig. 39**; pl. 2). Two areas of the regional aquifer near the Lake Mary well field, however, have geologic and hydrologic characteristics similar to areas of the aquifer in the Lake Mary well field. One of these areas is the lower end of Upper Lake Mary, which is bounded on the east by the Anderson Mesa Fault and to the west by the Lake Mary Fault. The other area is in Newman Canyon, which is intersected by a series of northwestward-striking faults and grabens (pl. 2).

North of the Lake Mary area near Fisher Point along Walnut Canyon, northwestward-trending grabens intersect the Anderson Mesa Fault (pl. 2). This intersection of geologic structure has substantially fractured rock in the subsurface. These structural trends continue to the north into the Foxglenn and Continental areas where test drilling has verified the extent and orientation of fractures and faults below the regional water table. Just to the west of Foxglenn is a series of parallel to intersecting northwestward-striking faults and grabens that may provide increased permeability and aquifer productivity.

Additional site-specific analysis of remotely sensed data and the collection and analysis of additional geophysical data could be used to locate other areas of potential increased permeability. Borehole logging to identify the extent, orientation, and direction of fractures, and the collection of additional aquifer-test data would provide the information necessary to continue to correlate well yields and hydraulic properties with geologic structure in the Flagstaff area.

## SUMMARY AND CONCLUSIONS

In recent years, the City of Flagstaff has become more dependent on ground water from the regional aquifer. Water use in the study area increased about 30 percent from the mid-1980s to the mid-1990s, and the use of ground water has surpassed the use of surface water. In 1995, the population of Flagstaff was 58,500. Recent studies of community growth and development project a population of about 100,000 by the year 2020. Long-range resource-management plans foresee the need to secure additional dependable water supplies to meet the future demands of an increasing population and a developing commercial environment. In September 1995, the USGS, in cooperation with the City of Flagstaff, began a study to improve the understanding of the occurrence and movement of ground water and the relation between hydrogeologic characteristics and well productivity in the regional aquifer.

The study area is at the southern edge of the Colorado Plateau in northern Arizona and is underlain by unconsolidated sediments and volcanic rocks, a bedded sequence of sedimentary rocks, and plutonic and metamorphic rocks that range from Quaternary to Precambrian in age. The unconsolidated sediments occur as thin to thick discontinuous deposits on top of either the volcanic rocks or the Kaibab Formation. Both the unconsolidated sediments and the volcanic rocks can be waterbearing in small localized areas. Because of the limited areal extent of these waterbearing zones, the unconsolidated sediments and volcanic rocks yield only small amounts of water to wells. Volcanic rocks overlie either the Moenkopi or Kaibab Formations. The Moenkopi Formation is not highly fractured and acts as a confining layer where present. Where not overlain by volcanic rocks and (or) the Moenkopi Formation, the Kaibab Formation is exposed at land surface. Where fully to partly saturated and hydraulically connected to formations below, the Kaibab Formation represents the uppermost part of the regional aquifer. In other areas, perched water-bearing zones in the Kaibab Formation can be hundreds to more than 1,000 ft above the regional water table.

The Kaibab Formation overlies the Toroweap Formation and the Coconino Sandstone. The Coconino Sandstone, where fully to partly saturated in the southern half of the study area, is considered to be the principal water-bearing unit of the regional aquifer. The Coconino Sandstone overlies and intertongues with the Schnebly Hill Formation. The Schnebly Hill Formation, where present, is fully to partly saturated and hydraulically connected to the Coconino Sandstone above it and the Supai Group below it. Where the Schnebly Hill Formation is not present, the Coconino Sandstone lies unconformably on top of the Supai Group. The Supai Group is composed of the Upper, Middle, and Lower Supai Formations. The Supai Group is fully to partly saturated throughout the study area and is the bottommost geologic unit of the regional aquifer. The Supai Group overlies the Redwall Limestone, which in turn overlies the Temple Butte (Martin) Formation or the Muav Limestone where the Temple Butte Formation is not present. The Redwall Limestone, Temple Butte Formation, and (or) Muav Limestone are fully saturated and confined by the overlying Lower Supai Formation. Little is known about their hydraulic characteristics and they are not used as a water source locally. The plutonic and metamorphic rocks that underlie the study area have little or no water-bearing potential and represent the lower limit of ground-water flow in this part of the Colorado Plateau.

Remote sensing and geologic mapping indicate that there are many significant surface structural features that include folds, faults, grabens, joints, and other fractures that were not previously identified. These structural features were shown to have a significant effect on the occurrence and flow of ground water in the regional aquifer. Surface-geophysical and borehole surveys indicate that many of these surfacestructure alignments extend deep into the regional aquifer. Combined high-resolution seismic-reflection and seismic-refraction imaging in the study area was successful in imaging details of the fracture system from the near surface to well below the regional water table. These data provide information on the dip of rock units that can be used to calculate offsets from surface-structural features before drilling. The seismic images also may be used to avoid large shallow-depth faults that interfere with drilling.

The SAR method provided information on fracture strike, porosity, and anisotropy of rock units that can be used in the same manner as the seismic-reflection and seismic-refraction methods previously described. Such methods can be used to locate potential well sites.

Borehole-geophysical data and video-log data for selected test wells also indicated that the surfacestructural trends typically are present within the waterbearing zone. Borehole data in conjunction with the surface-geophysical data indicate that fracture orientation changes with depth but is in general agreement with surface-structure trends. The borehole data also identified near-horizontal to horizontal fractures and bedding-plane fractures that are not as apparent in the surface-geophysical data but are a significant component of the fracture-flow environment in the wells.

Water levels fluctuate in response to local shortterm rainfall, snowmelt, local pumping and longer-term climatic variations. Water levels in a few observation wells respond abruptly to significant rainfall and runoff. These wells are near open fractures and sinkholes that direct surface water directly to the regional aquifer. In the Woody Mountain and Lake Mary well fields, data from observation wells show a seasonal response and long-term trends related to pumping. In the Woody Mountain well field, water levels in observation wells declined 100 ft or more when many of the production wells were pumped for extended periods. The average decline of water levels in the Woody Mountain well field over the last 42 years is about 35 ft. In the Lake Mary well field, water levels in some observation wells declined as much as 400 ft when production wells were pumped for extended periods. Water levels in some parts of the Lake Mary well field have declined about 100 ft in the last 34 years, and most of the decline occurred in the last 10 years. Water levels in these areas do recover to varying degrees depending on the amount and timing of precipitation and pumping by the city. Water levels in several observation wells that are measured quarterly to annually in parts of the regional aquifer that have minimal or no structural deformation had no apparent response to short-term climate variability or pumping.

Well yields vary considerably within the study area; some of this variability is due to the quality and duration of well tests. In most cases, these well tests are done to verify the minimally acceptable yield rather than to determine actual hydraulic properties of the aquifer near the well. Most high-yield wells are near fractures or other surface-structural features and show a bias for northwestward-trending structure and secondary north-northeastward-trending structure. The most productive wells are near or on structural features connected with grabens that trend northwestward through the area. In several high-yield wells, there is significant horizontal to near-horizontal fracturing in addition to near-vertical fractures that substantially improve the well yield. Low-yield wells have no significant relation to surface geologic structure. Some of the variability in wells that yield less than 100 gal/min probably is related to horizontal and vertical lithologic changes within the water-bearing zone. A few wells drilled near structural features had low yields. Most of these wells were located without the benefit of surface-geophysical data to identify a potential target zone. As a result, these wells which are near a structural trend at land surface, may be completed some distance from the structural trend at depth.

Although hydraulic properties of wells in the study area are variable, they do exhibit an apparent relation to geologic structure. Transmissivity, hydraulic conductivity, storage coefficient, and (or) specific yield were estimated or determined from available well and aquifer tests of 43 regional-aquifer wells in the study area. Many of the remaining well tests were not usable for determining hydraulic properties because the pumping rate of the well was too low or the duration of the test was too short to provide meaningful information. Estimated transmissivity values range from 100 to 35,000 (gal/d)/ft. Hydraulic-conductivity values calculated from transmissivity values range from 0.14 to 81.5  $(gal/d)/ft^2$ . Some of the variability in specific-capacity and aquifer-test results appear to be related to the design and development of the wells and to the quality and duration of the well or aquifer tests. Physical factors affecting well yield and aquifer performance are grain size and type and degree of cementation of the rock units, type and degree of fracturing of the formation, and interconnectivity of fractures. Although the population of data is small and there is a fair amount of variability, there appears to be a fair relation between well yield, hydraulic properties, and surface-geologic structure. Favorable hydraulic properties are associated with northwestward-trending surface structure. A weaker relation of favorable hydraulic properties exists with the northnortheastward-trending structure.

Storage coefficients and specific yields of the regional aquifer were determined for 11 sites in the study area, and porosity was determined for three sites. Storage coefficients for three wells drilled in the confined part of the regional aquifer varied from 0.00023 to 0.05. Specific yield for eight wells in the unconfined part of the regional aquifer ranged from 0.0002 to 0.14 and averaged 0.077. Although limited, the broad range of storage characteristics suggests a structural influence to the primary water-bearing characteristics. On the basis of the average specific yield and the average saturated thickness, the water in storage in the regional aquifer in the study area is estimated to be 4,800,000 acre-ft. Porosity, which was estimated from well logs, ranges from 4 to 50 percent.

On the basis of the average annual precipitation and estimates of infiltration, the estimated annual average recharge is 290,000 acre-ft. Fractures and sinkholes probably provide direct conduits for precipitation and surface flow to the regional aquifer. A mound of ground water had developed in the Rio de Flag area as a result of localized recharge from consistently available effluent. As of 1998, discharge from wells in the regional aquifer was about 7,500 acre-ft/yr. This value is 2.6 percent of the estimated annual recharge to the aquifer and 0.16 percent of the estimated amount of water in storage.

Common-ion data for water from the regional aquifer generally plot into one of two groups—the Woody Mountain group or the Lake Mary group. The Woody Mountain group is characterized by water that has recharged through the volcanic rocks and has higher concentrations of SiO<sub>2</sub>. The Lake Mary group is characterized by water that has recharged through the limestone sediments and has higher concentrations of Ca and Mg.

Data for <sup>18</sup>O/<sup>16</sup>O and <sup>2</sup>H/<sup>1</sup>H indicate a common recharge source with limited evaporation occurring for most of the recharge waters. Isotope data from a few wells indicates recharge is occurring from surface water such as Lake Mary and the Rio de Flag. Estimated <sup>14</sup>C ground-water ages coincide with ground-water movement from the Lake Mary area northwest to the Woody Mountain area and northeast toward Wupatki. Sites with measurable <sup>3</sup>H and older estimated <sup>14</sup>C ages indicate mixing of older and younger ground water in the aquifer. These data corroborate the interpreted relation of ground-water flow and geologic structure in the study area. Average flow velocities from hydraulic conductivity, hydraulic gradient, and effective porosity data indicate ground water takes about 1,000 years to flow from the main recharge area to the south of Lake Mary downgradient toward the Woody Mountain area. Ground water flows faster from Lake Mary to the Continental area parallel to regional structures such as the Anderson Mesa Fault. But flow from Woody Mountain to the Continental area appears to be slowed by local structural features that cross the flow path at near perpendicular angles. Velocities of ground water flowing north out of the area result in travel times that are consistent with carbon ages of ground water along the flow path.

Remotely sensed data, surface-geologic mapping, and surface-geophysical methods proved to be effective methods of determining potential high permeability at the depths of the regional aquifer without the need for exploratory drilling. On the basis of information gathered from these methods, three of four wells located by the City of Flagstaff were capable of longterm yields of about 500 gal/min. The fourth well yielded about 200 gal/min. The relatively low yield may be due to a lack of interconnectivity of fractures. Seven areas of potential high well yield were identified on the basis of information gathered in this study.

Some additional work could be useful in developing a more complete understanding of the fracture-flow system in the regional aquifer in the Flagstaff area. The collection of specific-capacity and aquifer-test data from new wells that are drilled and developed in the area would provide information that will refine the correlation of well yield and hydraulic properties with geologic structure. Sufficient borehole logging to identify the extent, orientation, and direction of fractures would be useful to continue development of the fracture-flow relation. These data also will provide useful information in the proper design and construction of high-yield wells. Additional observation wells in outlying areas would provide water-level data necessary to determine local variations in ground-water flow direction. Additional temporal analysis of selected isotopes in ground water can be used to refine the relation of water chemistry to geologic structure and ground-water flow developed in this study. As the base of data develops and expands, future attempts at more accurate water budgets will provide more detailed information on the effects of water use on the available ground-water resources. A mathematical model of the fracture-flow system in

the regional aquifer may be needed to predict future responses of the ground-water system to natural and anthropogenic stresses.

## **SELECTED REFERENCES**

- Akers, J.P., 1962, Relation of faulting to the occurrence of ground water in the Flagstaff area, Arizona, *in*Geological Survey Research 1962: U.S. Geological Survey Professional Paper 450–B, p. 97–100.
- Akers, J.P., Cooley, M.E., and Dennis, P.E., 1964, Synopsis of ground-water conditions on the San Francisco Plateau near Flagstaff, Coconino County, Arizona: U.S. Geological Survey open-file report, 30 p.
- Aldrich, L.T., Wetherill, G.W., Tilton, G.R., and Davis, G.L., 1956, The half life of rubidium-87: Physics Review, v. 104, p. 1045–1047.
- Anning, D.W., and Duet, N.R., 1994, Summary of groundwater conditions in Arizona, 1987–90: U.S. Geological Survey Open-File Report 94–476, 1 sheet.
- Appel, C.L., and Bills, D.J., 1980, Map showing groundwater conditions in the Canyon Diablo area, Coconino and Navajo Counties, Arizona–1979: U.S. Geological Survey Open-File Report 80–747, 1 sheet.
  - ——1981, Map showing ground-water conditions in the San Francisco Peaks area, Coconino County, Arizona– 1979: U.S. Geological Survey Open-File Report 81–914, 2 sheets.
- Barnes, C.W., 1989, Early Proterozoic rocks on Grand Canyon, Arizona, *in* Elston, D.P., Billingsley, G.H., and Young, R.A., eds., Geology of Grand Canyon, northern Arizona: Washington, D.C., American Geophysical Union, 28th International Geological Congress Field Trip Guidebook T115/315, p. 90–93.
- Beres, M., and Haeni, F.P., 1991, Application of groundpenetrating radar methods in hydrogeologic studies: Ground Water, v. 29, no. 3, p. 375–386.
- Beus, S.S., 1973, Devonian stratigraphy and paleogeography along the western Mogollon Rim, Arizona: Flagstaff Museum of Northern Arizona Bulletin 49, 36 p.
- Beus, S.S., and Billingsley, G.H., 1989, Paleozoic strata of the Grand Canyon, Arizona, *in* Elston, D.P., Billingsley, G.H., and Young, R.A., eds., Geology of Grand Canyon, northern Arizona: Washington, D.C., American Geophysical Union, 28th International Geological Congress Field Trip Guidebook T115/315, p. 122–127.

Billingsley, G.H., Breed, W.J., and Beasley, D., 1980, Geologic cross section along Interstate 40—Kingman to Flagstaff, Arizona: Chandler, Arizona, Pagosa Press, Petrified Forest Museum Association in cooperation with Museum of Northern Arizona map sheet.

Blakey, R.C., 1979, Stratigraphy of the Supai Group (Pennsylvanian-Permian), Mogollon Rim, Arizona, *in* Beus, S.S., and Rawson, R.R., eds., Carboniferous stratigraphy in the Grand Canyon Country, northern Arizona and southern Nevada: Falls Church, Virginia, American Geological Institute Guidebook Series No. 2, Ninth International Congress of Carboniferous Stratigraphy and Geology, p. 89–104.

—1990, Stratigraphy and geologic history of Pennsylvanian and Permian rocks, Mogollon Rim region, central Arizona and vicinity: Geological Society of America Bulletin, v. 102, no. 9, p. 1189–1217.

Blakey, R.C., and Knepp, R., 1989, Pennsylvanian and Permian geology of Arizona, *in* Jenney, J.P., and Reynolds, S.J., eds., Geologic Evolution of Arizona: Arizona Geological Society Digest 17, p. 313–347.

Blakely, R.J., and Simpson, R.W., 1986, Approximating edges of source bodies from magnetic or gravity anomalies: Geophysics, v. 51, no. 7, p. 1494–1498.

—1987, Approximating edges of source bodies from magnetic or gravity anomalies—Discussion and reply by author: Geophysics, v. 54, no. 9, p. 1214.

Blee, J.W.H., 1988, Determination of evaporation and seepage losses, upper Lake Mary near Flagstaff, Arizona: U.S. Geological Survey Water-Resources Investigations Report 87–4250, 39 p.

Catchings, R.D., Jaasma, N.M., Goldman, M.R., and Rymer, M.J., 1997, Seismic images beneath the Continental (Bottomless Pits) area, Flagstaff, Arizona: U.S. Geological Survey Open-File Report 97–76, 29 p.

Chavez, P.S., Jr., 1984, U.S. Geological Survey mini-image processing system (MIPS): U.S. Geological Survey Open-File Report 84–880, 12 p.

—1992, Comparison of spatial variability in visible and near-infrared spectral images: Photogrammetric Engineering and Remote Sensing, v. 58, no. 7, p. 957–964.

Chavez, P.S., Jr., and Bowell, J., 1988, Comparison of the spectral information content of Landsat thematic mapper and SPOT for three different sites in the Phoenix, Arizona region: Photogrammetric Engineering and Remote Sensing, v. 54, no. 12, p. 1699–1708. Chavez, P.S., Jr., Velasco, M., and Sides, S.C., 1996,
Ground-water resources evaluation, Flagstaff,
Arizona—Remote-sensing component: U.S. Geological
Survey Open-File Report 96–739, 27 p.

Chavez, P.S., Jr., Velasco, M., Soltesz, D.L., and Sides, S.C., 1997, Terrestial remote sensing: U.S. Geological Survey Open-File Report 96–739, available on World Wide Web at URL http://terraweb.wr.usgs.gov/ TRS/about.html, accessed February 12, 1998.

City of Flagstaff, 1996, Flagstaff 2020—A community profile: Flagstaff, Arizona, City of Flagstaff report, 106 p.

Cooley, M.E., 1960a, Physiographic map of the San Francisco Plateau—Lower Little Colorado River area, Arizona: Tucson, University of Arizona, Geochronology Laboratory report.

——1963, Hydrology of the Plateau upland province, *in* White, N.D., and others, Annual report on ground water
 in Arizona, spring 1962 to spring 1963: Phoenix,
 Arizona State Land Department Water-Resources
 Report 15, p. 27–38.

Cooley, M.E., Harshbarger, J.W., Akers, J.P., and Hardt,
W.F., 1969, Regional hydrogeology of the Navajo and
Hopi Indian Reservations, Arizona, New Mexico, and
Utah, *with a section on Vegetation* by O.N. Hicks: U.S.
Geological Survey Professional Paper 521–A, 61 p.

Cooper, H.H., Jr., and Jacob, C.E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Washington, D.C., American Geophysical Union Transactions, v. 27, no. 4, p. 526–534.

Cordell, Lindrith, 1979, Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico, *in* Ingersoll, R.V., ed., Santa Fe Country: Santa Fe, New Mexico Geological Society Guidebook, 30th Field Conference, October 4–6, 1979, p. 59–64.

Cosner, O.J., 1962, Ground water in the Wupatki and Sunset Crater National Monuments, Coconino County, Arizona: U.S. Geological Survey Water-Supply Paper 1475–J, p. 357–374.

Craig, H., 1961, Standard for reporting concentrations of deuterium + oxygen-18 in natural waters: Science, v. 133, no. 3467, p. 1833–1834. Damon, P.E., Shafiqullah, Mohammed, and Leventhal, J.S., 1974, K-Ar chronology for the San Francisco volcanic field and rate of erosion of the Little Colorado River, *in* Karlstom, T.N.V., Swann, G.A., and Eastwood, R.L., eds., Part 1 of Geology of Northern Arizona: Geological Society of America Guidebook for Rocky Mountain Section Meeting, Flagstaff, Arizona, v. 6, no. 5, p. 221–235.

Dansgaard, W., 1964, Stable isotopes in precipitation: Tellus, v. 16, no. 4, p. 436–469.

Darton, N.H., 1910, A reconnaissance of parts of northwestern New Mexico and northern Arizona: U.S. Geological Survey Bulletin 435, 88 p.

Davis, G.H., 1978, Monoclinal fold patterns of the Colorado Plateau, *in* Matthews, V., III, ed., Laramide Folding Associated with Basement Block Faulting in the Western United States: Geological Society of America Memoir 151, p. 215–233.

Davis, S.N., 1969, Porosity and permeability of natural materials, *in* DeWiest, R.J.M., ed., Flow Through Porous Media: New York, Academic Press, p. 54–90.

Davis, W.M., 1901, An excursion to the Grand Canyon of the Colorado: Harvard College, Museum of Comparative Zoology Bulletin, v. 38, p. 107–201.

Davis, J.L, and Annan, A.P., 1989, Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy: Geophysical Prospecting, v. 37, no. 5, p. 531–551.

Deng, S., Zhengrong, Z., and Wang, H., 1994, The application of ground-penetrating radar to detection of shallow faults and caves: Ontario, Canada, University of Waterloo, Waterloo Centre for Ground-Water Research, Fifth International Conference on Ground-Penetrating Radar Proceedings, Kitchener, Ontario, Canada, v. 3, p. 115–120.

Driscoll, F.G., 1986, Groundwater and wells, second edition: St. Paul, Minnesota, Johnson Division, 1108 p.

Doe, T.W., Long, J.C.S., Endo, H.K., and Wilson, C.R., 1982, Approaches to evaluating the permeability and porosity of fractured rock masses, *in* Goodman, R.E., and Hueze, F.E., eds., Issues in Rock Mechanics: New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., Proceedings of the Twenty-Third Symposium on Rock Mechanics, Berkeley, California, August 25–27, 1982, p. 30–38.

Dunn, T., and Leopold, L.B., 1978, Water in environmental planning: San Francisco, California, W.H. Freeman and Company, 818 p. Duren Engineering, Inc., 1983, Yield analysis for the Lake Mary and Woody Mountain well fields, City of Flagstaff, Arizona: Duren Engineering, Inc., unpublished report, 100 p.

Dutton, C.E., 1882, The Tertiary history of the Grand Canyon district with atlas: U.S. Geological Survey Monograph 2, 264 p.; atlas, 23 sheets.

Elston, D.P., 1989, Middle and Late Proterozoic Grand Canyon Supergroup, Arizona, *in* Elston, D.P.,
Billingsley, G.H., and Young, R.A., eds., Geology of Grand Canyon, northern Arizona: Washington, D.C.,
American Geophysical Union, 28th International Geological Congress Field Trip Guidebook T115/315, p. 94–105.

Elston, D.P., and DiPaolo, W.D., 1979, Pennsylvanian-Permian stratigraphy of the Sedona area and environs, central and northern Arizona, *in* Baars, D.L., ed., Permianland: Santa Fe, New Mexico, Four Corners Geological Society, Ninth Field Conference, A Field Symposium—Guidebook of the Four Corners Geological Society, September 27–30, 1979, p. 131–141.

Elston, D.P., and Scott, G.R., 1976, Unconformity at the Cardenas-Nankoweap contact (Precambrian), Grand Canyon Supai Group, northern Arizona: Geological Society of America Bulletin 87, no. 12, p. 1763–1772.

Faure, Gunter, 1977, Principles of isotope geology: New York, John Wiley and Sons, p. 97–137.

Fenneman, N.M., and Johnson, D.W., 1946, Physical divisions of the United States: U.S. Geological Survey, scale, 1:1,000,000, 1 sheet.

Feth, J.H., 1953, A geologic and geophysical reconnaissance of the Doney Park-Black Bill Park area, with reference to ground water, *with a section on Geophysics* by C.B. Yost, Jr.: U.S. Geological Survey Circular 233, 11 p.

Feth, J.H., and Hem, J.D., 1963, Reconnaissance of headwater springs in the Gila River drainage basin, Arizona: U.S. Geological Survey Water-Supply Paper 1619–H, 54 p.

Fetter, C.W., 1980, Applied hydrogeology: Columbus, Ohio, Charles E. Merrill Publishing Company, 488 p.

Founts, J.C., and Garnier, J.M., 1979, Determination of the initial <sup>14</sup>C activity of the carbon—A review of the existing models and a new approach: Washington, D.C., American Geophysical Union, Water Resources Research, v. 15, no. 2, p. 399–413.

Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Englewood Cliffs, New Jersey, Prentice-Hall, 604 p. Gilbert, G.K., 1875, Report on the geology of portions of Nevada, Utah, California, and Arizona, examined in the years 1871 and 1872, *in* U.S. Army Corps of Engineers, Report upon geographical and geological explorations and surveys west of the 100th Meridian, v. 3, Geology: Washington, D.C., U.S. Government Printing Office, p. 17–187.

Grauch, V.J.S., and Cordell, Lindrith, 1987, Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data (short note): Geophysics, v. 52, no. 1, p. 118–121.

Habberjam, G.M., 1972, The effects of anisotropy in squarearray resistivity measurements: Geophysical Prospecting, v. 20, no. 2, p. 249–266.

—1975, Apparent resistivity, anisotropy, and strike measurements: Geophysical Prospecting, v. 23, no. 2, p. 211–247.

Habberjam, G.M., and Watkins, G.E., 1967, The use of a square configuration in resistivity prospecting: Geophysical Prospecting, v. 15, no. 3, p. 445–467.

Hantush, M.S., 1962, Aquifer test on partially penetrating wells: American Society of Civil Engineering Transcripts, v. 127, part I, p. 268–283.

Harshbarger and Associates, 1976, Lake Mary aquifer report, City of Flagstaff, Arizona: Tucson, Arizona, Harshbarger and Associates duplicated report, 89 p.

Harshbarger and Associates, and John Carollo Engineers, 1972, Water resources report, City of Flagstaff, Arizona: Tucson, Arizona, Harshbarger and Associates, and John Carollo Engineers duplicated report, 124 p.

—1973, Woody Mountain aquifer report, City of Flagstaff, Arizona: Tucson, Arizona, Harshbarger and Associates, and John Carollo Engineers duplicated report, 96 p.

—1974, Inner Basin aquifer report, City of Flagstaff, Arizona: Tucson, Arizona, Harshbarger and Associates, and John Carollo Engineers duplicated report, 85 p.

Hearn, P.P., Steinkampf, W.C., Bortelson, G.C., and Drost,
B.W., 1985, Geochemical controls on dissolved sodium in basalt aquifers of the Columbia Plateau, Washington:
U.S. Geological Survey Water-Resources Investigations Report 84–4304, 38 p. Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural waters, 3rd ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.

Hodgson, R.A., 1961, Reconnaissance of jointing in Bright Angel area, Grand Canyon, Arizona: American Association Petroleum Geologists Bulletin, v. 45, no. 1, p. 95–97.

Holm, R.F., and Cloud, R.A., 1990, Regional significance of recurrent faulting and intracanyon volcanism at Oak Creek Canyon, southern Colorado Plateau, Arizona: Geology, v. 18, no. 10, p. 1014–1017

Huntoon, P.W., 1974, Synopsis of Laramide and post-Laramide structural geology of the eastern Grand Canyon, Arizona, *in* Karlstrom, T.N.V., Swann, G.A., and Eastwood, R.L., eds., Geology of Northern Arizona, *with Notes on Archaeology and Paleoclimate—Regional Studies*: Geological Society of America, Rocky Mountain Section Meeting, Flagstaff, Arizona, part 1, p. 317–335.

——1989, Phanerozoic tectonism, Grand Canyon,
 Arizona, *in* Elston, D.P., Billingsley, G.H., and Young,
 R.A., eds., Geology of Grand Canyon, northern
 Arizona: Washington, D.C., American Geophysical
 Union, 28th International Geological Congress Field
 Trip Guidebook T115/315, p. 76–89.

International Atomic Energy Agency, 1969, Environmental isotope data—World survey of isotope concentration in precipitation, 1953–1963: Vienna, Austria, International Atomic Energy Agency, Technical Report 165, v. 1.

Jacob, C.E., 1950, Flow of ground water, *in* Rouse, Hunter, ed., Engineering Hydraulics: New York, John Wiley and Sons, Proceedings of the Fourth Hydraulics Conference, Iowa Institute of Hydraulic Research, June 12–15, 1949, chap. 4, p. 321–386.

Jaasma, N.M., Catchings, R.D., Goldman, M.R., and Rymer, M.J., 1997, Seismic imaging in the Skunk Canyon and Foxglenn areas of Flagstaff, Arizona, U.S. Geological Survey Open-File Report 97–147, 48 p.

Kaehler, C.A., and Hsieh, P.A., 1991, Hydraulic properties of a fractured-rock aquifer, Lee Valley, San Diego County, California: U.S. Geological Survey Open-File Report 90–592, 94 p.

Karlstrom, T.N.V., Swann, G.A., and Eastwood, R.L., eds., 1974, Geology of Northern Arizona with Notes on Archaeology And Paleoclimate—Regional Studies: Geological Society of America Rocky Mountain Section Meeting, Flagstaff, Arizona, part 1, 407 p.

— 1974, Geology of Northern Arizona with Notes On Archaeology And Paleoclimate—Area Studies And *Field Guides*: Geological Society of America Rocky Mountain Section Meeting, Flagstaff, Arizona, part 2, 398 p.

Keller, G.V., 1989, Electrical properties, *in* Carmichael, R.S., ed., Practical Handbook of Physical Properties of Rocks and Minerals: Boca Raton, Florida, CRC Press, section V, p. 359–427.

Keller, G.V., and Frischknect, F.C., 1966, Electrical methods in geophysical prospecting: London, Great Britain, Pergamon Press, 519 p.

Lane, J.W., Jr., Haeni, F.P., and Watson, W.M., 1995, Use of a square-array direct-current resistivity method to detect fractures in crystalline bedrock in New Hampshire: Groundwater, v. 33, no. 3, p. 476–485.

Levings, G.W., 1980, Water resources in the Sedona area, Yavapai and Coconino Counties, Arizona: Phoenix, Arizona Water Commission Bulletin 11, 37 p.

Lohman, S.W., 1979, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708, 70 p.

McGavock, E.H., 1968, Basic ground-water data for southern Coconino County, Arizona: Phoenix, Arizona State Land Department Water-Resources Report 33, 48 p.

McGavock, E.H., Anderson, T.W., Moosburner, Otto, and Mann, L.J., 1986, Water resources of southern Coconino County, Arizona: Phoenix, Arizona Department of Water Resources Bulletin 4, 53 p.

McKee, E.D., 1938, The environment and history of the Toroweap and Kaibab Formations of northern Arizona and southern Utah: Carnegie Institution of Washington Publication 492, 268 p.

——1954, Stratigraphy and history of the Moenkopi Formation of Triassic age: Geological Society of America Memoir 61, 133 p.

 ——1963, Nomenclature for lithologic subdivisions of the Mississippian Redwall Limestone, Arizona: U.S.
 Geological Survey Professional Paper 475–C, p. C21– C22.

——1982, The Supai Group of Grand Canyon: U.S. Geological Survey Professional Paper 1173, 504 p.

McKee, E.D., and Resser, C.E., 1945, Cambrian history of the Grand Canyon region: Carnegie Institution of Washington Publication 563, 232 p.

Manera, Incorporated, 1987, Data and results of well and aquifer tests for Forest Highlands, Flagstaff, Arizona: Manera Incorporated Technical Report, December 9, 1987, 88 p.

Mann, L.J., 1976, Ground-water resources and water use in southern Navajo County, Arizona: Phoenix, Arizona Water Commission Bulletin 10, 106 p. Mazor, E., 1991, Applied chemical and isotopic groundwater hydrology: New York, John Wiley and Sons, 274 p.

Mears, B., 1950, Faulting in Oak Creek Canyon and a discussion of contrary bending: Plateau, v. 23, no. 2, p. 26–31.

Montgomery, Errol L., and Associates, 1992, Results of drilling, construction, and testing City of Flagstaff Lake Mary regional aquifer exploration wells and shallow aquifer monitor wells, Coconino County, Arizona: Tucson, Arizona, Errol L. Montgomery and Associates report prepared for the City of Flagstaff, 185 p.

Montgomery, J.M., Consulting Engineers, Inc., 1982, Results of Redwall-Martin testing program at Lake Mary well No. 8: Flagstaff, Arizona, James M.
Montgomery Consulting Engineers, Inc., report to the City of Flagstaff, Arizona Utilities Department, 10 p.

Montgomery, Watson, 1996, City of Flagstaff well completion report—Woody Mountain-10: Montgomery Watson, Project Number 528700, June 1996, 22 p.

Moore, R.B., and Wolf, E.W., 1987, Geologic map of the east part of the San Francisco volcanic field, northcentral Arizona: U.S. Geological Survey Miscellaneous Field Studies Map MF–1950, scale, 1:50,000.

Moore, R.B., Wolfe, E.W., and Ulrich, G.E., 1976, Volcanic rocks of the eastern and northern parts of the San Francisco volcanic field, Arizona: Journal of Research of the U.S. Geological Survey, v. 4, no. 5, p. 549–560.

Moore, R.T., Wilson, E.D., and O'Hare, R.T., 1960, Geologic map of Coconino County, Arizona: Arizona Bureau of Mines Map M-3-2, scale 1:375,000.

National Oceanic and Atmospheric Administration, 1998, Climatological data, annual summary—Arizona, 1997: Asheville, North Carolina, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Climatic Data Center, v. 1997, no. 13.

Noble, L.F., 1922, A section of the Paleozoic formations of the Grand Canyon at the Bass Trail, *in* Shorter Contributions to General Geology, 1922: U.S. Geological Survey Professional Paper 131–B, p. 23–73. Nur, Amos, ed., 1982, Stanford rock physics progress report, January 1982: Stanford, California, Stanford Junior University, v. 13, 121 p.

Ohm, G.S., 1827, Die galvanische Kettle, mathematisch 1st ed.: Berlin, Germany, T.H. Reimann, 245 p.
——1969, The galvanic circuit investigated mathematically, 102 of Van Nostrand Science Series [translation of Ohm, G.S., 1827]: New York, Kraus, 269 p.

Owen-Joyce, S.J., and Bell, C.K., 1983, Appraisal of water resources in the upper Verde area, Yavapai and Coconino Counties, Arizona: Phoenix, Arizona Department of Water Resources Bulletin 2, 219 p.

Peterman, Z.E., Hedge, C.E., Tourtelot, H.A., 1970, Isotopic compositions of strontium in sea water throughout Phanerozoic time: Geochemica et Cosmochimica Acta, v. 34, no. 1, p. 105–120.

Pierce, H.A., 1996, Ground-water availability in the Town of Payson, Arizona—Transition zone between the Colorado Plateau and Basin and Range, Gila County, Arizona, *in* Wanted: Water for Arizona [abs.]: Phoenix, Arizona, Arizona Hydrological Society, 9th Annual Meeting, Proceedings, September 12–14, 1996, Prescott, Arizona, p. 103–105.

Pierce, H.A., and Hoffmann, J.P., 1996, Use of square-array direct-current resistivity method to detect fractures in consolidated sedimentary rocks in the Colorado Plateau near Flagstaff, Arizona [abs.]: Washington, D.C., American Geophysical Union, 1996 Fall Meeting, Supplement to EOS Transactions, v. 77, no. 46, November 12, 1996, abstract H31A-1, p. F184.

Peirce, H.W., Jones, Nile, and Rodgers, Ralph, 1977, A survey of uranium favorability of Paleozoic rocks in the Mogollon Rim and Slope region, east-central Arizona: Tucson, Arizona, Arizona Bureau of Geology and Mineral Technology Circular 19, 71 p.

Plummer, L.N., Prestemon, E.C., Parkhurst, D.L., 1991, An interactive code (NETPATH) for modeling NET geochemical reactions along a flow path: U.S. Geological Survey, Water-Resources Investigations Report 91–4078, 227 p.

Powell, J.W., 1957, The exploration of the Colorado River: Chicago, Illinois, University of Chicago Press, abridged from the first edition of 1875, 138 p.

Reynolds, S.J., 1988, Geologic map of Arizona: Tucson, Arizona Geological Survey Map M-26, scale, 1:1,000,000.

Robinson, H.H., 1913, The San Franciscan volcanic field, Arizona: U.S. Geological Survey Professional Paper 76, 213 p. Roscoe Moss Co., 1990, Handbook of ground-water development: New York, John Wiley and Sons, 493 p.

Schlumberger, Conrad, 1920, Essais de prospection electrique du sous-sol: Academie Science Comptes Rendus, v. 170, no. 9, p. 519–521.

Sellers, W.D., Hill, R.H., and Sanderson-Rea, Margaret, eds., 1985, Arizona climate—The first hundred years: Tucson, University of Arizona Press, 143 p.

Sensors and Software, 1994, Pulse EKKO 100 user's guide, version 1.1: Sensors and Software, Inc. Technical Manual 25, 204 p.

Shoemaker, E.M., Squires, R.L., and Abrams, M.J., 1978, Bright Angel and Mesa Butte Fault systems of northern Arizona, *in* Smith, R.B., and Eaton, G.P., eds., Cenozoic tectonics and regional geophysics of the western Cordillera: Geological Society of America Memoir 152, p. 341–367.

Smiley, T.L., 1958, The geology and dating of Sunset Crater, Flagstaff, Arizona, *in* Guidebook of the Black Mesa Basin: New Mexico Geological Society 9th Field Conference, Gallup, New Mexico, October 16–18, 1958, p. 186–190.

Sorauf, J.E., and Billingsley, G.H., 1991, Members of the Toroweap and Kaibab Formations, Lower Permian, Northern Arizona, and Southwestern Utah: Rocky Mountain Association of Geologists, The Mountain Geologist, v. 28, no. 1, p. 9–24.

Taylor, R.W., 1984, The determination of joint orientation and porosity from azimuthal resistivity measurements, *in* Nielsen, D.M., and Curl, Mary, eds., Proceedings of the National Water Well Association and U.S. Environmental Protection Agency Conference on Surface and Borehole Geophysical Methods in Ground-Water Investigations: Worthington, Ohio, National Water Well Association, San Antonio, Texas, February 7–9, 1984, p. 37–49.

Taylor, R.W., and Fleming, A.H., 1988, Characterizing jointed systems by azimuthal resistivity surveys: Groundwater, v. 26, no. 4, p. 464–474.

Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage:Washington, D.C., American Geophysical Union Transactions., 16th Annual Meeting, part 2, p. 519–524.

Thorstenson, D.J., and Beard, L.S., 1998, Geology and fracture analysis of Camp Navajo, Arizona Army National Guard, Arizona: U.S. Geological Survey Open-File Report 98–242, 42 p. Twenter, F.R., and Metzger, D.G., 1963, Geology and ground water in Verde Valley—The Mogollon Rim region, Arizona: U.S. Geological Survey Bulletin 1177, 132 p.

- Ulrich, G.E., Billingsley, G.H., Hereford, Richard, Wolfe, E.W., Nealey, L.D., and Sutton, R.L., 1984, Map showing geology, structure, and uranium deposits of the Flagstaff 1°x2° quadrangle, Arizona: U.S. Geological Survey Miscellaneous Investigations Series Map I–1446, scale, 1:250,000.
- Ulriksen, P.F., 1982, Application of impulse radar to civil engineering: Lund, Sweden, Lund University of Technology, doctoral thesis, 179 p.
- U.S. Environmental Protection Agency, 1993a, National revised drinking-water regulations—Maximum contaminant levels: Washington, D.C., U.S. Environmental Protection Agency, U.S. Code of Federal Regulations, Title 40, Part 141, July 1, 1993, p. 592–732.
  - ——1993b, National revised drinking-water regulations—Secondary contaminant levels: Washington, D.C., U.S. Environmental Protection Agency, U.S. Code of Federal Regulations, Title 40, Part 143, July 1, 1993, p. 774–777.
  - ——1999, Current drinking-water standards: U.S. Environmental Protection Agency, Office of Ground Water and Drinking Water, URL http://www.epa.gov/ safewater/mcl.html, accessed June 12, 2000.
- U.S. Geological Survey, 1985, Annual summary of groundwater conditions in Arizona, spring 1983 to spring 1984: U.S. Geological Survey Open-File Report 85–410, 1 sheet.
  - ——1993, National geophysical data grids—Gamma ray, gravity, magnetic, and topographic data for the

conterminous United States: U.S. Geological Survey Digital Data Series DDS-9, CD-ROM.

- Waterloo Hydrogeologic, Inc., 1999, User's manual for aquifer test—The intuitive aquifer test analysis package: Waterloo, Ontario, Canada, Waterloo Hydrogeologic, Inc., 176 p.
- Weir, G.W., Ulrich, G.E., and Nealey, D.L., 1989, Geologic map of the Sedona 30°x60° quadrangle, Yavapai and Coconino Counties, Arizona: U.S. Geological Survey Miscellaneous Investigations Series Map I–1896, scale 1:100,000.
- Williams, T., 1994, Three-dimensional shallow structure of Cienega Valley, California: Berkeley, California, University of California-Berkeley, masters thesis, 56 p.
- Wolfe, E.W., Ulrich, G.E., Holm, R.F., Moore, R.B., and Newhall, C.G., 1987, Geologic map of the central part of the San Francisco volcanic field, north-central Arizona: U.S. Geological Survey Miscellaneous Field Studies Map MF–1959, scale, 1:50,000.
- Yost and Gardner Engineers, 1961, City of Flagstaff, Arizona, 1961 water report: Flagstaff, Arizona, Yost and Gardner Engineers unpublished report to the City of Flagstaff, 32 p.
- Zohdy, A.A.R., 1973, A computer program for the automatic interpretation of Schlumberger sounding curves over horizontally layered media: Springfield, Virginia, U.S. Department of Commerce, National Technical Information Service PB–232–703/AS, 25 p.
  - ——1989, A new method for the automatic interpretation of Schlumberger and Wenner sounding curves: Geophysics, v. 54, no. 2, p. 245–253.

SUPPLEMENTAL DATA A. Azimuthal Plots of Apparent Resisitivity from Square-Array Resistivity Data



Part A. Lower Lake Mary (LLM).



Part A. Continued. Lower Lake Mary (LLM).



Part A. Continued. Lake Mary well 8 site (L8).



Part A. Continued. Lake Mary well 8 site (L8).



**Part A**. Continued. Lake Mary well 9 site (L9)



Part A. Continued. Lake Mary well 9 site (L9).



Part A. Continued. Woody Mountain at well 10 (W10).



Part A. Continued. Woody Mountain at well 10 (W10).



Part A. Continued. Woody Mountain at well 11 (W11).



Part A. Continued. Woody Mountain at well 11 (W11).



**Part A**. Continued. Skunk Canyon (SC).



Part A. Continued. Skunk Canyon (SC).



**Part A**. Continued. Foxglenn (FG).



**Part A**. Continued. Continental (BP).



**Part A**. Continued. Continental (BP).

SUPPLEMENTAL DATA—CONTINUED B. Hydrologic Data for Wells and Springs in the Regional Aquifer and Miscellaneous Sites, Flagstaff, Arizona

| Riddle 3-A<br>Harless 27A<br>Harless 27B<br>Yucc (A-Crary 1)<br>Tupper Form | (A-17-04)03aac2               | 34°53 ' 19 "              | 111055:12"                              |                 |                 |                           |                         |
|-----------------------------------------------------------------------------|-------------------------------|---------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|-------------------------|
| Harless 27A<br>Harless 27B<br>Yucc (A-Crary 1)<br>Tupper Form               | (A-17-04)04bbd1               |                           | 111 55 15                               | FH-3            | (A-20-07)19aba  | 35°06'26"                 | 111°41'26"              |
| Harless 27B<br>Yucc (A-Crary 1)                                             | (11-17-0 <del>4</del> )0+0001 | 34°53 ' 20 "              | 111°57'01"                              | FH Test WelL    | (A-20-07)19cbb1 | 35 <sup>°</sup> 06'00"    | 111°42'05"              |
| Yucc (A-Crary 1)                                                            | (A-17-04)04bbd2               | 34°53 ' 20 "              | 111°57'00"                              | FH-1            | (A-20-07)19cbb2 | 35 <sup>°</sup> 05 ' 58 " | 111°42'05"              |
| Tunner Form                                                                 | (A-17-04)05caa                | 34°52 ' 55 "              | 111°57'49"                              | Kachina-3       | (A-20-07)20cca  | 35 <sup>°</sup> 05 ' 47 " | 111°40′57″              |
| rupper rann                                                                 | (A-17-05)05bdc                | 34°53'04"                 | 111°51'33"                              | LMEX-6          | (A-20-07)23dca  | 35 <sup>°</sup> 05 ' 45 " | 111°37'10"              |
| Hopkins #1                                                                  | (A-17-05)08bcb                | 34°52 ' 18"               | 111°51′50″                              | LMEX-4          | (A-20-07)25dcb1 | 35 <sup>°</sup> 04 ' 55 " | 111°36'15"              |
| Cathedral 1                                                                 | (A-17-05)16cad                | 34°51'04"                 | 111°50'25"                              | Mountainaire    | (A-20-07)28bcc  | 35°05 ' 11 "              | 111°40'00"              |
| Hancock                                                                     | (A-18-04)15dbc                | 34°56'16"                 | 111°55'36"                              | Kachina-1       | (A-20-07)30bbc  | 35 <sup>°</sup> 05 ' 33 " | 111°42'05"              |
| Red Cyn Ranch                                                               | (A-18-04)25bcb                | 34°54 ' 55 "              | 111 <sup>°</sup> 53′59″                 | Kachina-2       | (A-20-07)30bdb  | 35 <sup>°</sup> 05'16"    | 111°41'50"              |
| Bradshaw Fee-1                                                              | (A-18-04)34abb                | 34°54 ' 14 "              | 111°55'32"                              | TH 4            | (A-20-07)35bac  | 35 <sup>°</sup> 04 ' 33 " | 111°37'34"              |
| Rudy Buuch 1                                                                | (A-18-05)27abb                | 34°55'04"                 | 111°49'13"                              | LM-1            | (A-20-08)18bbb  | 35°07'16"                 | 111°35'44"              |
| Rudy Buuch 2                                                                | (A-18-05)27abc                | 34°54 ' 57 "              | 111°49'16"                              | LM-2            | (A-20-08)18bcc  | 35 <sup>°</sup> 07'00"    | 111°35'47"              |
| Hopkins 28-1                                                                | (A-18-05)28ada                | 34°54 ' 53 "              | 111°49'52"                              | Whitley-1       | (A-20-08)18cac1 | 35 <sup>°</sup> 06'48"    | 111°35'27"              |
| Marsland 1                                                                  | (A-18-05)29adc                | 34 <sup>°</sup> 54 ' 49 " | 111°51'05"                              | Whitley-2       | (A-20-08)18cac2 | 35 <sup>°</sup> 06 ' 50 " | 111°35'35"              |
| Gillett 1                                                                   | (A-18-05)31bcd                | 34°53 ' 55 "              | 111°52'45"                              | LM-4            | (A-20-08)19aba  | 35°06'25"                 | 111°35'05"              |
| Hallermund 1                                                                | (A-18-05)31ddb                | 34 <sup>°</sup> 53 ' 32 " | 111°52'05"                              | Schnieder       | (A-20-08)19dac  | 35 <sup>°</sup> 05 ' 55 " | 111°34 ' 59"            |
| Hopkins 34-2                                                                | (A-18-05)34bac                | 34 <sup>°</sup> 54 ' 10"  | 111 <sup>°</sup> 49'27"                 | Suiter          | (A-20-08)19dda  | 35 <sup>°</sup> 05 ' 50 " | 111°34′50″              |
| Hopkins 34-1Y                                                               | (A-18-05)34bca1               | 34 <sup>°</sup> 53 ' 57 " | 111 <sup>°</sup> 49'39"                 | LMO-3           | (A-20-08)20acd  | 35 <sup>°</sup> 06 ' 10 " | 111°34'10"              |
| Hopkins 34-1X                                                               | (A-18-05)34bca2               | 34 <sup>°</sup> 53 ' 58"  | 111 <sup>°</sup> 49'39"                 | LM-8            | (A-20-08)20cca  | 35 <sup>°</sup> 05 ' 47 " | 111°34'30'              |
| Christensen                                                                 | (A-18-07)08ddc                | 34°57 '06"                | 111°40'13"                              | LMO-1           | (A-20-08)20cca2 | 35 <sup>°</sup> 05 ' 50 " | 111°34'30'              |
| AZWC-5                                                                      | (A-18-07)15ccc2               | 34 <sup>°</sup> 56 ' 16"  | 111 <sup>°</sup> 38'54"                 | LM-5            | (A-20-08)20dbc  | 35 <sup>°</sup> 05 ' 53 " | 111°34'07'              |
| AZWC-10                                                                     | (A-18-07)22baa2               | 34°56'08"                 | 111°38'27"                              | LM-6            | (A-20-08)27bbb  | 35 <sup>°</sup> 05'37"    | 111°32'32"              |
| tl Antelope                                                                 | (A-18-07)27cbb                | 34 <sup>°</sup> 54 ' 51 " | 111°38'47"                              | LM-7            | (A-20-08)27caa  | 35 <sup>°</sup> 05'07"    | 111°32'10'              |
| Dil Discovery 1                                                             | (A-19-06)17dac                | 35 <sup>°</sup> 01 '47 "  | 111 <sup>°</sup> 46'32"                 | Old LM-9        | (A-20-08)28cba  | 35 <sup>°</sup> 05 ' 10 " | 111°33 ' 25 '           |
| ADOT-89A                                                                    | (A-19-06)W14bab               | 35°02'00"                 | 111°43'55"                              | LMO-2           | (A-20-08)29bbb  | 35 <sup>°</sup> 05'32"    | 111°34'43'              |
| Pine Flats                                                                  | (A-19-06)W27aaa               | 35°00'35"                 | 111 <sup>°</sup> 44'18"                 | Garrison        | (A-20-08)30abb  | 35 <sup>°</sup> 05'35"    | 111°35'15'              |
| Federal 1                                                                   | (A-19-07)01ddd1               | 35 <sup>°</sup> 03 '06"   | 111 <sup>°</sup> 35 ' 55 "              | Bathen          | (A-20-08)30abc  | 35 <sup>°</sup> 05 ' 30 " | 111°35 ' 10'            |
| Henson                                                                      | (A-19-08)04bbb                | 35 <sup>°</sup> 03 ' 50 " | 111 <sup>°</sup> 33'35"                 | Wahlers         | (A-20-08)30bdb  | 35 <sup>°</sup> 05 ' 20 " | 111°35'30'              |
| Fillev                                                                      | (A-19-08)04bbd                | 35°03'43"                 | 111°33'37"                              | Cook-1          | (A-20-08)30bdc  | 35 <sup>°</sup> 05'15"    | 111°35'30'              |
| Walter                                                                      | (A-19-08)05add                | 35°03'30"                 | 111°33'50"                              | Cook-2          | (A-20-08)30cba2 | 35 <sup>°</sup> 05 ' 10"  | 111°35'40'              |
| MEX-1                                                                       | (A-19-08)05ddd1               | 35 <sup>°</sup> 03 '05"   | 111 <sup>°</sup> 33'50"                 | LM-9            | (A-20-08)30cda  | 35 <sup>°</sup> 04 ' 51 " | 111 <sup>0</sup> 35'25' |
| Pine Grove                                                                  | (A-19-09)17dcd                | 35°01 ' 24"               | 111 <sup>°</sup> 27'35"                 | TH-3            | (A-20-08)30cdd1 | 35 <sup>°</sup> 04 ' 50 " | 111 <sup>°</sup> 35'25" |
| Soshone OW                                                                  | (A-19-10)05dba                | 35°03'22"                 | 111°21'19"                              | LMEX-3          | (A-20-08)32cab1 | 35 <sup>°</sup> 04'15"    | 111°34'25'              |
| Anderson 1                                                                  | (A-19-10)23ddb                | 35 <sup>°</sup> 00 ' 35"  | 111°18'00"                              | LMEX-2          | (A-20-08)33cdb  | 35 <sup>°</sup> 04'05"    | 111°33'20'              |
| EPNG 1                                                                      | (A-19-10)24bdd                | 35 <sup>°</sup> 01 '00"   | 111°17'20"                              | Slavton         | (A-20-09)22acb  | 35 <sup>°</sup> 06'14"    | 111°25'38'              |
| Flowalt 1                                                                   | (A-19-10)24cdb                | 35 <sup>°</sup> 00 ' 35"  | 111°17'25"                              | Pickett OT      | (A-20-10)26dbc  | 35 <sup>°</sup> 05'00"    | 111°18'15'              |
| Potter-1                                                                    | (A-20-05)24bbd                | 35°06'16"                 | 111 <sup>°</sup> 49'24"                 | Drve            | (A-20-10)S01aaa | 35 <sup>°</sup> 09'08"    | 111°16'48'              |
| WM-5                                                                        | (A-20-06)02bbb                | 35 <sup>°</sup> 08 ' 55 " | 111 <sup>°</sup> 44'15"                 | Babbitt         | (A-20-11)07add  | 35 <sup>°</sup> 07 ' 54 " | 111°15 40'              |
| WM-10                                                                       | (A-20-06)02bcb                | 35 <sup>°</sup> 08 '43"   | 111 <sup>°</sup> 44'17"                 | R Owens OT      | (A-20-11)12baa  | 35 <sup>°</sup> 08'15"    | 111°10'55'              |
| WM-6                                                                        | (A-20-06)02bdb                | 35 <sup>°</sup> 08 ' 47 " | 111 <sup>°</sup> 44 '04"                | Crockett        | (A-21-05)01acc3 | 35°13'55"                 | 111°48 50               |
| WM-11                                                                       | (A-20-06)11baa                | 35 <sup>°</sup> 08 '05 "  | 111°43 50"                              | NAD-1           | (A-21-05)11cbc  | 35 <sup>°</sup> 12'45"    | 111°50'30"              |
| VM-7                                                                        | (A-20-06)11bab                | 35 <sup>°</sup> 08 '08"   | 111°44'01"                              | Burns           | (A-21-06)10daa  | 35°13'00"                 | 111°44 ' 15'            |
| WM-9                                                                        | (A-20-06)11bdc                | 35 <sup>°</sup> 07 '45"   | 111 <sup>°</sup> 43'56"                 | Fried           | (A-21-06)22bab  | 35°11'40"                 | 111°44 ' 55"            |
| WM-8                                                                        | (A-20-06)11bdd                | 35 <sup>°</sup> 07 ' 50"  | 111 <sup>0</sup> 43 50"                 | Henden          | (A-21-06)23aad  | 35 <sup>0</sup> 11'35"    | 111°43 · 10'            |
| Morrison                                                                    | (A-20-06)19bbb                | 35 <sup>°</sup> 06+25"    | 111 <sup>0</sup> 48'25"                 | Saskan Ranch    | (A-21-06)24hch  | 35 <sup>°</sup> 11'27"    | 111°43 03'              |
| FH-5                                                                        | (A=20-06)24abb                | 35 <sup>0</sup> 06+25"    | 111 <sup>0</sup> 42+03"                 | Flag Ranch      | (A-21-06)25bod  | 35 <sup>0</sup> 10+25"    | 111 <sup>0</sup> 42+521 |
| FH_4                                                                        | (A_20_06)24adb                | 35 <sup>0</sup> 06+10"    | 111 <sup>0</sup> 42:05                  | Flag Ranch Test | (A_21_06)25hod2 | 35 <sup>0</sup> 10:25"    | 111 42 52               |
| 1.11-+                                                                      | (A-20-00)24aub                | 25 <sup>0</sup> 08+25#    | $111 + 2^{-}23$<br>$111^{0}27 + 40^{+}$ | WM Toot         | (A-21-00)230002 | 25 <sup>0</sup> 00+10"    | 111 42.35               |

| Well name or owner | Site identifier | Latitude                  | Longitude               | Well name or owner | Site identifier | Latitude               | Longitude  |
|--------------------|-----------------|---------------------------|-------------------------|--------------------|-----------------|------------------------|------------|
| Skunk Canyon       | (A-20-07)03aca  | 35°08 ' 48 "              | 111°38'17"              | WM-3               | (A-21-06)35bcc  | 35°09'35"              | 111°44′10″ |
| Airport Well       | (A-20-07)04dac  | 35 <sup>°</sup> 08 ' 28 " | 111°39'15"              | WM-1               | (A-21-06)35cba  | 35°09'24"              | 111°44′01″ |
| Kimmerly           | (A-20-07)07aaa1 | 35 <sup>°</sup> 08 ' 10 " | 111°41′10″              | WM-2               | (A-21-06)35ccb  | 35 <sup>°</sup> 09'16" | 111°44'08" |
| Tyrrell            | (A-20-07)07aaa2 | 35 <sup>°</sup> 08 ' 10 " | 111°41′10″              | WM-4               | (A-21-06)35ccc  | 35°09'05"              | 111°44′08″ |
| Roaldstad          | (A-20-07)07adb  | 35°07 ' 55 "              | 111°41′20″              | Ritland            | (A-21-07)09acc  | 35°13'05"              | 111°39'25" |
| Heckathorne        | (A-20-07)12bba  | 35 <sup>°</sup> 08 ' 10 " | 111°36'40"              | Pugh               | (A-21-07)09bac  | 35°13'22"              | 111°39'37" |
| LM-3               | (A-20-07)12ddb  | 35 <sup>°</sup> 07 ' 36 " | 111°36'02"              | Hidden Hollow      | (A-21-07)19aca  | 35°11'30"              | 111°41'16" |
| Riordan            | (A-21-07)20bdb  | 35°11'30"                 | 111°40'40"              | Moody              | (A-21-10)16bdc  | 35°12'30"              | 111°20'15" |
| Ponderosa Paper-1  | (A-21-07)22aad  | 35°11 ' 35 "              | 111°37′50″              | Drye               | (A-21-11)19bcb  | 35°11'45"              | 111°16'10" |
| Ponderosa Paper-2  | (A-21-07)22ada  | 35°11'30"                 | 111°37′50″              | Poore              | (A-21-11)31cdd  | 35°09'25"              | 111°15'50" |
| Rio de Flag MW-1   | (A-21-07)23cac  | 35°11'20"                 | 111°38'00"              | EPNG-3             | (A-22-04)08dac1 | 35°17 ' 55 "           | 111°59'10" |
| LA-3               | (A-21-07)23dcc  | 35°10'58"                 | 111°37'17"              | EPNG-5             | (A-22-05)26acd  | 35°15'35"              | 111°49'50" |
| Foxglenn-1         | (A-21-07)24aad  | 35°11 ' 37 "              | 111°35'48"              | Parks Sch.         | (A-22-04)27aad  | 35°15'46"              | 111°56'58" |
| Potter             | (A-21-07)24ccd  | 35°10′55″                 | 111°36'30"              | EPNG-6             | (A-22-05)26adc2 | 35°15'35"              | 111°49'40" |
| Rio de Flag MW-3   | (A-21-07)25bba2 | 35°10'52"                 | 111 <sup>°</sup> 36'33" | Fort Valley        | (A-22-06)26aaa  | 35°16'06"              | 111°46'08" |
| Purl               | (A-21-07)25bbd  | 35°10'43"                 | 111°36'37"              | Garrett-Bacon      | (A-22-07)34dda  | 35°14'33"              | 111°37′54″ |
| LA-2               | (A-21-07)26abb  | 35°10'53"                 | 111°37'12"              | AT&T               | (A-22-08)16dad  | 35°17'20"              | 111°32'35" |
| LA-1               | (A-21-07)26abd  | 35°10'45"                 | 111°37'05"              | BBDP-Sunset        | (A-22-08)23aab  | 35°17'00"              | 111°30'35" |
| Mtn Dell-1         | (A-21-07)32bbc1 | 35°09 ' 46 "              | 111°40′53″              | BBDP-Marijka       | (A-22-08)23abb  | 35°16'56"              | 111°30'52" |
| Mtn Dell-2         | (A-21-07)32bbc2 | 35 <sup>°</sup> 09 ' 48 " | 111°40′52″              | Cromer School      | (A-22-08)26bbb  | 35°16'08"              | 111°31'18" |
| Kohner             | (A-21-07)34baa  | 35 <sup>°</sup> 09 ' 50 " | 111°38'20"              | Koch Field         | (A-22-08)27caa  | 35°15'40"              | 111°32'05" |
| Continental-1      | (A-21-08)17bca1 | 35°12 ' 24 "              | 111°34′27″              | Mitchell           | (A-22-08)35aac  | 35°15'10"              | 111°30'35" |
| Continental-2      | (A-21-08)17bca2 | 35°12 ' 23 "              | 111°34'28"              | US Grisp           | (A-22-09)29baa  | 35°16'00"              | 111°27′50″ |
| NPS Walnut Canyon  | (A-21-08)26dab  | 35°10'25"                 | 111°30'37"              | Oil Test           | (A-22-10)03acd  | 35°19'30"              | 111°18'45" |
| BBDP-Flowers       | (A-21-09)05ddd  | 35°13'30"                 | 111°27'15"              | Kuttkuhn           | (A-22-10)15bdc  | 35°17'40"              | 111°19'10" |
| BBDP-MVR-1         | (A-21-09)06baa  | 35°14'16"                 | 111°28′50″              | Salt Well          | (A-22-11)19ccc  | 35°16'25"              | 111°16'20" |
| BBDP-Cosnino       | (A-21-09)08bcc  | 35°13'05"                 | 111°28'10"              | IB-9               | (A-23-07)33aab2 | 35°20'27"              | 111°39'00" |
| Wilbur             | (A-21-09)10bbd  | 35°13'20"                 | 111°26'00"              | NPS Sunset Ctr-2   | (A-23-08)21aad  | 35°22'05"              | 111°32'35" |
| Foster             | (A-21-09)11bbb  | 35°13 ' 25 "              | 111°25'00"              | Rhoten Spr         | (A-23-10)01bbb  | 35°25'05"              | 111°17'20" |
| Pill               | (A-21-09)14acc  | 35°12'10"                 | 111°24'30"              | Ranch Well         | (A-23-10)24abb  | 35°22 ' 25 "           | 111°16'50" |
| Porter             | (A-21-09)15dda  | 35°11 ' 55 "              | 111°25'05"              | NPS-Citadel        | (A-25-09)06ccd  | 35°34'10"              | 111°28'45" |
| ADOT-Winona        | (A-21-09)17acc  | 35°12 ' 15 "              | 111°27'40"              | NPS Wupatki HQ     | (A-25-10)30bdb  | 35°31'10"              | 111°22'20" |
| CVWC               | (A-21-09)23cba  | 35°11 ' 15 "              | 111°24 ' 55 "           |                    |                 |                        |            |

[Method of construction: A, air rotary; B, bored or augered; C, cable tool; H, hydraulic rotary; P, air percussion; R, reverse rotary; D, dug.

Type of log available: C, caliper; D, drillers; E, electric logs; F, fluid conductance; G, geologist; I, induction; J, gamma ray; L, lateral log; M, microlog; N, neutron; P, Photographic video; S, sonic; T, temperature; U, gamma gamma; V, fluid viscosity; Z, other.

Aquifer code: 120VLCC, volcanic rocks; 310KIBB, Kaibab Formation; 310CCNN, Coconino Sandstone; 310SUPI, Supai Group; 330RDLL, Redwall Limestone; 341MRTN, Martin Formation.

Other available data: QW, water quality; HP, hydrologic properties.

Dashes indicate no data]

| Well name or owner | Site identifier | Date well constructed | Depth of<br>well (feet) | Altitude of<br>land surface<br>(feet) | Water level<br>(feet) | Date water<br>level<br>measured | Diameter of<br>casing<br>(inches) | Top of open<br>interval<br>(feet) | Bottom of<br>open<br>interval<br>(feet) |
|--------------------|-----------------|-----------------------|-------------------------|---------------------------------------|-----------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|
| Riddle 3-A         | (A-17-04)03aac2 | 01-29-69              | 1,242                   | 4,480                                 |                       |                                 | 7.00                              | 827                               | 1,242                                   |
| Harless 27A        | (A-17-04)04bbd1 | 02-10-64              | 1,294                   | 4,415                                 |                       |                                 | 10.75                             | 104                               | 1,294                                   |
| Harless 27B        | (A-17-04)04bbd2 | 04-22-64              | 1,958                   | 4,415                                 |                       |                                 | 5.00                              | 1,713                             | 1,868                                   |
| Yucc (A-Crary 1)   | (A-17-04)05caa  | 10-09-64              | 1,663                   | 4,365                                 | 733                   | 03-19-74                        | 10.00                             | 108                               | 1,663                                   |
| Tupper Farm        | (A-17-05)05bdc  | 05-22-76              | 1,209                   | 4,650                                 | 917                   | 05-22-76                        | 10.80                             | 969                               | 1,209                                   |
| Hopkins #1         | (A-17-05)08bcb  | 04-25-69              | 1,195                   | 4,430                                 | 723                   | 03-07-75                        | 7.00                              | 1,060                             | 1,195                                   |
| Cathedral 1        | (A-17-05)16cad  | 04-14-71              | 1,015                   | 4,410                                 | 600                   | 06-00-71                        | 6.00                              | 858                               | 1,015                                   |
| Hancock            | (A-18-04)15dbc  | 00-00-61              | 1,300                   | 4,740                                 | 400                   | 03-05-74                        | 6.00                              | 20                                | 1,300                                   |
| Red Cyn Ranch      | (A-18-04)25bcb  | 00-00-50              | 1,120                   | 4,760                                 | 760                   | 06-02-67                        | 8.00                              | 5                                 | 1,120                                   |
| Bradshaw Fee-1     | (A-18-04)34abb  | 04-28-71              | 3,203                   | 4,480                                 | 329                   | 08-22-74                        | 9.00                              | 90                                | 3,203                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Rudy Buuch 1       | (A-18-05)27abb  | 00-00-49              | 1,200                   | 4,700                                 | 709                   | 06-02-67                        | 8.00                              | 20                                | 1,200                                   |
| Rudy Buuch 2       | (A-18-05)27abc  |                       | 1,200                   | 4,650                                 |                       |                                 |                                   |                                   |                                         |
| Hopkins 28-1       | (A-18-05)28ada  | 08-08-68              | 1,308                   | 4,665                                 | 688                   | 03-07-75                        | 4.50                              | 1,233                             | 1,238                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 4.50                              | 1,271                             | 1,277                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 4.50                              | 1,300                             | 1,302                                   |
| Marsland 1         | (A-18-05)29adc  | 03-00-64              | 852                     | 4,555                                 | 679                   | 05-31-67                        | 6.00                              | 480                               | 852                                     |
| Gillett 1          | (A-18-05)31bcd  | 00-00-65              | 1,050                   | 4,600                                 | 925                   | 03-19-74                        | 6.00                              | 1,000                             |                                         |
| Hallermund 1       | (A-18-05)31ddb  | 02-09-69              | 1,215                   | 4,540                                 | 850                   | 04-09-69                        | 6.00                              | 1,071                             | 1,215                                   |
| Hopkins 34-2       | (A-18-05)34bac  | 05-00-69              | 1,217                   | 4,480                                 |                       |                                 | 13.00                             | 51                                | 1,217                                   |
| Hopkins 34-1Y      | (A-18-05)34bca1 | 12-00-68              | 1,150                   | 4,450                                 |                       |                                 | 6.25                              | 1,051                             | 1,083                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 6.25                              | 1,100                             | 1,127                                   |
| Hopkins 34-1X      | (A-18-05)34bca2 | 11-00-68              | 1,138                   | 4,450                                 |                       |                                 | 4.75                              | 905                               | 918                                     |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 4.75                              | 1,070                             | 1,088                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 4.75                              | 1,098                             | 1,132                                   |
| Christensen        | (A-18-07)08ddc  | 11-17-73              | 1,480                   | 6,490                                 | 733                   | 01-30-78                        | 7.00                              | 771                               | 814                                     |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 7.00                              | 1,014                             | 1,054                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 7.00                              | 1,223                             | 1,266                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 7.00                              | 1,299                             | 1,480                                   |
| AZWC-5             | (A-18-07)15ccc2 | 07-02-77              | 1,252                   | 6,435                                 | 711                   | 09-01-77                        | 6.62                              | 1,189                             | 1,252                                   |
| AZWC-10            | (A-18-07)22baa2 | 10-31-77              | 1,330                   | 6,455                                 | 713                   | 10-31-77                        | 12.00                             | 904                               | 1,304                                   |
| Ltl Antelope       | (A-18-07)27cbb  | 09-00-65              | 1,500                   | 6,470                                 | 1,279                 | 09-07-65                        | 8.00                              | 540                               | 620                                     |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 6.00                              | 1,190                             | 1,500                                   |
| Oil Discovery1     | (A-19-06)17dac  | 12-01-67              | 3,253                   | 7,045                                 |                       |                                 | 7.75                              |                                   |                                         |
| ADOT-89A           | (A-19-06)W14bab | 10-09-78              | 1,105                   | 6,490                                 | 830                   | 11-27-78                        | 8.62                              | 905                               | 1,105                                   |
| Pine Flats         | (A-19-06)W27aaa | 07-07-75              | 342                     | 5,540                                 | 9                     | 07-15-75                        | 6.63                              | 216                               | 342                                     |
| Federal 1          | (A-19-07)01ddd1 | 08-23-76              | 730                     | 7,175                                 | 420                   | 08-23-76                        | 8.12                              | 405                               | 730                                     |

| Well name or owner | Site identifier  | Date well<br>constructed | Depth of<br>well (feet) | Altitude of<br>land surface<br>(feet) | Water level<br>(feet) | Date water<br>level<br>measured | Diameter of<br>casing<br>(inches) | Top of open<br>interval<br>(feet) | Bottom of<br>open<br>interval<br>(feet) |
|--------------------|------------------|--------------------------|-------------------------|---------------------------------------|-----------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|
| Henson             | (A-19-08)04bbb   | 07-01-79                 | 201                     | 6 980                                 | 25                    | 07-30-79                        | 6.00                              | 156                               | 166                                     |
| Do                 | Do               | 07 01 79                 | 201                     | 0,200                                 | 25                    | 07 50 75                        |                                   |                                   |                                         |
| Do.                | Do.              |                          |                         |                                       |                       |                                 | 6.00                              | 196                               | 106                                     |
| D0.                | (A, 19, 08)04bbd | 10 21 78                 | 152                     | 6.940                                 |                       | 10 27 78                        | 6.00                              | 22                                | 150                                     |
| Walter             | (A-19-08)0400d   | 08 14 70                 | 220                     | 6,940                                 | 20                    | 00.15.70                        | 6.00                              | 152                               | 152                                     |
| Da                 | (A-19-08)05add   | 08-14-79                 | 220                     | 0,900                                 | 51                    | 09-13-79                        | 6.00                              | 100                               | 200                                     |
| D0.                | D0.              |                          | 1 202                   |                                       | 152                   |                                 | 0.00                              | 190                               | 200                                     |
| LMEA-1             | (A-19-08)05ddd1  | 12-16-91                 | 1,205                   | 0,900                                 | 155                   | 03-17-92                        | 8.02                              | 212                               | 1,101                                   |
| Do.                | Do.              |                          | 1 700                   |                                       |                       |                                 |                                   |                                   | 1 700                                   |
| Pine Grove         | (A-19-09)1/dcd   | 0/-01-6/                 | 1,700                   | 6,958                                 | 1,309                 | 08-31-6/                        | 8.00                              | 1,439                             | 1,700                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Do.                | Do.              |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Soshone OW         | (A-19-10)05dba   | 08-01-63                 | 1,125                   | 6,491                                 |                       |                                 | 10.75                             | 180                               | 1,125                                   |
| Anderson 1         | (A-19-10)23ddb   | 06-01-44                 | 1,297                   | 6,390                                 |                       | 07-11-78                        | 7.00                              |                                   |                                         |
| EPNG 1             | (A-19-10)24bdd   | 08-01-61                 | 1,730                   | 6,393                                 | 1,296                 | 05-16-66                        | 8.62                              |                                   |                                         |
| Flowalt 1          | (A-19-10)24cdb   | 02-01-67                 | 6,500                   | 6,406                                 | 1,277                 | 03-31-67                        | 7.00                              |                                   |                                         |
| Potter-1           | (A-20-05)24bbd   | 06-00-65                 | 3,781                   | 7,240                                 | 1,096                 | 09-09-66                        | 14.00                             |                                   |                                         |
| WM-5               | (A-20-06)02bbb   | 06-23-62                 | 1,600                   | 7,186                                 | 1,119                 | 06-22-63                        | 20.00                             | 1,288                             | 1,600                                   |
| WM-10              | (A-20-06)02bcb   | 07-00-95                 | 1,790                   | 7,230                                 | 1,139                 | 04-02-96                        | 16.00                             | 1,300                             | 1,760                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| WM-6               | (A-20-06)02bdb   | 12-28-63                 | 1,700                   | 7,201                                 | 809                   | 11-24-67                        | 20.00                             | 1,100                             | 1,700                                   |
| WM-11              | (A-20-06)11baa   | 10-15-96                 | <sup>1</sup> 1,952      | 7,170                                 | <sup>1</sup> 1,106    | 08-18-97                        | 24.00                             | 800                               | 1,106                                   |
| WM-7               | (A-20-06)11bab   | 10-21-74                 | 1,816                   | 7,171                                 | 1,099                 | 04-21-78                        | 22.00                             | 1,105                             | 1,201                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 | 14.00                             | 1,122                             | 1,762                                   |
| WM-9               | (A-20-06)11bdc   | 10-10-84                 | 1,840                   | 7,090                                 | 982                   | 11-07-85                        | 14.00                             | 1,220                             | 1,830                                   |
| WM-8               | (A-20-06)11bdd   | 07-14-82                 | 1,910                   | 7,965                                 | 910                   | 07-14-82                        | 20.00                             | 1,300                             | 1,900                                   |
| Morrison           | (A-20-06)19bbb   | 07-12-81                 | 152                     | 7,163                                 | 83                    | 07-14-81                        | 6.00                              | 90                                | 152                                     |
| FH-5               | (A-20-06)24abb   | 08-29-87                 | 1,350                   | 6,770                                 | 703                   | 09-23-87                        | 12.00                             | 700                               | 1,109                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 | 12.00                             | 1,125                             | 1,345                                   |
| FH-4               | (A-20-06)24adb   | 05-08-87                 | 1,255                   | 6,760                                 | 679                   | 06-13-87                        | 12.00                             | 682                               | 1,030                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 | 12.00                             | 1,050                             | 1,250                                   |
| North Ranch        | (A-20-07)02cca   | 08-17-87                 | 1,160                   | 6,855                                 | 920                   | 09-11-87                        | 8.00                              | 1,060                             | 1,160                                   |
| Skunk Canyon       | (A-20-07)03aca   | 09-06-96                 | 1,800                   | 6,915                                 | 927                   | 11-11-96                        | 13.40                             | 988                               | 1,788                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Airport Well       | (A-20-07)04dac   | 10-27-95                 | 1,590                   | 6,960                                 | 829                   | 10-27-95                        | 6.00                              | 40                                | 1,590                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Kimmerly           | (A-20-07)07aaa1  | 04-20-85                 | 1,005                   | 6,980                                 | 941                   | 05-21-85                        | 8.00                              | 50                                | 95                                      |
| Do.                | Do.              |                          |                         |                                       |                       |                                 | 6.00                              | 95                                | 1,005                                   |
| Tyrrell            | (A-20-07)07aaa2  | 08-25-92                 | 1,275                   | 6,970                                 | 1,063                 | 10-19-92                        | 8.00                              | 52                                | 1,275                                   |
| Roaldstad          | (A-20-07)07adb   | 00-00-59                 | 995                     | 6,895                                 | 949                   | 06-07-60                        | 8.00                              | 745                               | 995                                     |
| Heckathorne        | (A-20-07)12bba   | 00-00-60                 | 987                     | 6,840                                 | 900                   | 06-29-65                        | 12.00                             | 10                                | 987                                     |
| LM-3               | (A-20-07)12ddb   | 06-00-65                 | 1,050                   | 6,830                                 | 760                   | 11-18-65                        | 20.00                             | 715                               | 1,032                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| FH-3               | (A-20-07)19aba   | 11-13-86                 | 1,412                   | 6,900                                 | 865                   | 08-02-87                        | 12.00                             | 885                               | 1,245                                   |
| Do.                | Do.              |                          |                         |                                       |                       |                                 | 12.00                             | 1,265                             | 1,405                                   |
| FH Test Well       | (A-20-07)19cbb1  | 07-00-85                 | 1,200                   | 6,690                                 | 635                   | 08-12-85                        | 8.00                              | 730                               | 1,179                                   |

| Well name or owner | Site identifier | Date well<br>constructed | Depth of<br>well (feet) | Altitude of<br>land surface<br>(feet) | Water level<br>(feet) | Date water<br>level<br>measured | Diameter of<br>casing<br>(inches) | Top of open<br>interval<br>(feet) | Bottom of<br>open<br>interval<br>(feet) |
|--------------------|-----------------|--------------------------|-------------------------|---------------------------------------|-----------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|
| FH-1               | (A-20-07)19cbb2 | 07-09-86                 | 1,200                   | 6,690                                 | 640                   | 08-30-86                        | 12.00                             | 650                               | 1,000                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 | 12.00                             | 1,020                             | 1,195                                   |
| Kachina-3          | (A-20-07)20cca  | 10-00-72                 | 1,210                   | 6,715                                 | 662                   | 12-10-74                        | 10.00                             | 968                               | 1,210                                   |
| LMEX-6             | (A-20-07)23dca  | 05-05-92                 | 1,200                   | 6,875                                 | 619                   | 05-21-92                        | 8.00                              | 258                               | 1,150                                   |
| LMEX-4             | (A-20-07)25dcb1 | 01-19-92                 | 1,200                   | 6,840                                 | 170                   | 01-21-92                        | 8.00                              | 340                               | 1,060                                   |
| Mountainaire       | (A-20-07)28bcc  | 10-10-60                 | 845                     | 6,785                                 | 791                   | 03-30-78                        | 8.00                              |                                   |                                         |
| Kachina-1          | (A-20-07)30bbc  | 08-00-65                 | 1,075                   | 6,675                                 | 630                   | 04-14-78                        | 12.00                             | 626                               | 726                                     |
| Do.                | Do.             |                          |                         |                                       |                       |                                 | 10.00                             | 965                               | 1,065                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 | 10.00                             | 1,065                             | 1,075                                   |
| Kachina-2          | (A-20-07)30bdb  | 09-00-69                 | 1,004                   | 6,685                                 | 632                   | 10-08-69                        | 12.00                             |                                   |                                         |
| TH 4               | (A-20-07)35bac  | 10-16-90                 | 1,200                   | 6,875                                 | 605                   | 10-29-90                        | 2.00                              |                                   |                                         |
| LM-1               | (A-20-08)18bbb  | 10-00-62                 | 1,206                   | 6,840                                 | 587                   | 10-10-62                        | 13.40                             | 700                               | 858                                     |
| Do.                | Do.             |                          |                         |                                       |                       |                                 | 10.00                             | 858                               | 1,140                                   |
| LM-2               | (A-20-08)18bcc  | 11-13-64                 | 1,091                   | 6,832                                 | 432                   | 04-14-65                        | 20.00                             | 569                               | 1,081                                   |
| Whitley-1          | (A-20-08)18cac1 | 06-20-76                 | 675                     | 6,825                                 | 527                   | 04-14-78                        | 6.62                              | 555                               | 675                                     |
| Whitley-2          | (A-20-08)18cac2 | 04-22-92                 | 1,200                   | 6,820                                 | 620                   | 04-28-92                        | 8.00                              | 560                               | 1,200                                   |
| LM-4               | (A-20-08)19aba  | 01-10-72                 | 1,345                   | 6,808                                 | 335                   | 02-20-73                        | 20.62                             | 800                               | 1,280                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Schnieder          | (A-20-08)19dac  | 07-26-76                 | 365                     | 6,795                                 | 273                   | 04-14-78                        | 8.00                              | 10                                | 365                                     |
| Suiter             | (A-20-08)19dda  | 06-03-90                 | 475                     | 6,820                                 | 462                   | 06-03-90                        | 5.00                              |                                   |                                         |
| LMO-3              | (A-20-08)20acd  | 11-06-85                 | 800                     | 6,795                                 | 562                   | 12-10-85                        |                                   | 0                                 | 800                                     |
| LM-8               | (A-20-08)20cca  | 12-28-81                 | 1,310                   | 6,819                                 | 257                   | 12-28-81                        | 20.00                             | 600                               | 1,300                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Do.                | Do.             |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| LMO-1              | (A-20-08)20cca2 | 01-22-85                 | 1,020                   | 6,820                                 | 235                   | 04-11-85                        | 1.50                              | 700                               | 1,000                                   |
| LM-5               | (A-20-08)20dbc  | 05-11-75                 | 1,336                   | 6,817                                 | 279                   | 05-03-76                        | 20.00                             | 662                               | 1,336                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| LM-6               | (A-20-08)27bbb  | 07-24-78                 | 1,298                   | 6,810                                 | 1,187                 | 12-15-78                        | 21.00                             | 421                               | 1,252                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 | 16.00                             | 1,252                             | 1,298                                   |
| LM-7               | (A-20-08)27caa  | 12-07-77                 | 1,630                   | 6,795                                 | 925                   | 09-02-81                        | 14.00                             | 1,107                             | 1,607                                   |
| Old LM-9           | (A-20-08)28cba  | 11-29-89                 | 1,396                   | 6,860                                 | 640                   | 12-05-89                        | 2.00                              | 1,200                             | 1,396                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| LMO-2              | (A-20-08)29bbb  | 01-22-85                 | 1,000                   | 6,865                                 | 260                   | 04-11-85                        | 1.50                              | 700                               | 1,000                                   |
| Garrison           | (A-20-08)30abb  | 10-11-72                 | 410                     | 6,800                                 | 260                   | 11-11-72                        | 6.00                              | 20                                | 410                                     |
| Bathen             | (A-20-08)30abc  | 09-03-82                 | 500                     | 6,820                                 | 320                   | 01-21-94                        | 6.00                              | 350                               | 500                                     |
| Wahlers            | (A-20-08)30bdb  | 06-11-85                 | 345                     | 6,820                                 | 120                   | 06-12-85                        | 5.00                              | 265                               | 345                                     |
| Cook-1             | (A-20-08)30bdc  | 08-21-78                 | 174                     | 6,840                                 |                       |                                 | 6.00                              | 32                                | 174                                     |
| Cook-2             | (A-20-08)30cba2 | 08-14-90                 | 190                     | 6,810                                 | 172                   | 08-21-90                        | 6.00                              | 30                                | 190                                     |
| LM-9               | (A-20-08)30cda  | 09-15-91                 | 1,398                   | 6,875                                 | 91                    | 08-30-91                        | 18.00                             | 357                               | 1,318                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 | 18.00                             | 1,358                             | 1,378                                   |
| TH-3               | (A-20-08)30cdd1 | 11-05-90                 | 1,200                   | 6,870                                 | 180                   | 11-12-90                        | 2.00                              |                                   |                                         |
| LMEX-3             | (A-20-08)32cab1 | 01-13-92                 | 1,207                   | 6,880                                 | 51                    | 01-18-92                        | 8.00                              | 229                               | 1,163                                   |
| Do.                | Do.             |                          |                         |                                       |                       |                                 |                                   |                                   |                                         |
| LMEX-2             | (A-20-08)33cdb  | 12-04-91                 | 1,203                   | 6,940                                 | 411                   | 01-15-92                        | 8.00                              | 442                               | 1,161                                   |
| Slayton            | (A-20-09)22acb  | 00-00-57                 | 1,465                   | 6,655                                 | DRY                   |                                 |                                   |                                   |                                         |

| Well name or owner      | Site identifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date well | Depth of | Altitude of<br>land surface | Water level  | Date water<br>level | Diameter of<br>casing<br>(inches) | Top of open<br>interval<br>(feet) | Bottom of<br>open<br>interval<br>(feet) |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------------------------|--------------|---------------------|-----------------------------------|-----------------------------------|-----------------------------------------|
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.10.62  |          | (1881)                      | (1661)       | 01.06.70            | (inclies)                         | (1661)                            | (1861)                                  |
| Pickett OT              | (A-20-10)26dbc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-18-63  | 3,596    | 6,255                       | 1,164        | 01-26-79            | 6.75                              | 2,747                             | 3,596                                   |
| Do.                     | Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |          |                             |              |                     |                                   |                                   |                                         |
| Drye                    | (A-20-10)S01aaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01-01-46  | 935      | 5,910                       | 918          | 02-15-67            | 6.00                              | 6                                 | 935                                     |
|                         | (A-20-11)0/add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07-01-40  | 950      | 5,915                       | 910          | 02-18-67            | 8.00                              |                                   |                                         |
| R Owens OI              | (A-20-11)12baa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06-08-62  | 3,628    | 5,725                       | 821          | 0/-11-/8            | 9.62                              | 128                               | 3,628                                   |
| Do.                     | Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |          | 7 125                       |              |                     |                                   |                                   |                                         |
| Crockett                | (A-21-05)01acc3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03-28-80  | 100      | 7,155                       | 42           | 09.29.50            | 0.00                              | 50                                | 100                                     |
| NAD-1                   | (A-21-05)11cbc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04-11-50  | 1,647    | 7,040                       | 1,273        | 08-28-50            | 12.00                             | 1,500                             | 1,647                                   |
| Do.                     | Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 1 700    |                             | 1.075        |                     |                                   | 1 475                             | 1 700                                   |
| Burns                   | (A-21-06)10daa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05-13-87  | 1,700    | 7,370                       | 1,275        | 05-26-87            | 0.00                              | 1,475                             | 1,700                                   |
| Fried                   | (A-21-06)22bab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-10-92  | 1,140    | 7,430                       | DRY          | 11-14-92            | 8.62                              | 20                                | 1,140                                   |
| Henden                  | (A-21-06)23aad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01-27-94  | 1,600    | 7,220                       | 1,490        | 06-05-94            | 6.62                              | 1,480                             | 1,600                                   |
| Saskan Ranch            | (A-21-06)24bcb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01-25-96  | 1,640    | 7,210                       | 1,390        | 06-12-96            | 6.00                              | 1,470                             | 1,610                                   |
| Do.                     | Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 1 800    | 7.050                       |              | 10 20 85            |                                   | 1 150                             |                                         |
| Flag Kanch              | (A-21-06)25bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05-31-85  | 1,800    | 7,050                       | 1,122        | 10-20-85            | 12.00                             | 1,150                             | 1,490                                   |
| Do.                     | Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |          |                             |              |                     | 12.00                             | 1,510                             | 1,050                                   |
| Do.                     | D0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 1 (10    | 7.050                       | 1.210        |                     | 12.00                             | 1,670                             | 1,790                                   |
| Flag Kanch Test         | (A-21-06)250cd2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11-01-84  | 1,010    | 7,050                       | 1,210<br>DBV | 03-15-85            | 9.88                              | 0                                 | 1,010                                   |
| WM-lest                 | (A-21-06)34cca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.00.57  | 1,008    | 7,550                       | 1.212        | 11-14-01            |                                   | 1 200                             | 1,008                                   |
| WM-5                    | (A-21-06)350cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10-00-57  | 1,602    | 7,130                       | 1,213        | 02.01.55            | 20.00                             | 1,300                             | 1,600                                   |
| WM-1                    | (A-21-06)35cba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 28 55  | 1,000    | 7,140                       | 1,227        | 03-01-55            | 12.00                             | 1,329                             | 1,580                                   |
| WM-2                    | (A-21-06)55cc0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03-28-33  | 1,740    | 7,107                       | 1,240        | 07-02-30            | 12.00                             | 1,200                             | 1,597                                   |
| Do.                     | Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 1.540    | 7.100                       | 1.065        | 11 02 57            | 12.00                             | 1,380                             | 1,600                                   |
| W M-4                   | (A-21-06)55ccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 01 00  | 1,340    | 7,100                       | 1,005        | 02.00.01            | 20.00                             | 1,215                             | 1,318                                   |
| Ritianu                 | (A-21-07)09acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02.01.80  | 1,624    | 7,010                       | 1,510        | 02-09-91            | 0.02                              | 1,554                             | 1,604                                   |
| Pugn                    | (A-21-07)09bac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02-01-89  | 1,000    | 7,100                       | 1,530        | 00-30-89            | 8.00                              | 1 220                             | 1,600                                   |
| Riorden                 | (A-21-07)19aca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01-14-77  | 1,551    | 6.070                       | 1,520        | 00 10 62            | 8.00                              | 1,520                             | 1,551                                   |
| Riordan                 | (A-21-07)200db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 00 57  | 1,020    | 6,970                       | 1,220        | 09-19-02            | 12.00                             | 1,225                             | 1,020                                   |
| Poliderosa Paper-1      | (A-21-07)22aau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-00-37  | 1,455    | 0,833                       | 1,275        | 00-23-00            | 12.00                             | 430                               | 1,410                                   |
| Do.                     | Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 1 450    |                             | 1 222        |                     | 8.00                              | 1,410                             | 1,455                                   |
| Politiciosa Fapei-2     | (A-21-07)22ada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10-10-07  | 1,450    | 0,805                       | 1,235        | 10-10-07            | 10.38                             | 1,250                             | 1,200                                   |
| Do.<br>Bio do Elos MW 1 | D0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04 20 02  | 195      | 6 800                       |              | 04 20 02            | 6.00                              | 1,415                             | 1,455                                   |
|                         | (A-21-07)23daa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07 22 05  | 1 5 2 0  | 6.845                       | 1 225        | 08 16 05            | 6.00                              | 21                                | 165                                     |
| EA-3                    | (A-21-07)23acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 20 06  | 2,004    | 6 775                       | 1,225        | 12 12 06            | 8.00                              | 1 145                             | 2,004                                   |
| Do                      | (A-21-07)24aau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10-29-90  | 2,004    | 0,775                       | 1,515        | 12-12-90            | 8.00                              | 1,145                             | 2,004                                   |
| D0.                     | (A 21.07)24ccd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          | 6 780                       | 32           | 08 09 79            |                                   |                                   |                                         |
| Pio do Elos MW 2        | (A-21-07)24ccu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00-00-17  | 05       | 6,780                       | 52           | 08-09-79            |                                   |                                   |                                         |
| Nio de Flag Wiw-5       | (A-21-07)25bbd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 1 400    | 6,700                       | 1 245        | 04 00 00            |                                   | 1 205                             | 1 265                                   |
|                         | (A-21-07)2500d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04-00-90  | 1,400    | 6,800                       | 1,245        | 07 28 95            | 15.00                             | 1,205                             | 1,505                                   |
| LA-2                    | (A-21-07)20a00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00-14-95  | 1,031    | 0,800                       | 1,108        | 07-28-95            | 14.75                             | 1,223                             | 1,545                                   |
|                         | DU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 1 502    | 6 705                       | 1 165        | 00 02 76            | 14.75                             | 1,545                             | 1,001                                   |
|                         | (A-21-07)20a0d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00-00-70  | 1,302    | 0,795                       | 1,105        | 09-02-70            | 12.75                             | 1,203                             | 1,275                                   |
| Mtn Dell_1              | (A-21 07)226ha1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 00 56  | 1 200    | 6.010                       | 005          | 10 02 56            | 10.75                             | 1,200                             | 1,492                                   |
| Mtn Dell_2              | $(\Delta_2)_{-21}^{-07} (\Delta_2)_{-21}^{-07} (\Delta_2)_{-21$ | 05-22 75  | 1,200    | 6 000                       | 905          | 05-22-30            | 8.00                              | 100                               | 1,200                                   |
| IVITII DEII-2           | (A-21-07)5200C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05-22-15  | 1,550    | 0,900                       | 915          | 03-22-13            | 0.00                              | 100                               | 1,550                                   |

| Well name or owner | Site identifier | Date well constructed | Depth of<br>well (feet) | Altitude of<br>land surface<br>(feet) | Water level<br>(feet) | Date water<br>level<br>measured | Diameter of<br>casing<br>(inches) | Top of open<br>interval<br>(feet) | Bottom of<br>open<br>interval<br>(feet) |
|--------------------|-----------------|-----------------------|-------------------------|---------------------------------------|-----------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|
| Kohner             | (A-21-07)34baa  | 11-16-87              | 1,550                   | 6,935                                 | 1,138                 | 04-12-88                        | 8.62                              | 1,149                             | 1,550                                   |
| Continental-1      | (A-21-08)17bca1 | 09-09-96              | 1,650                   | 6,750                                 | 1,550                 | 10-21-96                        | 12.00                             | 0                                 | 1,650                                   |
| Continental-2      | (A-21-08)17bca2 | 01-15-97              | 2,001                   | 6,750                                 | 1,304                 | 02-22-97                        | 8.00                              | 1,251                             | 2,001                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 |                                   |                                   |                                         |
| NPS Walnut Canyon  | (A-21-08)26dab  | 07-24-70              | 2,007                   | 6,710                                 | 1,536                 | 08-18-70                        | 8.00                              | 1,493                             | 2,007                                   |
| BBDP-Flowers       | (A-21-09)05ddd  | 12-01-67              | 1,750                   | 6,365                                 | 1,270                 | 07-21-75                        | 6.00                              | 1,300                             | 1,750                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 8.00                              | 25                                | 1,258                                   |
| BBDP-MVR-1         | (A-21-09)06baa  | 04-00-67              | 1,700                   | 6,410                                 | 1,302                 | 05-01-67                        | 8.00                              | 1,380                             | 1,680                                   |
| BBDP-Cosnino       | (A-21-09)08bcc  | 01-01-72              | 1,715                   | 6,450                                 | 1,349                 | 01-01-72                        | 6.38                              | 1,396                             | 1,604                                   |
| Wilbur             | (A-21-09)10bbd  | 07-01-66              | 1,338                   | 6,290                                 | 1,227                 | 07-30-66                        | 10.00                             | 300                               | 1,338                                   |
| Foster             | (A-21-09)11bbb  | 12-16-89              | 1,400                   | 6,205                                 | 1,137                 | 04-09-90                        | 4.00                              | 1,120                             | 1,320                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 6.26                              | 1,360                             | 1,400                                   |
| Pill               | (A-21-09)14acc  |                       | 1,320                   | 6,270                                 | 1,205                 | 06-24-66                        | 6.62                              | 1,200                             | 1,320                                   |
| Porter             | (A-21-09)15dda  | 00-00-65              | 1,315                   | 6,265                                 | 1,215                 | 00-00-65                        | 5.00                              | 1,275                             | 1,315                                   |
| ADOT-Winona        | (A-21-09)17acc  | 06-00-72              | 1,800                   | 6,440                                 | 1,327                 | 06-00-72                        | 8.00                              | 1,352                             | 1,800                                   |
| CVWC               | (A-21-09)23cba  | 05-20-82              | 1,275                   | 6,270                                 | 1,206                 | 01-03-83                        | 5.00                              | 1,200                             | 1,270                                   |
| Moody              | (A-21-10)16bdc  |                       | 1,050                   | 6,005                                 | 990                   | 11-30-78                        | 8.00                              |                                   |                                         |
| Drye               | (A-21-11)19bcb  |                       | 935                     | 5,770                                 | 785                   | 09-18-67                        | 8.00                              | 719                               | 935                                     |
| Poore              | (A-21-11)31cdd  |                       | 1,000                   | 5,865                                 | 844                   | 11-30-78                        | 10.00                             |                                   |                                         |
| EPNG-3             | (A-22-04)08dac1 |                       | 137                     | 7,240                                 | DRY                   |                                 |                                   |                                   |                                         |
| EPNG-5             | (A-22-05)26acd  | 07-01-53              | 2,350                   | 7,230                                 | 2,120                 | 07-01-53                        |                                   |                                   |                                         |
| Parks Sch.         | (A-22-04)27aad  |                       |                         | 7,090                                 |                       |                                 |                                   |                                   |                                         |
| EPNG-6             | (A-22-05)26adc2 | 08-03-53              | 2,151                   | 7,230                                 | 2,010                 | 08-03-53                        |                                   |                                   |                                         |
| Fort Valley        | (A-22-06)26aaa  | 11-20-38              | 1,540                   | 7,335                                 | DRY                   | 07-11-77                        |                                   |                                   |                                         |
| Garrett-Bacon      | (A-22-07)34dda  | 10-19-96              | 2,470                   | 7,210                                 | 1,920                 | 09-25-97                        | 8.50                              | 1,650                             | 2,470                                   |
| AT&T               | (A-22-08)16dad  | 06-12-63              | 1,755                   | 6,750                                 | 1,635                 | 06-12-63                        | 6.00                              | 1,665                             | 1,755                                   |
| BBDP-Sunset        | (A-22-08)23aab  | 01-01-71              | 1,800                   | 6,570                                 | 1,550                 | 01-01-71                        | 7.00                              | 1,590                             | 1,660                                   |
| BBDP-Marijka       | (A-22-08)23abb  | 03-15-88              | 1,802                   | 6,575                                 | 1,500                 | 06-25-88                        | 8.00                              | 1,520                             | 1,800                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Do.                | Do.             |                       |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Cromer School      | (A-22-08)26bbb  | 07-17-85              | 1,810                   | 6,585                                 | 1,463                 | 01-22-86                        | 8.62                              | 1,480                             | 1,771                                   |
| Koch Field         | (A-22-08)27caa  |                       | 1,772                   | 6,625                                 | 1,496                 |                                 | 8.00                              | 1,406                             | 1,654                                   |
| Do.                | Do.             |                       |                         |                                       |                       |                                 | 6.00                              | 1,700                             | 1,732                                   |
| Mitchell           | (A-22-08)35aac  | 11-01-57              | 1,550                   | 6,560                                 | 1,457                 | 06-20-66                        | 8.00                              | 93                                | 1,550                                   |
| US Grisp           | (A-22-09)29baa  | 11-00-59              | 1,447                   | 6,390                                 | 1,383                 | 12-17-73                        | 6.00                              |                                   |                                         |
| Oil Test           | (A-22-10)03acd  | 00-00-50              | 2,400                   | 5,590                                 | 1,137                 | 10-00-54                        | 10.00                             |                                   |                                         |
| Kuttkuhn           | (A-22-10)15bdc  | 05-00-73              | 1,240                   | 5,705                                 | 1,112                 | 00-00-75                        | 8.00                              | 71                                | 1,240                                   |
| Salt Well          | (A-22-11)19ccc  | 00-00-48              | 1,060                   | 5,590                                 | 1,000                 | 10-20-54                        | 6.00                              | 750                               | 1,060                                   |
| IB-9               | (A-23-07)33aab2 | 08-30-68              | 352                     | 9,780                                 | 143                   | 09-15-73                        | 16.00                             | 150                               | 352                                     |
| NPS Sunset Ctr-2   | (A-23-08)21aad  | 03-30-65              | 2,200                   | 6,970                                 | 1,944                 | 03-30-65                        | 8.00                              |                                   |                                         |
| Do.                | Do.             |                       |                         |                                       |                       |                                 |                                   |                                   |                                         |
| Rhoten Spr         | (A-23-10)01bbb  |                       |                         | 5,025                                 | 742                   | 10-19-54                        | 8.00                              |                                   |                                         |
| Ranch Well         | (A-23-10)24abb  |                       |                         | 5,190                                 | 859                   | 10-19-54                        | 8.00                              |                                   |                                         |
| NPS-Citadel        | (A-25-09)06ccd  | 12-00-66              | 1,788                   | 5,381                                 | 1,583                 | 01-23-67                        | 8.00                              | 1,780                             | 1,788                                   |
| NPS Wupatki HQ     | (A-25-10)30bdb  | 10-00-58              | 904                     | 4,930                                 | 781                   | 10-27-58                        | 10.00                             | 800                               | 904                                     |
| Well name or owner | Site identifier | Discharge<br>(gallons per<br>minute) | Date<br>discharge<br>measured | Drawdown<br>(feet) | Method<br>constructed | Type of log<br>available | Aquifer code | Other<br>available<br>data |
|--------------------|-----------------|--------------------------------------|-------------------------------|--------------------|-----------------------|--------------------------|--------------|----------------------------|
| Riddle 3-A         | (A-17-04)03aac2 |                                      |                               |                    | Н                     | D                        | 330RDLL      |                            |
| Harless 27A        | (A-17-04)04bbd1 |                                      |                               |                    | С                     |                          | 330RDLL      |                            |
| Harless 27B        | (A-17-04)04bbd2 |                                      |                               |                    | С                     | J, I                     |              |                            |
| Yucc (A-Crary 1)   | (A-17-04)05caa  |                                      |                               |                    |                       | D                        | 341MRTN      |                            |
| Tupper Farm        | (A-17-05)05bdc  |                                      |                               |                    | С                     | G                        | 341MRTN      |                            |
| Hopkins #1         | (A-17-05)08bcb  |                                      |                               |                    | Н                     | D, T                     | 341MRTN      |                            |
| Cathedral 1        | (A-17-05)16cad  |                                      |                               |                    | С                     | D                        | 341MRTN      |                            |
| Hancock            | (A-18-04)15dbc  | 6                                    | 03-05-74                      |                    | С                     | G                        | 310SUPI      |                            |
| Red Cyn Ranch      | (A-18-04)25bcb  | 10                                   | 06-02-67                      |                    | С                     |                          | 330RDLL      |                            |
| Bradshaw Fee-1     | (A-18-04)34abb  |                                      |                               |                    | Н                     | J, N, Z                  | 310SUPI      | HP                         |
| Do.                | Do.             |                                      |                               |                    |                       | E, L, M                  |              |                            |
| Rudy Buuch 1       | (A-18-05)27abb  | 9                                    | 06-02-67                      |                    | С                     |                          | 330RDLL      |                            |
| Rudy Buuch 2       | (A-18-05)27abc  | 92                                   |                               |                    | С                     |                          | 330RDLL      |                            |
| Hopkins 28-1       | (A-18-05)28ada  |                                      |                               |                    | С                     | D, T, C                  | 341MRTN      |                            |
| Do.                | Do.             |                                      |                               |                    |                       | J, N                     |              |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Marsland 1         | (A-18-05)29adc  | 9                                    | 05-31-67                      | 0                  | С                     | D                        | 330RDLL      |                            |
| Gillett 1          | (A-18-05)31bcd  |                                      |                               |                    | С                     | D                        | 330RDLL      |                            |
| Hallermund 1       | (A-18-05)31ddb  |                                      |                               |                    | Р                     | D, G                     | 341MRTN      |                            |
| Hopkins 34-2       | (A-18-05)34bac  | 0                                    | 05-13-69                      |                    | Н                     | I, J                     |              |                            |
| Hopkins 34-1Y      | (A-18-05)34bca1 | 6                                    | 06-07-69                      |                    | Н                     | D                        | 341MRTN      |                            |
| Do.                | Do.             |                                      |                               |                    |                       | -                        | -            |                            |
| Hopkins 34-1X      | (A-18-05)34bca2 | 0                                    | 12-09-68                      |                    | Н                     | D, I, J, C               |              |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Christensen        | (A-18-07)08ddc  | 21                                   | 11-14-73                      | 0                  | С                     | D                        | 310CCNN      |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          | -            |                            |
| AZWC-5             | (A-18-07)15ccc2 | 95                                   | 10-31-77                      | 8                  | Н                     | D                        | 310CCNN      | HP                         |
| AZWC-10            | (A-18-07)22baa2 | 188                                  | 08-00-78                      | 11                 | В                     | D                        | 120VLCC      |                            |
| Ltl Antelope       | (A-18-07)27cbb  | 26                                   | 09-00-65                      | 58                 | С                     | D                        | 310SUPI      |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Oil Discovery1     | (A-19-06)17dac  |                                      |                               |                    |                       | D                        |              |                            |
| ADOT-89A           | (A-19-06)W14bab | 51                                   | 10-27-78                      | 0                  | А                     | D                        | 310CCNN      | HP                         |
| Pine Flats         | (A-19-06)W27aaa | 100                                  | 07-15-75                      |                    | Р                     | D                        | 310SUPI      |                            |
| Federal 1          | (A-19-07)01ddd1 |                                      |                               |                    | А                     | I, U, N                  | 310SUPI      | HP                         |
| Do.                | Do.             |                                      |                               |                    |                       | J, G, D                  |              |                            |
| Henson             | (A-19-08)04bbb  |                                      |                               |                    | С                     | D                        | 310KIBB      |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Tilley             | (A-19-08)04bbd  |                                      |                               |                    |                       | D                        | 310KIBB      |                            |
| Walter             | (A-19-08)05add  |                                      |                               |                    | С                     | D                        | 310KIBB      |                            |
| LMEX-1             | (A-19-08)05ddd1 | 330                                  | 05-17-92                      | 83                 | А                     | C, J, E                  | 310CCNN      | HP                         |
| Do.                | Do.             |                                      |                               |                    | -                     | F, T, Z                  |              |                            |
| Pine Grove         | (A-19-09)17dcd  | 48                                   | 07-19-67                      | 25                 | С                     | S, G                     | 310SUPI      | HP, QW                     |

| Do.         Do.         15 $08\cdot 31\cdot67$ $25$ $\cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Do.         Do.         S0         0918-67            D         JUCCNN            Sostone OW         (A19-10023db            D         JUCCNN            Anderson I         (A19-10023db                                         AD         D         JUSCIN             AD         D         JUSCIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Solone OW         (A-19-10)23db            D         310CCNN            Anderson 1         (A-19-10)23db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Anderson 1       (A-19-10)23dbb          H       D       310SUPI          EPNG 1       (A-19-10)24bdb         H       D       310SUPI          Flowal 1       (A-19-10)24bdb         H       D       310SUPI          Potter 1       (A-20-05)24bd         H       D       310SUPI          WM-5       (A-20-06)24bd       660       0-62-2-63       66       C       D.G       310CCNN       HP         WM-10       (A-20-06)24bd       500       062-2-63       66       C       D.G       310CCNN       HP         WM-5       (A-20-06)24bd       500       062-2-63       66       C       D.G       310CCNN       HP         WM-10       (A-20-06)24bd       500       0327-68       336       C       D       310CCNN       HP         WM-11       (A-20-06)11bd       500       0327-68       336       C       D       310CCNN       HP         WM-7       (A-20-06)11bd       501 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EPNG 1(A-19-10)24cdbHD310SUP1Flowah 1(A-19-10)24cdbAD310SUP1Potter-1(A-20-05)24bbdCG310SUP1WM-5(A-20-05)22bb6000622-6366CD,G310CCNNHPWM-10(A-20-05)22bb040-05-96223GCD,GHPDo.0.0ST,ZWM-61(A-20-06)2bbb50003-27-68336CD310CCNNHPWM-71(A-20-06)11baCG,P310CCNNHPWM-71(A-20-06)11ba94204-21-78308CD310CCNNWM-71(A-20-06)11ba94204-21-78308CD310CCNNWM-71(A-20-06)11ba94204-21-78308CD310CCNNWM-71(A-20-06)11ba94204-21-78308CD310CCNNWM-72(A-20-06)11ba94204-21-78308CD310CCNNMM-73(A-20-06)11ba94204-21-78308CD310CCNNMM-74(A-20-06)11baHQ310CCNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Flowalt 1(A.19-10)24cbbAD310SUPIPoter-1(A2-005)24bbdCG310SUPIWM-5(A2-00502bb60006-22-6366CD,G310CNNHPWM-10(A-2-06002bb20504-05-96223RC,E,J310CNNHPDoS,T,ZWM-6(A2-00602bb50003-27-68336CD,310CNNHPWM-61(A-20-0611ba)CG,P310CNNHPWM-7(A-20-0611ba)94204-21-78308CD,310CNNWM-7(A-20-0611ba)94204-21-78308CD,310CNNWM-7(A-20-0611ba)94204-21-78308CD,310CNNHPWM-8(A-20-0611ba)WM-9(A-20-0611ba)WM-7(A-20-0611ba)MM-9(A-20-0611ba) </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Peter-1         (A-20-05)24bbd           C         G         JOSUPI            WM-5         (A-20-06)02bbb         600         06-22-63         66         C         D,G         JOCCNN         HP           WM-10         (A-20-06)02bcb         295         04-05-96         223         R         C,E,J         JOCCNN         HP           Do.         Do.            S,T,Z             WM-6         (A-20-06)1bba         500         03-27-68         336         C         D         310CCNN         HP           WM-11         (A-20-06)1bba         500           C         G,P         310CCNN         HP           WM-7         (A-20-06)1bbd         577         09-01-86         471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WM-5         (A-20-06)02bbb         600         06-22-63         66         C         D,G         310CCNN         HP           WM-10         (A-20-06)02bcb         295         04-05-96         223         R         C,E,J         310CCNN         HP           Do.         Do.            S,T,Z             WM-6         (A-20-06)02bdb         500         03-27-68         336         C         D         310CCNN         HP,QW           WM-11         (A-20-06)11baa           C         G,P         310CCNN         HP,QW           WM-7         (A-20-06)11baa            C         G,P         310CCNN            WM-7         (A-20-06)11bda                                         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WM-10         (A-20-06)02bcb         295         04-05-96         223         R         C, E, J         310CCNN         HP           Do.             S, T, Z             WM-6         (A-20-06)02bdb         500         03-27-68         336         C         D         310CCNN         HP, QW           WM-11         (A-20-06)11bab         942         04-21-78         308         C         D         310CCNN         HP           WM-7         (A-20-06)11bab         942         04-21-78         308         C         D         310CCNN            Do.         Do. <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| W4-6(A-20-06)02bd50003-27-68336CD310CCNNHP, QWWM-11(A-20-06)11ba94204-21-78308CD310CCNNHPWM-7(A-20-06)11ba94204-21-78308CD310CCNNHPDo.DoWM-9(A-20-06)11bd67709-01-86471D310CCNNHP, QWWM-8(A-20-06)11bd67709-01-86471D310CCNNHP, QWWM-8(A-20-06)11bdHD310CCNNHP, QWMorison(A-20-06)24abb20010-12-87273RD310CCNNHP, QWDo.DoFH-4(A-20-06)24abb15206-20-87234RD310CCNNHPDo.DoSkmk Canyon(A-20-07)02ca4009-00-8720D310SUPIHPDo.DoSkmk Canyon(A-20-07)02ca4009-00-8720JC, S310SUPIDo.DoJopt Well(A-20-07)02ca1511-18-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WM-11(A-20-06)11baCG,P310CNNHPWM-7(A-20-06)11bab94204-21-78308CD310CNNDo.DoWM-9(A-20-06)11bdc67709-01-86471D310CNNHP,QWWM-8(A-20-06)11bdcHD310CNNMorrison(A-20-06)1bbbAD310KIBBFH-5(A-20-06)24abb20010-12-87273RD310SUPIHP,QWDo.DoFH4(A-20-06)24abb15206-20-87234RD310SUPIHPDo.DoSkunk Canyon(A-20-07)02ca4009-00-8720D310SUPIHPSkunk Canyon(A-20-07)03aca15011-18-96669J,C,S310SUPIDo.DoE,T,G,VAirport Well(A-20-07)04acDo.DoD310CNNDo.Do </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WM-7         (A-20-0)11bb         942         04-21-78         308         C         D         310CCNN            Do.         Do.                         D         310CCNN         HP, QW           WM-9         (A-20-06)11bdc           H         D         310CCNN           H         D         310CCNN            Morison         (A-20-06)19bbb            A         D         310SUPI         HP, QW           Do.         Do.            A         D         310SUPI         HP, QW           Do.         Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Do.DoWM-9(A20-06)11bdc67709-01-86471D310CCNHP, QWWM-8(A20-06)11bd0HD310CCNMorrison(A20-06)14bdbAD310KIB8FH-5(A20-06)24abb20010-12-87273RD310KUNHP, QWDo.DoFH4(A-20-06)24abb15206-20-87234RD310SUP1HPDo.DoNorth Ranch(A-20-07)02ca4009-00-8720D310SUP1HPSkuk Caryon(A-20-07)03ca15011-18-96669J, C, S310SUP1HPDo.DoE, T, G, VAirport Well(A-20-07)03aca15011-18-96669J, G, T310SUP1Do.DoE, T, G, VDo.DoDo.DoD310CNNDo.DoD310CNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WM-9(A-20-06)11bdc67709-01-86471D310CNNHP, QWWM-8(A-20-06)11bddHD310CNNMorrison(A-20-06)24abbAD310SUPIHP, QWDo.DoFH-4(A-20-06)24abb15206-20-87234RD310SUPIHP, QWDo.DoNorth Ranch(A-20-07)02cca4009-00-8720D310SUPIHPSkunk Canyon(A-20-07)02cca4009-00-8720D310SUPIHPSkunk Canyon(A-20-07)02cca15011-18-96669J, C, S310SUPIHPDo.DoE, T, G, VAirport Well(A-20-07)04acPJ, G, T310SUPIDo.DoD310CCNNDo.DoD310CCNNDo.DoD310CCNNDo.DoD310CCNNDo.DoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WM-8       (A-20-06)11bdd         H       D       310CCNN          Morrison       (A-20-06)19bbb         A       D       310KIBB          FH-5       (A-20-06)24abb       200       10-12-87       273       R       D       310KIBB          Do.       Do.                FH-4       (A-20-06)24abb       152       06-20-87       234       R       D       310CCNN       HP         Do.       Do.                Morti Ranch       (A-20-07)02cca       40       09-00-87       20        D       310SUPI       HP         Skunk Canyon       (A-20-07)03ca       150       11-18-96       669        J, C, S       310SUPI       HP         Do.       Do.          HP       J, G, T       310SUPI          Do.       Do.          HP       J, G, T       310SUPI          Do.       Do. </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Morrison(A-20-06)19bbbAD310KIBBFH-5(A-20-06)24abb20010-12-87273RD310SUPIHP,QWDo.DoFH-4(A-20-06)24abb15206-20-87234RD310CCNNHPDo.DoNorth Ranch(A-20-07)02cca4009-00-8720D310SUPIHPSkunk Canyon(A-20-07)03aca15011-18-96669J,C,S310SUPIHPDo.DoE,T,G,VAirport Well(A-20-07)04dacPJ,G,T310SUPIDo.DoPJ,G,T310CCNNDo.DoD310CCNNDo.DoD310CCNNDo.DoDo.DoDo.DoD310CCNNHPDo.DoD<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FH-5       (A-20-06)24abb       200       10-12-87       273       R       D       310SUPI       HP, QW         Do.       Do. <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Do.       Do.       Image: stress of the stress of |
| FH-4       (A-20-06)24adb       152       06-20-87       234       R       D       310CCNN       HP         Do.       Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Do.       Do.                                                                                                               -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| North Ranch         (A-20-07)02cca         40         09-00-87         20          D         310SUPI         HP           Skunk Canyon         (A-20-07)03aca         150         11-18-96         669          J, C, S         310SUPI         HP           Do.         Do.           E, T, G, V             Airport Well         (A-20-07)04dac           P         J, G, T         310SUPI            Do.         Do.           P         J, G, T         310SUPI            Airport Well         (A-20-07)04dac           P         J, G, T         310SUPI            Do.         Do.            C, E             Kimmerly         (A-20-07)07aaa1         5         10-05-85           D         310CCNN            Do.         Do.                 Tyrrell         (A-20-07)07aaa2         10         05-25-93         12          D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Skunk Canyon       (A-20-07)03aca       150       11-18-96       669        J, C, S       310SUPI       HP         Do.       Do.          E, T, G, V            Airport Well       (A-20-07)04dac         P       J, G, T       310SUPI           Do.       Do.         P       J, G, T       310SUPI           Airport Well       (A-20-07)04dac         P       J, G, T       310SUPI          Do.       Do.          P       J, G, T       310SUPI          Kimmerly       (A-20-07)07aaa1       5       10-05-85         D       310CCNN          Do.       Do.                Tyrrell       (A-20-07)07aaa2       10       05-25-93       12        D       310SUPI          Kondotad       (A-20-07)07aab         C       D       310SUPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Do.       Do.          E, T, G, V           Airport Well       (A-20-07)04dac         P       J, G, T       310SUPI          Do.       Do.          P       J, G, T       310SUPI          Kimmerly       (A-20-07)07aaa1       5       10-05-85         D       310CCNN          Do.       Do.           D       310CCNN          Tyrrell       (A-20-07)07aaa2       10       05-25-93       12        D       310CCNN       HP         Roaldstad       (A-20-07)07aab         C       D       310SUPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Airport Well       (A-20-07)04dac         P       J, G, T       310SUPI          Do.       Do.          C, E           Kimmerly       (A-20-07)07aaa1       5       10-05-85         D       310CCNN          Do.       Do.          D       310CCNN          Tyrrell       (A-20-07)07aaa2       10       05-25-93       12        D       310CCNN       HP         Roaldstad       (A-20-07)07adb         C       D       310SUPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Do.       Do.          C, E           Kimmerly       (A-20-07)07aaa1       5       10-05-85         D       310CCNN          Do.       Do.          D       310CCNN          Tyrrell       (A-20-07)07aaa2       10       05-25-93       12        D       310CCNN       HP         Roaldstad       (A-20-07)07aab         C       D       310SUPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Kimmerly         (A-20-07)07aaa1         5         10-05-85           D         310CCNN            Do.         Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Do.     Do.             Tyrrell     (A-20-07)07aaa2     10     05-25-93     12      D     310CCNN     HP       Roaldstad     (A-20-07)07adb       C     D     310SUPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tyrrell       (A-20-07)07aaa2       10       05-25-93       12        D       310CCNN       HP         Roaldstad       (A-20-07)07adb         C       D       310SUPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Roaldstad (A-20-07)07adb C D 310SUPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Heckathorne (A-20-07)12bba 40 09-29-65 C 310CCNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LM-3 (A-20-07)12ddb 175 03-10-66 144 H 310CCNN HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Do. Do. 167 11-18-65 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FH-3 (A-20-07)19aba 90 08-30-87 245 D 310SUPI HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Do. Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FH Test Well (A-20-07)19cbb1 D 310CCNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FH-1 (A-20-07)19cbb2 122 09-11-86 261 D, P 310CCNN HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Do. Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Kachina-3 (A-20-07)20cca 130 04-12-78 C D 310CCNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LMEX-6 (A-20-07)23dca A D 310CCNN HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LMEX-4 (A-20-07)25dcb1 A D 310CCNN HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mountainaire (A-20-07)28bcc 150 03-30-78 310CCNN OW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kachina-1         (A-20-07)30bbc         34         08-00-65         20         C         D         310CCNN         HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Do. Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Do. Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Kachina-2 (A-20-07)30bdb 55 10-09-69 35 C 310CCNN HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Well name or owner | Site identifier  | Discharge<br>(gallons per<br>minute) | Date<br>discharge | Drawdown<br>(feet) | Method      | Type of log | Aquifer code | Other<br>available |
|--------------------|------------------|--------------------------------------|-------------------|--------------------|-------------|-------------|--------------|--------------------|
| wen name of owner  | Sile luelilillei | iiiiiute)                            | illeasureu        | (ICCI)             | constructeu | available   | Aquilei coue | uala               |
| TH 4               | (A-20-07)35bac   |                                      |                   |                    |             | D, G        | 310CCNN      |                    |
| LM-1               | (A-20-08)18bbb   | 300                                  | 09-08-64          | 76                 | С           | D           | 310CCNN      | HP                 |
| Do.                | Do.              |                                      |                   |                    |             |             |              |                    |
| LM-2               | (A-20-08)18bcc   | 600                                  | 03-07-75          | 430                | Н           | D           | 310CCNN      | HP                 |
| Whitley-1          | (A-20-08)18cac1  | 33                                   | 04-14-78          |                    | С           | D           | 310CCNN      |                    |
| Whitley-2          | (A-20-08)18cac2  | 35                                   | 06-02-92          | 20                 | А           | D           | 310CCNN      | HP                 |
| LM-4               | (A-20-08)19aba   | 701                                  | 04-03-75          | 342                | Н           | C, V, Z     | 310CCNN      | HP, QW             |
| Do.                | Do.              |                                      |                   |                    |             | Ι, Τ        |              |                    |
| Schnieder          | (A-20-08)19dac   |                                      |                   |                    | С           | D           | 310CCNN      |                    |
| Suiter             | (A-20-08)19dda   | 10                                   | 06-04-90          | 40                 |             | D           | 310CCNN      | HP                 |
| LMO-3              | (A-20-08)20acd   |                                      |                   |                    |             | D           | 310CCNN      |                    |
| LM-8               | (A-20-08)20cca   | 750                                  | 12-00-86          | 146                | Н           | V, E, T     | 310CCNN      | HP, QW             |
| Do.                | Do.              |                                      |                   |                    |             | G, N, I     |              |                    |
| Do.                | Do.              |                                      |                   |                    |             | J, C        |              |                    |
| LMO-1              | (A-20-08)20cca2  |                                      |                   |                    |             | D           | 310CCNN      | HP                 |
| LM-5               | (A-20-08)20dbc   | 1,000                                | 12-02-75          | 182                | С           | D, C, E     | 310CCNN      | HP                 |
| Do.                | Do.              |                                      |                   |                    |             | J, T        |              |                    |
| LM-6               | (A-20-08)27bbb   |                                      |                   |                    |             | Z           | 310CCNN      |                    |
| Do.                | Do.              |                                      |                   |                    |             |             |              |                    |
| LM-7               | (A-20-08)27caa   |                                      |                   |                    |             | Z           | 310CCNN      |                    |
| Old LM-9           | (A-20-08)28cba   |                                      |                   |                    |             | D, E, J     | 310SUPI      |                    |
| Do.                | Do.              |                                      |                   |                    |             | S, C        |              |                    |
| LMO-2              | (A-20-08)29bbb   |                                      |                   |                    |             | D           | 310CCNN      |                    |
| Garrison           | (A-20-08)30abb   |                                      |                   |                    | С           | D           | 310KIBB      |                    |
| Bathen             | (A-20-08)30abc   | 12                                   | 09-15-82          | 50                 |             | D           | 310CCNN      |                    |
| Wahlers            | (A-20-08)30bdb   | 15                                   | 06-15-85          | 60                 |             | D           | 310CCNN      | HP                 |
| Cook 1             | (A-20-08)30bdc   |                                      |                   |                    |             | D           | 310KIBB      |                    |
| Cook 2             | (A-20-08)30cba2  |                                      |                   |                    |             | D           | 310CCNN      |                    |
| LM-9               | (A-20-08)30cda   |                                      |                   |                    | R           | G           | 310CCNN      | HP, OW             |
| Do.                | Do.              |                                      |                   |                    |             |             |              |                    |
| TH-3               | (A-20-08)30cdd1  |                                      |                   |                    |             | D           | 310CCNN      | HP                 |
| LMEX-3             | (A-20-08)32cab1  | 320                                  |                   | 270                | А           | D. C. G     | 310CCNN      | HP                 |
| Do                 | Do               |                                      |                   |                    |             | E. E.       |              |                    |
| I MFX-2            | (A-20-08)33cdb   | 69                                   |                   | 63                 | А           | D           | 310CCNN      | HP                 |
| Slavton            | (A-20-09)22ach   |                                      |                   |                    |             | D           |              |                    |
| Pickett OT         | (A-20-10)26dbc   |                                      |                   |                    | Δ           | DIS         | 310SUPI      |                    |
| Do                 | Do               |                                      |                   |                    | 11          | D, J, J     | 5105011      |                    |
| Do.                | (A 20 10)\$01aaa |                                      |                   |                    | <br>C       | Б           | 310CCNN      |                    |
| Diyc               | (A-20-10)301aaa  |                                      |                   |                    | c           | <br>D       | 310CCNN      |                    |
| Babbin             | (A-20-11)07add   |                                      |                   |                    | ¢           |             | 310CCNN      |                    |
| R Owens OI         | (A-20-11)120aa   |                                      |                   |                    | A           | D, I, M     | STOCCININ    |                    |
| D0.                | D0.              |                                      |                   |                    |             | E, 3        | 2101/100     |                    |
|                    | (A-21-05)01acc3  |                                      |                   |                    |             | D           | STORIBB      |                    |
| NAD-1              | (A-21-05)11cbc   | 35                                   | 07-20-50          | 100                |             | G           | 310SUPI      | HP                 |
| Do.                | Do.              | 60                                   | 05-15-51          |                    |             |             |              |                    |
| Burns              | (A-21-06)10daa   | 5                                    | 08-17-88          | 347                |             | D           | 310CCNN      | HP                 |
| Fried              | (A-21-06)22bab   |                                      |                   |                    |             | D           |              |                    |

| Well name or owner | Site identifier | Discharge<br>(gallons per<br>minute) | Date<br>discharge<br>measured | Drawdown<br>(feet) | Method<br>constructed | Type of log<br>available | Aquifer code | Other<br>available<br>data |
|--------------------|-----------------|--------------------------------------|-------------------------------|--------------------|-----------------------|--------------------------|--------------|----------------------------|
| Henden             | (A-21-06)23aad  | 15                                   | 02-00-95                      | 0                  |                       | D                        | 310SUPI      | HP. OW                     |
| Saskan Ranch       | (A-21-06)24bcb  | 18                                   | 06-17-96                      | 15                 | А                     | J. T. D                  | 310SUPI      | HP                         |
| Do.                | Do.             | 17                                   | 01-31-97                      | 53                 |                       | F, G                     |              |                            |
| Flag Ranch         | (A-21-06)25bcd  | 67                                   | 00-00-85                      |                    |                       | D                        | 310SUPI      | HP, OW                     |
| Do.                | Do.             | 86                                   | 11-00-90                      | 287                |                       |                          |              |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Flag Ranch Test    | (A-21-06)25bcd2 |                                      |                               |                    |                       |                          |              |                            |
| WM-Test            | (A-21-06)34cca  |                                      |                               |                    |                       |                          |              |                            |
| WM-3               | (A-21-06)35bcc  | 500                                  |                               | 92                 | С                     | D, G                     | 310SUPI      | HP                         |
| WM-1               | (A-21-06)35cba  | 207                                  | 12-07-54                      | 68                 | D                     | D                        | 310CCNN      | HP, QW                     |
| WM-2               | (A-21-06)35ccb  | 362                                  | 07-03-56                      | 33                 |                       | D, G                     | 310CCNN      | HP                         |
| WM-4               | (A-21-06)35ccc  | 490                                  | 03-31-58                      | 211                | С                     | D, G                     | 310CCNN      | HP                         |
| Ritland            | (A-21-07)09acc  |                                      |                               |                    | А                     | D                        | 310SUPI      |                            |
| Pugh               | (A-21-07)09bac  | 18                                   | 06-30-93                      | 30                 |                       | D                        | 310SUPI      | HP                         |
| Hidden Hollow      | (A-21-07)19aca  | 10                                   | 01-14-77                      |                    |                       | D                        | 310SUPI      | HP, QW                     |
| Riordan            | (A-21-07)20bdb  | 30                                   | 09-19-62                      |                    | С                     | G                        | 310SUPI      | HP                         |
| Ponderosa Paper-1  | (A-21-07)22aad  |                                      |                               |                    |                       | D                        | 310SUPI      |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Ponderosa Paper-2  | (A-21-07)22ada  |                                      |                               |                    | С                     | D                        | 310SUPI      |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Rio de Flag MW-1   | (A-21-07)23cac  |                                      |                               |                    | А                     |                          |              | QW                         |
| LA-3               | (A-21-07)23dcc  |                                      |                               |                    | А                     | D                        | 310SUPI      |                            |
| Foxglenn-1         | (A-21-07)24aad  | 450                                  | 05-30-97                      | 167                | Н                     | P, Z, G                  | 310SUPI      | HP,QW                      |
| Do.                | Do.             |                                      |                               |                    |                       | С                        |              |                            |
| Potter             | (A-21-07)24ccd  |                                      |                               |                    | D                     |                          | 310KIBB      |                            |
| Rio de Flag MW-3   | (A-21-07)25bba2 |                                      |                               |                    |                       |                          |              | QW                         |
| Purl               | (A-21-07)25bbd  | 8                                    | 04-00-90                      | 0                  |                       | D                        | 310CCNN      | HP, QW                     |
| LA-2               | (A-21-07)26abb  |                                      |                               |                    | А                     | D, P                     | 310SUPI      |                            |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| LA-1               | (A-21-07)26abd  | 101                                  | 08-25-76                      | 30                 | С                     | D                        | 310SUPI      | HP                         |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Mtn Dell-1         | (A-21-07)32bbc1 | 206                                  | 10-02-56                      | 100                |                       | G                        | 310SUPI      | HP, QW                     |
| Mtn Dell-2         | (A-21-07)32bbc2 | 37                                   | 05-22-75                      |                    | С                     | D                        | 310SUPI      | QW                         |
| Kohner             | (A-21-07)34baa  | 23                                   | 04-12-88                      |                    | А                     | D                        | 310CCNN      |                            |
| Continental-1      | (A-21-08)17bca1 |                                      |                               |                    |                       | G, P                     | 310SUPI      |                            |
| Continental-2      | (A-21-08)17bca2 | 490                                  | 04-17-97                      | 281                |                       | P, J, C                  | 310SUPI      | HP, QW                     |
| Do.                | Do.             |                                      |                               |                    |                       | G                        |              |                            |
| NPS Walnut Canyon  | (A-21-08)26dab  | 44                                   | 08-20-70                      | 271                | А                     |                          | 310SUPI      | HP, QW                     |
| BBDP-Flowers       | (A-21-09)05ddd  | 15                                   | 12-01-61                      | 15                 | С                     | D, V                     | 310SUPI      | HP                         |
| Do.                | Do.             | 30                                   | 07-21-75                      |                    | С                     |                          |              |                            |
| BBDP-MVR-1         | (A-21-09)06baa  | 30                                   | 05-01-67                      | 151                | С                     | D, V                     | 310SUPI      | HP, QW                     |
| BBDP-Cosnino       | (A-21-09)08bcc  | 30                                   | 01-01-73                      | 130                |                       | D, V                     | 310SUPI      | HP                         |
| Wilbur             | (A-21-09)10bbd  | 7                                    | 07-30-66                      |                    | С                     | D, G                     | 310SUPI      | HP                         |
| Foster             | (A-21-09)11bbb  | 18                                   | 04-09-90                      |                    |                       | D                        | 310CCNN      | HP                         |
| Do.                | Do.             |                                      |                               |                    |                       |                          |              |                            |
| Pill               | (A-21-09)14acc  | 7                                    | 06-24-66                      | 12                 | С                     | D                        | 310CCNN      | HP                         |

| Well name or owner | Site identifier | Discharge<br>(gallons per<br>minute) | Date<br>discharge<br>measured | Drawdown<br>(feet) | wn Method Type<br>constructed ava |          | Aquifer code | Other<br>available<br>data |  |  |  |
|--------------------|-----------------|--------------------------------------|-------------------------------|--------------------|-----------------------------------|----------|--------------|----------------------------|--|--|--|
| Porter             | (A-21-09)15dda  |                                      |                               |                    | С                                 | D        | 310SUPI      |                            |  |  |  |
| ADOT-Winona        | (A-21-09)17acc  | 17                                   | 06-20-72                      | 150                |                                   |          | 310SUPI      | HP                         |  |  |  |
| CVWC               | (A-21-09)23cba  |                                      |                               |                    |                                   | D        | 310SUPI      | HP                         |  |  |  |
| Moody              | (A-21-10)16bdc  | 22                                   | 03-07-79                      | 30                 |                                   | D        | 310CCNN      | HP                         |  |  |  |
| Drye               | (A-21-11)19bcb  | 14                                   | 01-00-57                      | 0                  | С                                 | D        | 310CCNN      | HP                         |  |  |  |
| Poore              | (A-21-11)31cdd  |                                      |                               |                    |                                   |          | 310CCNN      |                            |  |  |  |
| EPNG-3             | (A-22-04)08dac1 |                                      |                               |                    |                                   |          | 120VLCC      |                            |  |  |  |
| EPNG-5             | (A-22-05)26acd  |                                      |                               |                    |                                   | D        | 310SUPI      |                            |  |  |  |
| Parks Sch.         | (A-22-04)27aad  |                                      |                               |                    | С                                 |          | 120VLCC      | QW                         |  |  |  |
| EPNG-6             | (A-22-05)26adc2 |                                      |                               |                    |                                   |          |              |                            |  |  |  |
| Fort Valley        | (A-22-06)26aaa  |                                      |                               |                    |                                   | D        |              |                            |  |  |  |
| Garrett-Bacon      | (A-22-07) 34dda |                                      |                               |                    | А                                 | G, J, C  | 310SUPI      |                            |  |  |  |
| AT&T               | (A-22-08)16dad  | 12                                   | 06-12-63                      | 15                 | С                                 | D        | 310SUPI      | HP                         |  |  |  |
| BBDP-Sunset        | (A-22-08)23aab  | 40                                   | 04-25-71                      |                    | С                                 | D, V     | 310SUPI      | HP, QW                     |  |  |  |
| BBDP-Marijka       | (A-22-08)23abb  | 233                                  | 07-16-88                      | 7                  |                                   | D, G     | 310SUPI      | HP                         |  |  |  |
| Do.                | Do.             | 82                                   | 06-25-88                      |                    |                                   |          |              |                            |  |  |  |
| Do.                | Do.             | 177                                  | 07-15-88                      | 44                 |                                   |          |              |                            |  |  |  |
| Cromer School      | (A-22-08)26bbb  | 79                                   | 01-22-86                      | 6                  |                                   | D        | 310SUPI      | HP                         |  |  |  |
| Koch Field         | (A-22-08)27caa  |                                      |                               |                    |                                   | D, V     | 310SUPI      |                            |  |  |  |
| Do.                | Do.             |                                      |                               |                    |                                   |          |              |                            |  |  |  |
| Mitchell           | (A-22-08)35aac  | 25                                   | 06-20-66                      |                    | С                                 | D        | 310SUPI      | HP                         |  |  |  |
| US Grisp           | (A-22-09)29baa  | 4                                    | 00-00-59                      |                    | С                                 | D        | 310SUPI      | HP                         |  |  |  |
| Oil Test           | (A-22-10)03acd  |                                      |                               |                    | С                                 | D        | 330RDLL      |                            |  |  |  |
| Kuttkuhn           | (A-22-10)15bdc  | 6                                    | 05-00-73                      |                    | С                                 | D        | 310SUPI      | HP                         |  |  |  |
| Salt Well          | (A-22-11)19ccc  | 10                                   | 09-20-67                      |                    | С                                 | -        | 310CCNN      | HP                         |  |  |  |
| IB-9               | (A-23-07)33aab2 | 859                                  | 09-15-73                      | 102                | С                                 | D        | 110ALVM      | QW                         |  |  |  |
| NPS Sunset Ctr-2   | (A-23-08)21aad  | 21                                   | 05-03-65                      | 58                 | С                                 | D, J, C  | 310SUPI      | HP                         |  |  |  |
| Do.                | Do.             |                                      |                               |                    |                                   | E, I, Z  |              |                            |  |  |  |
| Rhoten Spr         | (A-23-10)01bbb  | 6                                    | 10-19-54                      |                    | С                                 |          | 310CCNN      |                            |  |  |  |
| Ranch Well         | (A-23-10)24abb  | 6                                    | 10-19-54                      |                    |                                   |          | 310CCNN      |                            |  |  |  |
| NPS-Citadel        | (A-25-09)06ccd  | 18                                   | 01-23-67                      | 5                  | С                                 | D        | 310SUPI      | HP                         |  |  |  |
| NPS Wupatki HQ     | (A-25-10)30bdb  | 50                                   | 10-27-58                      | 45                 | С                                 |          | 310CCNN      | HP, QW                     |  |  |  |
| Grassy Meadow      | (A-19-06)E27bcc | 35°00'14"                            | 111°44′02″                    | 5,465              | SEEP                              | 08-17-49 | 310SUPI      |                            |  |  |  |
| Lolami             | (A-19-06)34wa   | 34°59'37"                            | 111°44′37″                    | 5,400              | 25.0                              | 08-17-49 | 310SUPI      |                            |  |  |  |
| Hummingbird        | (A-19-06)34wc2  | 34°59'03"                            | 111°44′50″                    | 5,300              | 25.0                              | 08-18-49 | SCBH         |                            |  |  |  |
| Sherwood           | (A-19-06)34wc1  | 34°59'08"                            | 111°44′50″                    | 5,300              | 50.0                              | 08-18-49 | SCBH         |                            |  |  |  |
| Cave               | (A-19-06)dbc    | 34 <sup>°</sup> 59'10"               | 111°43 ' 20 "                 | 5,440              |                                   |          | SCBH         |                            |  |  |  |
| Sterling           | (A-19-06)15ddd1 | 35°01 ' 30 "                         | 111°44 ' 22 "                 | 5,760              | 291.0                             | 08-13-49 | 310CCNN      | QW                         |  |  |  |
| Hoxworth           | (A-19-08)08cab  | 35°02 ' 25 "                         | 111°34 ' 27 "                 | 7,015              | 25.0                              | 12-01-89 | 310KIBB      |                            |  |  |  |
| Do.                | Do.             | Do.                                  | Do.                           | Do.                | 10.0                              | 05-02-96 | Do.          |                            |  |  |  |
| Newman Canyon      | (A-19-08)10cdd  | 35°02'10"                            | 111°32'10"                    | 6,940              | .5                                | 06-04-96 | 310KIBB      |                            |  |  |  |
| Clark              | (A-20-08)32cca  | 35°04'02"                            | 111°34'44"                    | 7,005              | 3.1                               | 05-02-96 | 310KIBB      | QW                         |  |  |  |
| Babbitt            | (A-20-08)34cdb  | 35°04 ' 01 "                         | 111°32'16"                    | 6,895              | 4.0                               | 07-16-59 | 310KIBB      |                            |  |  |  |
| Do.                | Do.             | Do.                                  | Do.                           | Do.                | 3.0                               | 12-01-89 | Do.          |                            |  |  |  |
| Do.                | Do.             | Do.                                  | Do.                           | Do.                | 5.1                               | 05-02-96 | Do.          | QW                         |  |  |  |
| NAD-1              | (A-21-05)11abc  | 35°13'15"                            | 111°50'00"                    | 7,080              | 64.0                              | 08-02-78 | 120VLCC      | QW                         |  |  |  |
| Old Town           | (A-21-07)16cdb  | 35°11′53″                            | 111°39'38"                    | 7,020              |                                   |          | 120VLCC      | QW                         |  |  |  |

<sup>1</sup>Well not completed.

[QW, quality of water; SW, surface water; SN, snowmelt; IB, Inner Basin]

|                     |              |            | Altitude of land surface |                      |
|---------------------|--------------|------------|--------------------------|----------------------|
| Miscellaneous sites | Latitude     | Longitude  | (feet)                   | Other available data |
| Lake Mary           | 35°04 ' 16 " | 111°31'02" | 6,825                    | QW, SW               |
| Quarry              | 35°12'01"    | 111°49'31" | 7,080                    | QW, SW               |
| IB snowmelt         | 35°20'27"    | 111°39'00" | 9,840                    | QW, SN               |
| Center snowmelt     | 34°12 ' 27 " | 111°37'57" | 7,115                    | QW, SN               |

SUPPLEMENTAL DATA—CONTINUED C. X-Ray Diffraction Mineralogy for Selected Wells that Discharge Water from the Regional Aquifer, Flagstaff, Arizona X-ray diffraction mineralogy for selected wells that discharge water from the regional aquifer, Flagstaff, Arizona

[N/A, not applicable. Numbers in parentheses are in percent and are rounded to nearest whole number. Queries indicate uncertainty. <, less than]

| Depth interval<br>below land | Bulk mineralogy                                                                     | Formation                 |
|------------------------------|-------------------------------------------------------------------------------------|---------------------------|
|                              |                                                                                     | Tornation                 |
| 100, 110                     |                                                                                     |                           |
| 100-110                      | Quartz (80), dolomite (19), calcite (1), kaolinite, plagioclase, K-feldspar         | Kaibab Formation          |
| 190-200                      |                                                                                     | Toroweap Formation        |
| 230-240                      | Quartz (96), illite, kaolinite, dolomite, calcite, plagioclase, K-feldspar          | Coconino Sandstone        |
| 300–310                      | N/A                                                                                 | Do.                       |
| 400-410                      | Quartz (85), dolomite (9), calcite (6), illite, kaolinite, plagioclase              | Do.                       |
| 500-510                      | N/A                                                                                 | Do.                       |
| 600–610                      | Quartz <sup>1</sup> , illite, kaolinite, plagioclase, dolomite, calcite             | Do.                       |
| 700–710                      | N/A                                                                                 | Do.                       |
| 800-810                      | Quartz <sup>1</sup> , illite, kaolinite, plagioclase, dolomite, calcite             | Do.                       |
| 890–900                      | N/A                                                                                 | Do.                       |
| 950–960                      | Quartz <sup>1</sup> , kaolinite, dolomite, calcite, feldspar                        | Do.                       |
| 1,000-1,010                  | Quartz <sup>1</sup> , illite, kaolinite, dolomite, calcite, plagioclase             | Schnebly Hill Formation   |
| 1,050-1,060                  | N/A                                                                                 | Do.                       |
| 1,100–1,110                  | Quartz <sup>1</sup> , illite, kaolinite, plagioclase, K-feldspar, dolomite, calcite | Do.                       |
| 1,200–1,210                  | Quartz <sup>1</sup> , illite, kaolinite, dolomite, feldspar, calcite, mica          | Supai Formation (Upper)   |
| 1,300–1,310                  | N/A                                                                                 | Do.                       |
| 1,400–1,410                  | Quartz <sup>1</sup> , illite, kaolinite, plagioclase, calcite, dolomite, K-feldspar | Do.                       |
| 1,500-1,510                  | Quartz <sup>1</sup> , illite, kaolinite, plagioclase, dolomite, calcite             | Supai Formation (Middle?) |
| 1,580–1,590                  | Quartz <sup>1</sup> , illite, kaolinite, K-feldspar, calcite, dolomite              | Do.                       |
|                              | Foxglenn-1                                                                          |                           |
| 50-60                        | Dolomite (70), quartz (24), calcite (6), kaolinite/illite (<1)                      | Kaibab Formation          |
| 110-120                      | Quartz (49), dolomite (49), calcite (1), kaolinite/illite (1)                       | Do.                       |
| 220-230                      | Quartz (72), dolomite (26), calcite (2), kaolinite/illite (<1)                      | Toroweap Formation        |
| 370–380                      | Quartz (99), dolomite (1)                                                           | Coconino Sandstone        |
| 670–680                      | Quartz (99), dolomite/kaolinite/K-feldspar/kaolinite/illite (1)                     | Do.                       |
| 1,020–1,030                  | Quartz (99), dolomite (1), K-feldspar/kaolinite/illite (<1)                         | Do.                       |
| 1,070–1,080                  | Quartz (99), dolomite/K-feldspar (1), kaolinite (<1)                                | Schnebly Hill Formation   |
| 1,170–1,180                  | Quartz (97), K-feldspar (2), dolomite (1)                                           | Do.                       |
| 1,220–1,230                  | Quartz (97), dolomite (2), K-feldspar (1), kaolinite (<1)                           | Supai Formation (Upper)   |
| 1,320–1,330                  | Quartz (99), K-feldspar (1), dolomite/calcite/kaolinite (<1)                        | Do.                       |
| 1,570–1,580                  | Quartz (98), dolomite (1), K-feldspar (1), kaolinite (<1)                           | Do.                       |
| 1,670–1,680                  | Quartz (95), K-feldspar (4), dolomite (1), kaolinite (<1)                           | Supai Formation (Middle?) |
| 1,820–1,830                  | Quartz (93), K-feldspar (4), dolomite (2), kaolinite/illite (1)                     | Do.                       |
| 1,920–1,930                  | Quartz (95), K-feldspar (3), dolomite (1), kaolinite/illite (1)                     | Do.                       |
| 2,070-2,080                  | Quartz (96), dolomite (2), K-feldspar (1), kaolinite/illite (1)                     | Do.                       |
| 2,220–2,230                  | Quartz (96), dolomite (3), K-feldspar (1)                                           | Do.                       |
| 2,270–2,280                  | Quartz (95), dolomite (3), K-feldspar (2), kaolinite (<1)                           | Supai Formation (Lower?)  |

| Depth interval<br>below land<br>surface, in feet | Bulk mineralogy                                                                   | Formation                                 |
|--------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|
|                                                  | Continental-1                                                                     |                                           |
| 240-250                                          | Quartz (73), K-feldspar (26), dolomite (1), kaolinite (<1)                        | Kaibab Formation (Fossil Mountain Member) |
| 350-360                                          | Quartz (71), dolomite (19), K-feldspar (9), kaolinite/calcite (1)                 | Do.                                       |
| 400-410                                          | Quartz (about 100), dolomite/kaolinite (<1)                                       | Coconino Sandstone                        |
| 470–480                                          | Quartz (95), dolomite (4), K-feldspar (1), kaolinite (<1)                         | Do.                                       |
| 870-880                                          | Quartz (92), K-feldspar (6), dolomite (1), kaolinite (<1)                         | Do.                                       |
| 1,210–1,220                                      | Quartz (about 100), kaolinite (<1)                                                | Schnebly Hill Formation                   |
| 1,300–1,310                                      | Quartz (95), K-feldspar (3), dolomite (2), calcite/kaolinite (<1)                 | Do.                                       |
| 1,370–1,380                                      | Quartz (91), calcite (6), dolomite (2), K-feldspar (1), kaolinite (<1)            | Supai Formation (Upper)                   |
| 1,430–1,440                                      | Quartz (97), calcite (1.5), dolomite (1.5)                                        | Do.                                       |
| 1,510–1,520                                      | Quartz (92), calcite (5), dolomite (2), K-feldspar (1), kaolinite (<1)            | Do.                                       |
| 1,590–1,600                                      | Quartz (97), calcite (2), dolomite/K-feldspar/kaolinite (<1)                      | Do.                                       |
| 1,620–1,630                                      | Quartz (94), calcite (3), K-feldspar (1), dolomite (1), kaolinite (<1)            | Supai Formation (Middle?)                 |
|                                                  | Continental-2                                                                     |                                           |
| 80–90                                            | Quartz (77), dolomite (8), plagioclase 7), calcite (4), K-feldspar (3), kaolinite | /illite (<1) Alluvium                     |
| 200-210                                          | Quartz (84), dolomite (16)                                                        | Kaibab Formation (Harrisburg Member)      |
| 360-370                                          | Quartz (73), dolomite (26), K-feldspar (1), kaolinite (<1)                        | Kaibab Formation (Fossil Mountain Member) |
| 500-510                                          | Quartz (94), dolomite (6), kaolinite (<1)                                         | Toroweap Formation                        |
| 610–620                                          | Quartz (100)                                                                      | Coconino Sandstone                        |
| 860-870                                          | Quartz (99), calcite (1), kaolinite (<1)                                          | Do.                                       |
| 1,060–1,070                                      | Quartz (94), calcite (5), kaolinite (<1)                                          | Schnebly Hill Formation                   |
| 1,130–1,140                                      | Quartz (97), K-feldspar (2), dolomite (1), calcite (<1)                           | Do.                                       |
| 1,410–1,420                                      | Quartz (92), K-feldspar (5), calcite (2), dolomite (1), kaolinite (<1)            | Do.                                       |
| 1,490–1,500                                      | Quartz (93), calcite (3), K-feldspar (2), dolomite (1), kaolinite (<1)            | Supai Formation (Upper)                   |
| 1,560–1,570                                      | Quartz (98), calcite (2), kaolinite (<1)                                          | Do.                                       |
| 1,770–1,780                                      | Quartz (91), K-feldspar (6), calcite (2), dolomite (1), kaolinite (<1)            | Supai Formation (Middle?)                 |
| 1,940–1,950                                      | Quartz (98), calcite (2), dolomite (<1)                                           | Do.                                       |
| 2,060-2,070                                      | Quartz (95), calcite (4), K-feldspar (1)                                          | Do.                                       |
| 2,130–2,140                                      | Quartz (78), K-feldspar (13), calcite (9), dolomite/kaolinite (<1)                | Supai Formation (Lower?)                  |

X-ray diffraction mineralogy for selected wells that discharge water from the regional aquifer, Flagstaff, Arizona—Continued

<sup>1</sup>Predominantly quartz.

#### PREPARED IN COOPERATION WITH THE CITY OF FLAGSTAFF



# GEOLOGY, GEOLOGIC STRUCTURE, LOCATIONS OF WELLS AND SPRINGS, AND CARBON-14 AGES OF GROUND WATER NEAR FLAGSTAFF, ARIZONA

### HYDROGEOLOGY OF THE REGIONAL AQUIFER NEAR FLAGSTAFF, ARIZONA By Donald J. Bills, Margot Truini, Marilyn E. Flynn, Herbert A. Pierce, Rufus D. Catchings, and Michael J. Rymer 2000

### U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY



# POTENTIOMETRIC SURFACE OF THE REGIONAL AQUIFER (1994–97), GEOLOGIC STRUCTURE, AND SELECTED WELL AND SPRING DATA NEAR FLAGSTAFF, ARIZONA HYDROGEOLOGY OF THE REGIONAL AQUIFER NEAR FLAGSTAFF, ARIZONA

By Donald J. Bills, Margot Truini, Marilyn E. Flynn, Herbert A. Pierce, Rufus D. Catchings, and Michael J. Rymer 2000



#### WATER-RESOURCES INVESTIGATIONS REPORT 00-4122 Hydrogeology of the regional aquifer near Flagstaff, Arizona, 1994–97—Plate 2

Donald J. Bills, Margot Truini, Marilyn E. Flynn, Herbert A. Pierce, Rufus D. Catchings, and Michael J. Rymer



PREPARED IN COOPERATION WITH THE



## GEOLOGIC SECTIONS NEAR FLAGSTAFF, ARIZONA HYDROGEOLOGY OF THE REGIONAL AQUIFER NEAR FLAGSTAFF, ARIZONA By Donald J. Bills, Margot Truini, Marilyn E. Flynn, Herbert A. Pierce, Rufus D. Catchings, and Michael J. Rymer 2000

# PREPARED IN COOPERATION WITH THE CITY OF FLAGSTAFF

#### Water-level data for wells near Flagstaff, Arizona [Wells are in order by well-reference number. Dashes indicate no data]

|                             |                         |                                    |                                            |                             | Water level                             |                      |                              |                          |                                  |                                              |                             | Water level                             |                      |                              |                       |                                   |                                              |                             | Water level                             |                        |
|-----------------------------|-------------------------|------------------------------------|--------------------------------------------|-----------------------------|-----------------------------------------|----------------------|------------------------------|--------------------------|----------------------------------|----------------------------------------------|-----------------------------|-----------------------------------------|----------------------|------------------------------|-----------------------|-----------------------------------|----------------------------------------------|-----------------------------|-----------------------------------------|------------------------|
| Well-<br>referenc<br>number | e Well name<br>or owner | Site identifier                    | Latitude Longitude                         | Date of<br>measure-<br>ment | Depth below<br>land surface,<br>in feet | Altitude,<br>in feet | Well-<br>reference<br>number | Well name<br>or owner    | Site identifier                  | Latitude Longitude                           | Date of<br>measure-<br>ment | Depth below<br>land surface,<br>in feet | Altitude,<br>in feet | Well-<br>reference<br>number | Well name<br>or owner | Site identifier                   | Latitude Longitude                           | Date of<br>measure-<br>ment | Depth below<br>land surface,<br>in feet | Altitude,<br>' in feet |
| 1                           | Pine Flats              | (A-19-06)W27aaa                    | 35°00'35" 111°44'18"                       | 07-15-75                    | 9.0                                     | 5,531                | 42 F                         | FH-3                     | (A-20-07)19aba                   | 35°06'26" 111°41'26"                         | 08-30-87                    | 863.0                                   | 6,037                | 82                           | Hidden Hollow         | (A-21-07)19aca                    | 35°11'30" 111°41'16"                         | 01-14-77                    | 1,320.0                                 | 5,750                  |
| Do.                         | Do                      | do                                 | do                                         | 04-11-94                    | 6.6                                     | 5,533                | Do.                          | Do                       | do                               | do                                           | 11-01-96                    | 875.0                                   | 6,025                | 83                           | Ponderosa Paper-1     | (A-21-07)22aad                    | 35°11'35" 111°37'50"                         | 06-25-66                    | 1,273.0                                 | 5,582                  |
| 2                           | Pine Grove              | (A-19-09)17dcd                     | 35°01'24" 111°27'35"                       | 12-11-67                    | 1,320.2                                 | 5,637                | 43 V                         | Whitley-1                | (A-20-08)18cac1                  | 35°06'48" 111°35'27"                         | 07-23-97                    | 516.0                                   | 6,209                | 84                           | Henden                | (A-21-06)23aad                    | 35°11'35" 111°43'10"                         | 09-06-95                    | 1,440.0                                 | 5,780                  |
| Do.                         | Do                      | do                                 | do                                         | 06-05-95                    | 1,416.0                                 | 5,541                | 44 V                         | Whitley-2                | (A-20-08)18cac2                  | 35°06'50" 111°35'35"                         | 04-28-92                    | 620.0                                   | 6,200                | 85                           | Foxglenn-1            | (A-21-07)24aad                    | 35°11'37" 111°35'48"                         | 12-21-96                    | 1,319.0                                 | 5,456                  |
| 3                           | Oil Discovery 1         | (A-19-06)17dac                     | 35°01'47" 111°46'32"                       | 11-05-74                    | Dry                                     |                      | 45 L                         | _M-2                     | (A-20-08)18bcc                   | 35°07'00" 111°35'47"                         | 12-01-86                    | 477.4                                   | 6,355                | 86                           | Fried                 | (A-21-06)22bab                    | 35°11'40" 111°44'55"                         | 11-14-92                    | Dry                                     |                        |
| 4<br>D-                     | ADO1-89A                | (A-19-06) W 14bab                  | 35°02'00" 111°43'55"                       | 05-20-80                    | 826.8                                   | 5,663                | Do.                          | Do                       | do                               | do                                           | 11-01-94                    | 542.0                                   | 6,290                | 8/                           | Porter                | (A-21-09)15dda                    | 35°11'55" 111°25'05"                         | 01-01-65                    | 1,215.0                                 | 5,050                  |
| D0.                         |                         | 0D                                 | d0<br>25°02'05" 111°22'50"                 | 04-07-94                    | 819.0                                   | 5,6/1                | 40 L                         | _IVI-1                   | (A-20-08)18000                   | 35°0/16° 111°35'44°                          | 11 01 05                    | 591.8                                   | 6,248                | 88                           |                       | (A-21-09)14acc                    | 35°12'10" 111°24'30"<br>25°12'15" 111°24'30" | 06-24-66                    | 1,205.0                                 | 5,065                  |
| 5                           | Ederal 1                | (A-19-08)03ddd1<br>(A-19-07)01ddd1 | 35°03'06" 111°35'55"                       | 06 02 80                    | 141.8<br>365.7                          | 6 800                | D0.                          | M 2                      | (A 20.07)12ddb                   | 25°07'26" 111°26'02"                         | 07 01 87                    | 597.0<br>761.2                          | 6,243                | - 69<br>Do                   |                       | (A-21-09)17acc                    | 33 12 13 111 27 40                           | 08-08-79                    | 1,323.0                                 | 5,117                  |
| Do                          |                         | do                                 | do                                         | 08-17-95                    | 365.6                                   | 6 809                |                              | Do                       | (A-20-07)12000                   | do                                           | 10-01-07                    | 701.2                                   | 6.082                | 90<br>90                     | Continental-2         | $(A_2 2 1_0 8) 17 bca2$           | 35°12'23" 111°34'28"                         | 02-22-97                    | 1,314.1                                 | 5 446                  |
| D0.<br>7                    | Walter                  | (A-19-08)05add                     | 35°03'30" 111°33'50"                       | 09-15-79                    | 31.0                                    | 6 9 2 9              | 48 V                         | D0<br>//М-9              | (A-20-06)11bdc                   | 35°07'45" 111°43'56"                         | 11-07-85                    | 982.0                                   | 6.108                | 91                           | Continental-2         | (A-21-08)17bca1                   | 35°12'24" 111°34'27"                         | 10-21-96                    | $^{1}1,500.0$                           | 5,740                  |
| 8                           | Tillev                  | (A-19-08)04bbd                     | 35°03'43" 111°33'37"                       | 10-27-78                    | 19.5                                    | 6,920                |                              | Do                       | do                               | do                                           | 06-01-95                    | 972.0                                   | 6 1 1 8              | 92                           | NAD-1                 | (A-21-05)11cbc                    | 35°12'45" 111°50'30"                         | 08-28-50                    | 1,273.0                                 | 5,200                  |
| 9                           | Henson                  | (A-19-08)04bbb                     | 35°03'50" 111°33'35"                       | 07-30-79                    | 25.0                                    | 6,955                | 49 V                         | VM-8                     | (A-20-06)11bdd                   | 35°07'50" 111°43'50"                         | 07-14-82                    | 910.0                                   | 6.155                | Do.                          | Do                    | (11 21 00)11000                   | do                                           | 09-10-95                    | 1.303.1                                 | 5,737                  |
| 10                          | LMEX-2                  | (A-20-08)33cdb                     | 35°04'05" 111°33'20"                       | 04-05-94                    | 407.6                                   | 6,532                | 50 F                         | Roaldstad                | (A-20-07)07adb                   | 35°07'55" 111°41'20"                         | 06-07-60                    | 949.0                                   |                      | 93                           | Burns                 | (A-21-06)10daa                    | 35°13'00" 111°44'15"                         | 05-26-87                    | <sup>2</sup> 1,275.0                    |                        |
| 11                          | LMEX-3                  | (A-20-08)32cab1                    | 35°04'15" 111°34'25"                       | 11-01-94                    | 13.0                                    | 6,867                | 51 V                         | VM-11                    | (A-20-06)11baa                   | 35°08'05" 111°43'50"                         | 08-18-97                    | 1,103.0                                 | 6,067                | 94                           | BBDP-Cosnino          | (A-21-09)08bcc                    | 35°13'05" 111°28'10"                         | 07-18-90                    | 1,338.0                                 | 5,112                  |
| 12                          | TH-4                    | (A-20-07)35bac                     | 35°04'33" 111°37'34"                       | 08-17-95                    | 545.3                                   | 6,330                | 52 V                         | VM-7                     | (A-20-06)11bab                   | 35°08'08" 111°44'01"                         | 02-01-95                    | 1,110.0                                 | 6,061                | Do.                          | Do                    | do                                | do                                           | 03-12-97                    | 1,333.0                                 | 5,117                  |
| 13                          | LM-9                    | (A-20-08)30cda                     | 35°04'51" 111°35'25"                       | 08-01-94                    | 243.0                                   | 6,632                | 53 7                         | Fyrrell                  | (A-20-07)07aaa2                  | 35°08'10" 111°41'10"                         | 10-19-92                    | 1,063.0                                 | 5,907                | 95                           | Ritland               | (A-21-07)09acc                    | 35°13'05" 111°39'25"                         | 02-09-91                    | 1,516.0                                 | 5,494                  |
| 14                          | TH-3                    | (A-20-08)30cdd1                    | 35°04"50" 111°35'25"                       | 04-05-94                    | 219.6                                   | 6,650                | 54 H                         | Kimmerly                 | (A-20-07)07aaa1                  | 35°08'10" 111°41'10"                         | 05-21-85                    | 941.0                                   | 6,039                | 96                           | Wilbur                | (A-21-09)10bbd                    | 35°13'20" 111°26'00"                         | 07-30-66                    | 1,227.0                                 | 5,063                  |
| 15                          | LMEX-4                  | (A-20-07)25dcb1                    | 35°04'55' 111°36'15"                       | 08-17-95                    | 125.4                                   | 6,715                | 55 H                         | Heckathorne              | (A-20-07)12bba                   | 35°08'10" 111°36'40"                         | 06-29-65                    | 900.0                                   | 5,940                | 97                           | Pugh                  | (A-21-07)09bac                    | 35°13'22" 111°39'37"                         | 06-30-89                    | 1,530.0                                 | 5,570                  |
| 16                          | LM-7                    | (A-20-08)27caa                     | 35°05'07" 111°32'10"                       | 03-01-89                    | 1,119.0                                 | 5,676                | 56 N                         | North Ranch              | (A-20-07)02cca                   | 35°08'25" 111°37'40"                         | 09-11-87                    | 900.0                                   | 5,955                | Do.                          | Do                    | do                                | do                                           | 08-09-95                    | 1,505.2                                 | 5,595                  |
| Do.                         | Do                      | do                                 | do                                         | 08-01-94                    | 1,138.5                                 | 5,656                | Do.                          | Do                       | do                               | do                                           | 10-23-96                    | 817.8                                   | 6,037                | 98                           | Foster                | (A-21-09)11bbb                    | 35°13'25" 111°25'00"                         | 04-09-90                    | 1,137.0                                 | 5,068                  |
| 17                          | Old LM-9                | (A-20-08)28cba                     | 35°05'10" 111°33'25"                       | 12-05-89                    | 640.0                                   | 6,220                | 57 A                         | Airport Well             | (A-20-07)04dac                   | 35°08'28" 111°39'15'                         | 11-08-95                    | 830.3                                   | 6,130                | 99                           | BBDP-Flowers          | (A-21-09)05ddd                    | 35°13'30" 111°27'15"                         | 07-21-75                    | 1,270.0                                 | 5,095                  |
| Do.                         | Do                      | do                                 | do                                         | 04-05-94                    | 639.5                                   | 6,220                | 58 V                         | VM-10                    | (A-20-06)02bcb                   | 35°08'43" 111°44'17"                         | 04-02-96                    | 1,139.0                                 | 6,091                | Do.                          | Do                    | do                                | do                                           | 05-01-95                    | 1,269.0                                 | 5,096                  |
| 18                          | Cook-2                  | (A-20-08)30cba2                    | 35°05'10" 111°35'40"                       | 04-13-95                    | 127.1                                   | 6,683                | 59 V                         | VM-6                     | (A-20-06)02bdb                   | 35°08'49" 111°44'04"                         | 05-01-87                    | 1,132.0                                 | 6,069                | 100                          | Crockett              | (A-21-05)01acc3                   | 35°13'55" 111°48'50"                         | 04-20-94                    | 97.2                                    | 7,037                  |
| 19                          | Mountainaire            | (A-20-07)28bcc                     | 35°05'11" 111°40'00"                       | 03-30-78                    | 791.0                                   | 5,994                | Do.                          | Do                       | do                               | do                                           | 04-19-94                    | 1,121.0                                 | 6,080                | 101                          | BBDP-MVR-1            | (A-21-09)06baa                    | 35°14'16" 111°28'50"<br>35°14'22" 111°27'54" | 08-08-95                    | 1,264.2                                 | 5,140                  |
| 20                          | Kachina-2               | (A-20-07)30bdb                     | 35°05'16" 111°41'50"                       | 04-14-94                    | 655.3                                   | 6,030                | 60 5                         | Skunk Canyon             | (A-20-07)03aca                   | 35°08'48" 111°38'17"                         | 10-31-96                    | 897.6                                   | 6,017                | 102                          | Mitchell              | (A - 22 - 07)3400a                | 35°15'10" 111°30'35"                         | 09-23-97                    | 1,920.0                                 | 5,290                  |
| 21                          | Wahlers                 | (A-20-08)30bdb                     | 35°05'20" 111°35'30"                       | 06-12-85                    | 120.0                                   | 6,700                | 61 V                         | VM-5                     | (A-20-06)02bbb                   | 35°08'55" 111°44'15"                         | 12-08-88                    | 1,108.7                                 | 6,077                | 103                          | FPNG-6                | (A-22-06)35aac<br>(A-22-05)26adc2 | 35°15'35" 111°49'40"                         | 08-03-53                    | 2 010 0                                 | 5 220                  |
| 22<br>D-                    | Bathen                  | (A-20-08)30abc                     | 35°05'30" 111°35'10"                       | 09-06-82                    | 150.0                                   | 6,670                | Do.                          | Do                       | do                               | do                                           | 11-01-95                    | 1,119.0                                 | 6,067                | 105                          | EPNG-5                | (A-22-05)26acd                    | 35°15'35" 111°49'50"                         | 07-01-53                    | 2,010.0                                 | 5,220                  |
| D0.                         |                         |                                    | d0<br>25°05'22" 111°24'42"                 | 06-07-95                    | 330.0                                   | 6,490                | 62 V                         | /VIVI-4                  | (A-21-06)35ccc                   | 35°09'05" 111°44'08"                         | 02-01-96                    | 1,228.0                                 | 5,938                | 105                          | Koch Field            | (A-22-08)27caa                    | 35°15'40" 111°32'05'                         | 05-01-94                    | 1,496.0                                 | 5,129                  |
| 23                          | Kachina 1               | (A-20-08)29000                     | 35 03 52 111 54 45<br>25°05'22" 111°42'05" | 04-11-65                    | 200.0                                   | 6,003                | 03 V                         |                          | (A-21-06)34cca                   | 35°0910 111°4305<br>25°00'16" 111°44'08"     | 02 01 72                    | Dry                                     | 5 021                | 107                          | US Grisp              | (A-22-09)29baa                    | 35°16'00" 111°27'50"                         | 12-17-73                    | 1.383.0                                 | 5.007                  |
| 24                          | Carrison                | (A-20-07)30000                     | 35°05'35" 111°35'15"                       | 11 11 72                    | 260.0                                   | 6,540                |                              | Do                       | (A-21-00)55000                   | 33 09 10 111 44 08                           | 02-01-72                    | 1,240.0                                 | 5,921                | 108                          | Fort Valley           | (A-22-06)26aaa                    | 35°16'06" 111°46'08'                         | 02-23-88                    | Dry                                     |                        |
| 25                          | L M-6                   | (A-20-08)27bbb                     | 35°05'37" 111°32'32"                       | 09-01-81                    | 990.0                                   | 5 820                | 65 V                         | D0                       | (A-21-06)35cba                   | 35°00'24" 111°44'01"                         | 12-08-88                    | 1,202.0                                 | 5,905                | 109                          | Cromer School         | (A-22-08)26bbb                    | 35°16'08" 111°31'18"                         | 01-22-86                    | 1,463.0                                 | 5,122                  |
| 20                          | LMEX-6                  | (A-20-07)23dca                     | 35°05'45" 111°37'10"                       | 08-17-95                    | 617.8                                   | 6 257                |                              | Do                       | do                               | do                                           | 04-19-94                    | 1,240.8                                 | 5 880                | 110                          | BBDP-Marijka          | (A-22-08)23abb                    | 35°16'56" 111°30'52"                         | 06-25-88                    | 1,500.0                                 | 5,075                  |
| 28                          | LMO-1                   | (A-20-08)20cca2                    | 35°05'50" 111°34'30"                       | 04-11-85                    | 235.0                                   | 6,585                | 66 V                         | VM-3                     | (A-21-06)35bcc                   | 35°09'35" 111°44'10"                         | 11-01-95                    | 1,234.0                                 | 5,896                | Do.                          | Do                    | do                                | do                                           | 05-01-94                    | 1,502.0                                 | 5,073                  |
| 29                          | LM-8                    | (A-20-08)20cca                     | 35°05'47" 111°34'30"                       | 02-01-88                    | 313.3                                   | 6,506                | 67 N                         | Vitn Dell-1              | (A-21-07)32bbc1                  | 35°09'46" 111°40'53"                         | 08-09-95                    | 1,023.5                                 | 5,886                | 111                          | BBDP-Sunset           | (A-22-08)23aab                    | 35°17'00" 111°30'35"                         | 12-05-86                    | 1,507.0                                 | 5,063                  |
| Do.                         | Do                      | do                                 | do                                         | 02-01-95                    | 394.0                                   | 6,425                | 68 N                         | Vitn Dell-2              | (A-21-07)32bbc2                  | 35°09'48" 111°40'52"                         | 05-22-75                    | 975.0                                   | 5,925                | Do.                          | Do                    | do                                | do                                           | 05-01-94                    | 1,507.0                                 | 5,063                  |
| 30                          | Kachina-3               | (A-20-07)20cca                     | 35°05'47" 111°40'57"                       | 05-12-95                    | 694.3                                   | 6,021                | 69 k                         | Kohner                   | (A-21-07)34baa                   | 35°09'50" 111°38'20"                         | 04-12-88                    | 1,138.0                                 | 5,797                | 112                          | AT&T                  | (A-22-08)16dad                    | 35°17'20" 111°32'35"                         | 06-12-63                    | 1,635.0                                 | 5,115                  |
| 31                          | Suiter                  | (A-20-08)19dda                     | 35°05'50" 111°34'50"                       | 08-09-95                    | 379.2                                   | 6,441                | Do.                          | Do                       | do                               | do                                           | 08-16-95                    | 1,150.1                                 | 5,784                | 113                          | IB-9                  | (A-23-07)33aab2                   | 35°20'27" 111°39'00"                         | 09-15-73                    | 143.2                                   | 9,637                  |
| 32                          | LM-5                    | (A-20-08)20dbc                     | 35°05'53" 111°34'07"                       | 10-01-88                    | 301.9                                   | 6,515                | 70 N                         | NPS Walnut Canyon        | (A-21-08)26dab                   | 35°10'25" 111°30'37"                         | 08-18-70                    | 1,536.0                                 | 5,174                | 114                          | NPS Sunset Ctr-2      | (A-23-08)21aad                    | 35°22'05" 111°32'35"                         | 01-31-79                    | 1,960.3                                 | 5,010                  |
| 33                          | Schnieder               | (A-20-08)19dac                     | 35°05'55" 111°34'59"                       | 04-14-78                    | 273.0                                   | 6,522                | Do.                          | Do                       | do                               | do                                           | 08-13-97                    | 1,525.2                                 | 5,185                | Do.                          | Do                    | do                                | do                                           | 10-02-98                    | 1,962.6                                 | 5,007                  |
| 34                          | FH-1                    | (A-20-07)19cbb2                    | 35°05'58" 111°42'05"                       | 09-01-87                    | 697.0                                   | 5,993                | 71 F                         | Flag Ranch               | (A-21-06)25bcd                   | 35°10'25" 111°42'52"                         | 10-20-85                    | 1,122.0                                 | 5,928                | 115                          | AZWC-5                | (A-18-07)15ccc2                   | 34°56'16" 111°38'54"                         | 01-09-81                    | 706.9                                   | 5,728                  |
| Do.                         | Do                      | do                                 | do                                         | 04-11-95                    | 720.4                                   | 5,970                | Do.                          | Do                       | do                               | do                                           | 08-11-95                    | 1,182.9                                 | 5,867                | 116                          | Bradshaw Fee-1        | (A-18-04)34abb                    | 34°54'14" 111°55'32"                         | 08-22-74                    | 329.2                                   | 4,151                  |
| 35                          | FH Test Well            | (A-20-07)19cbb1                    | 35°06'00" 111°42'05"                       | 08-12-85                    | 635.0                                   | 6,055                | 72 F                         | Purl                     | (A-21-07)25bbd                   | 35°10'43" 111°36'37"                         | 11-17-96                    | 1,173.0                                 | 5,617                | 117                          | Drye                  | (A-21-11)19bcb                    | 35°11'45" 111°16'10"                         | 04-04-78                    | 796.0                                   | 4,974                  |
| 36                          | LMO-3                   | (A-20-08)20acd                     | 35°06'10" 111°34'10"                       | 12-10-85                    | 562.0                                   | 6,233                | 73 L                         | _A-1                     | (A-21-07)26abd                   | 35°10'45" 111°37'05"                         | 10-05-84                    | 1,168.0                                 | 5,627                | 118                          | Moody                 | (A-21-10)16bdc                    | 35°12'30" 111°20'15"                         | 11-30-78                    | 990.0                                   | 5,015                  |
| 37                          | FH-4                    | (A-20-06)24adb                     | 35°06'10" 111°42'25"                       | 06-30-87                    | 678.0                                   | 6,082                | Do.                          | Do                       | do                               | do                                           | 11-13-95                    | 1,151.4                                 | 5,644                | 119                          |                       | (A-22-10)15bdc                    | 35°17'40" 111°19'10"                         | 01-01-75                    | 1,112.0                                 | 4,593                  |
| Do.                         | Do                      | do                                 | do                                         | 04-11-95                    | 717.5                                   | 6,042                | 74 L                         | _A-2                     | (A-21-07)26abb                   | 35°10'53" 111°37'12"                         | 07-20-95                    | 1,150.0                                 | 5,650                | 120                          |                       | (A-22-11)19000                    | 35°31'10" 111°10'20"                         | 10-20-34                    | 781.0                                   | 4,390                  |
| 38                          | Potter-1                | (A-20-05)24bbd                     | 35°06'16" 111°49'24"                       | 09-09-66                    | 1,096.5                                 | 6,144                | 75 F                         | Potter                   | (A-21-07)24ccd                   | 35°10'55" 111°36'30"                         | 08-09-79                    | 32.4                                    | 6,748                | 121<br>Do                    |                       | (A-23-10)30000<br>do              | 33 31 10 111-22 20"<br>do                    | 10-27-38                    | 781.0<br>782.6                          | 4,149<br>1 150         |
| 39                          | iviorrison              | (A-20-06)19bbb                     | 55°06'25" 111°48'25"                       | 07-14-81                    | 83.0                                    | 7,080                | /6 L                         | _A-3                     | $(A-21-07)^{23}dcc$              | 35°10'58" 111°37'17"                         | 11-13-95                    | 1,218.2                                 | 5,627                | 122                          | NPS-Citadel           | (A-25-09)06ccd                    | 35°34'10" 111°28'45"                         | 01-23-67                    | 1 582 9                                 | 3 798                  |
| Do.                         | D0                      |                                    | do                                         | 02.01.99                    | 82.2                                    | /,081                |                              |                          | $(A-21-09)^2$ 3cba               | 35°11'15" 111°24'55"<br>25°11'20" 111°29'00" | 01-03-83                    | 1,206.0                                 | 5,004                | Do                           | Do                    | do                                | do                                           | 02-21-97                    | 1,587.2                                 | 3,794                  |
| 40<br>Da                    | LIVI-4                  | (A-20-08)19aba                     | 35°00 25" 111°35'05"                       | 02-01-88                    | 347.6                                   | 0,401<br>6 202       |                              | NU UE FIAG IVIVV-1       | (A-21-07)/23 cac                 | 35°11'20" 111°38'00"<br>25°11'27" 111°42'02" | 04-29-96                    | 44.0                                    | 0,/31                | 123                          | Oil test              | (A-22-10)03acd                    | 35°19'30" 111°18'45"                         | 10-05-66                    | 1,138.0                                 | 4,452                  |
| D0.<br>/1                   | D0<br>FH-5              | uo<br>(A_20_06)24abb               | uu                                         | 02-01-95                    | 417.0<br>703.0                          | 0,392<br>6.067       | /9 S                         | Saskalı rancı<br>Roirdan | (A-21-00)240C0<br>(A-21-07)20bdb | 35°11'27 111°43'03"<br>35°11'30" 111°40'40"  | 00-12-90                    | 1,390.0                                 | 5,820                | 124                          | Rhoten Spr.           | (A-23-10)01bbb                    | 35°25'05" 111°17'20"                         | 10-19-54                    | 740.0                                   | 4.283                  |
| 41<br>Do                    | Do                      | do                                 | do                                         | 04-11-95                    | 752.5                                   | 6.017                | 00 F                         | Ponderosa Paper-?        | (A-21-07)20000                   | 35°11'30" 111°37'50"                         | 10_10_67                    | 1,220.0                                 | 5 632                |                              |                       |                                   |                                              |                             |                                         | ,                      |
| D0.                         | D0                      |                                    |                                            | 0+11-75                     | 154.5                                   | 0,017                |                              | ondorosa i aper-z        | (A-21-07)22aud                   | 33 11 30 111 37 30                           | 10-10-07                    | 1,233.0                                 | 5,052                |                              |                       |                                   |                                              |                             |                                         |                        |

<sup>1</sup>Well caved in and collapsed before water level stabilized.

<sup>2</sup>Well obstructed.

#### gallons per day

### Hydrogeologic data for wells that discharge water from the regional aquifer, Flagstaff, Arizona

[Wells are in order by well-reference number. Dashes indicate no data. >, greater than. CS, Coconino Sandstone; SG, Supai Group; KF, Kaibab Formation; SH, Schnebly Hill Formation]

|       |      |                    |            |                |       |           |          |         |          | Transmissivity, in | Hydrologic conductivity, in |              |          |          | Specific     |              |                   |
|-------|------|--------------------|------------|----------------|-------|-----------|----------|---------|----------|--------------------|-----------------------------|--------------|----------|----------|--------------|--------------|-------------------|
| Well- | Cite |                    | Year       | Well yield, in | Draw- | Saturated | Screened | Pumping | Recovery | gallons per day    | gallons per day per foot    | Storativity, | Specific |          | capacity, in | Lithology of | Surface strike of |
|       | Site | Lotitudo Longitudo | <b>e</b> f | gollong nor    | down  | thickness | intoryal | noried  | noriod   | nor foot           | oguarad                     | dimon        | Specific | Deresity | gollong por  | opturated    | nrinoinal         |

| number    |                              | identifier                        | Ū                                            | test         | minute     | in feet       | in feet         | in feet    | in days      | in days | Drawdowi                 | Recovery  | Drawdown     | Recovery     | sionless     | yield  |               | minute per | zone             | structure                  |
|-----------|------------------------------|-----------------------------------|----------------------------------------------|--------------|------------|---------------|-----------------|------------|--------------|---------|--------------------------|-----------|--------------|--------------|--------------|--------|---------------|------------|------------------|----------------------------|
|           | <b>D</b> : 0                 |                                   | 2500412411 4440251251                        | 10/7         | 50.0       |               | 201             |            |              |         | Diawaowi                 | Thecovery | Diawdown     | Recovery     |              |        |               | foot       |                  |                            |
| 2<br>Do   | Pine Grove                   | (A-19-09)1/dcd                    | 35°01'24 " 111°2/'35"<br>do                  | 1967         | 50.0       |               | 391             | 261        |              |         |                          |           |              |              |              |        |               | 0.6        | SG<br>           |                            |
| 4         | ADOT-89A                     | (A-19-06)W14bab                   | 35°02'00" 111°43'55"                         | 1978         | 51.0       | 0             | 275             | 200        | 2.00         |         |                          |           |              |              |              |        |               |            | SG               |                            |
| 5         | LMEX-1 <sup>2</sup>          | (A-19-08)05ddd1                   | 35°03'05" 111°33'50"                         | 1992         | 330        | 83.0          | 1,008           | 889        | .50          | .50     | 2,500                    | 2,600     | 2.81         | 2.92         |              |        |               | 3.98       | CS, SG           |                            |
| 6         | Federal 1 <sup>2</sup>       | (A-19-07)01ddd1                   | 35°03'06" 111°35'55"                         | 1992         | 270        | 74.0          | 360             | 825        | .50          | .50     | 1,500                    | 1,800     | 4.62         | 5.54         |              |        |               | 3.65       | KF, CS, SG       |                            |
| 10        | LMEX-2 <sup>2</sup>          | (A-20-08)33cdb                    | 35°04'05" 111°33'20"                         | 1992         | 69.0       | 63.0          | 749             | 719        | .50          | .50     | 800                      | 700       | 1.11         | .97          |              |        |               | 1.10       | CS, SG           |                            |
| 11        | LMEX-3 <sup>2</sup>          | (A-20-08)32cab1                   | 35°04'15" 111°34'25"<br>35°04'51" 111°35'25" | 1992         | 320        | 270.0         | 1,141           | 934        | .50          | .50     | 600                      | 300       | .64          | .32          |              |        |               | 1.18       | CS, SG           | N.60°W.                    |
| 13        | TH-3 <sup>2</sup>            | (A-20-08)30cdd1                   | 35°04'50" 111°35'25"                         | 1991         | 420        | 56.0          | 1,284           | 45         | 10.0         | 10.0    | 3,350                    | 3,974     | 3.10         | .93<br>3.68  | 0.01 to 0.03 |        |               | .82        | KE CS SG         | N.54 W.                    |
| 15        | LMEX-4 <sup>2</sup>          | (A-20-07)25dcb1                   | 35°04'55" 111°36'15"                         | 1992         | 100        | 251.0         | 900             | 720        | .10          | .10     | 100                      | 100       | .14          | .14          |              |        |               | .40        | CS, SG           |                            |
| 20        | Kachina-2                    | (A-20-07)30bdb                    | 35°05'16" 111°41'50"                         | 1969         | 55.0       | 35.0          | 372             |            | .20          |         |                          |           |              |              |              |        |               | 1.60       | CS               |                            |
| 21        | Whalers                      | (A-20-08)30bdb                    | 35°05'20" 111°35'30"                         | 1985         | 15.0       | 60.0          | 85              | 100        |              |         |                          |           |              |              |              |        |               | .25        | KF, CS           |                            |
| 24        | Kachina-1                    | (A-20-07)30bbc                    | 35°05'33" 111°42'05"                         | 1978         | 34.0       | 20.0          | 452             | 210        | .08          |         |                          |           |              |              |              |        |               | 1.70       | CS,SG            |                            |
| 27        | LMEX-6 <sup>2</sup>          | $(A-20-07)^{23}$ dca              | 35°05'45" 111°37'10"<br>35°05'50" 111°37'30" | 1992         | 57.0       | 60.0<br>38.0  | 531             | 892<br>300 | .50          | .50     | 400                      | 500       | .75          | .94          |              |        |               | .95        | KE CS            |                            |
| 20        | LM-8 <sup>3</sup>            | (A-20-08)20cca                    | 35°05'47" 111°34'30"                         | 1992         | 1.700      | 285.0         | 914             | 700        | 90.0         | 90.0    | 26,000                   | 24,000    |              | 24.5         | .05          |        | 0.095 to 0.14 | 6.00       | CS. SG           | N.13°W.                    |
| 31        | Suiter                       | (A-20-08)19dda                    | 35°05'50" 111°34'50"                         | 1990         | 10.0       | 40.0          | 113             |            |              |         |                          |           |              |              |              |        |               | .25        | CS               |                            |
| 32        | LM-5 <sup>3</sup>            | (A-20-08)20dbc                    | 35°05'53" 111°34'07"                         | 1992         | 485        | 178.0         | 929             | 675        | 90.0         | 90.0    | 3,000                    | 3,000     |              | 4.00         |              |        |               | 2.70       | CS, SG           | N.76°W.                    |
| 34        | FH-1 <sup>4</sup>            | (A-20-07)19cbb2                   | 35°05'58" 111°42'05"                         | 1986         | 110        | 205.0         | 555             | 525        | 9.70         | 9.70    | <sup>5</sup> 2,904       | 63,630    | 5.23         | 6.54         | .00023       | 0.0002 |               | .54        | SH, SG           | N.53°W.                    |
| 37        | H-4                          | (A-20-06)24adb                    | 35°06'10" 111°42'25"                         | 1987         | 152        | 234.0         | 577             | 545        | 1.50         |         | '747<br>20.000           |           | 1.29         |              |              |        |               | .65        | CS, SH, SG       | N.53°W.                    |
| 40        | EIVI-4                       | (A-20-06)19aba                    | 35°06'25" 111°42'03"                         | 1992         | 220        | 288.0         | 937<br>647      | 480<br>625 | 90.0<br>4.00 | 90.0    | 20,000                   | 1 930     | 3 30         | 8.30<br>3.04 |              |        |               | 2.20       | CS, SG<br>CS, SG | N.08 W.; N.42 W.<br>N 53°W |
| 42        | FH-3                         | (A-20-07)19aba                    | 35°06'26" 111°41'26"                         | 1987         | 90.0       | 245.0         | 547             | 520        | 3.10         |         | <sup>7</sup> 456         |           | .83          |              |              |        |               | .37        | CS, SH, SG       |                            |
| 44        | Whitley-2                    | (A-20-08)18cac2                   | 35°06'50" 111°35'35"                         | 1992         | 35.0       | 20.0          | 590             | 640        |              |         |                          |           |              |              |              |        |               | 1.80       | CS               |                            |
| 45        | LM-2 <sup>3</sup>            | (A-20-08)18bcc                    | 35°07'00" 111°35'47"                         | 1992         | 430        | 346.0         | 523             | 512        | 90.0         | 90.0    |                          | 4,000     |              | 6.00         |              |        |               | 1.24       | CS               | N.68°W.                    |
| 46        | LM-1                         | (A-20-08)18bbb                    | 35°07'16" 111°35'44"                         | 1963         | 500        | 276           | 700             | 108        | 7.63         | 15.4    | <sup>7</sup> 1,386       |           | 1.98         | 2.77         |              |        |               | 1.81       | CS               | N.67°W.                    |
| Do.       | LM-1 redevelopment           | do                                | do                                           | 1996         | 300        | 267           | 540             | 439        | .5           | 1.04    |                          | 444.9     |              | .82          |              |        |               |            |                  |                            |
| 47        | LM-3                         | (A-20-07)12ddb<br>(A-20,06)11bda  | 35°07'36" 111°36'02"                         | 1966         | 167        | 211.0         | 281             | 317        | 1.50         | .90     | 1,000                    | 1,000     | 3.60         | 3.60         |              |        |               | .79        |                  | N.64°W.                    |
| 48<br>51  | VVIVI-9<br>\//M_11           | (A-20-06)11bdc<br>(A-20-06)11baa  | 35°07'45 111°43'50"<br>35°08'05" 111°43'50"  | 1980         | 077<br>701 | 471.0<br>240  | 838<br>844      | 010<br>702 | 4.07         | .10     | 2,201                    | 7 200     | 2.56         |              |              | 13     |               | 1.45       | KF, CS, SG       | N.24°W.<br>N 24°W          |
| 52        | WM-7 <sup>1</sup>            | (A-20-06)11baa                    | 35°08'08" 111°44'01"                         | 1998         | 727        | 308.5         | 680             | 640        | 18.2         | 1.80    | 18,300                   | 35.000    | 28.6         | 4.87<br>54.7 |              | .13    | .20 to .50    | 4.60       | CS, SG           | N.24°W.                    |
| 53        | Tyrrell                      | (A-20-07)07aaa2                   | 35°08'10" 111°41'10"                         | 1993         | 10.0       | 12.0          | 212             |            |              |         |                          |           |              |              |              |        |               | .83        | CS               | N.50°W.                    |
| 56        | North Ranch                  | (A-20-07)02cca                    | 35°08'25" 111°37'40"                         | 1987         | 40.0       | 20.0          | 240             |            |              |         |                          |           |              |              |              |        |               | 2.00       | SG               | N.60°W.                    |
| 58        | WM-10 <sup>9</sup>           | (A-20-06)02bcb                    | 35°08'43" 111°44'17"                         | 1996         | 321        | 250.0         | 640             | 460        | 3.00         | .30     | 4,460                    | 4,013     | 6.97         | 6.27         |              | .08    |               | 1.28       | CS, SG           | N.24°W.                    |
| 59        | WM-6 <sup>1</sup>            | (A-20-06)02bdb                    | 35°08'47" 111°44'04"                         | 1972         | 560        | 365.5         | 584             | 600        | 208          | 150     | 8,400                    | 15,100    | 14.4         | 25.8         |              |        |               | 1.53       | CS               | N.24°W.; N.83°W.           |
| 60        | Skunk Canyon                 | (A-20-07)03aca                    | 35°08'48" 111°38'17"                         | 1996         | 150        | 669.0         | 884             | 800        | 1.00         | 1.00    | /237                     | 373       | .27          | .42          |              |        |               | .22        | CS, SH, SG       | N.56°W.; N.30°W.           |
| 61        | VVIM-5 <sup>1</sup>          | (A-20-06)02bbb                    | 35°08'55" 111°44'15"                         | 1972         | 400        | 82.2          | 500             | 550<br>204 | 24.0         | 114     | 5 700                    | 30,750    | 62.4         | 61.4         |              | .08    |               | 4.87       | CS               | N.83°W.; N.24°W.           |
| 64        | WM-2 <sup>1</sup>            | (A-21-06)35ccb                    | 35°09'16" 111°44'08"                         | 1972         | 430<br>295 | 285.0<br>64.8 | 375             | 304        | 195          | 150     | 18 150                   | 21,850    | 13.9<br>48.4 | 20.9<br>58 3 |              |        |               | 4 56       | CS<br>CS         | N.24 W.<br>N.24°W          |
| 65        | WM-1 <sup>1</sup>            | (A-21-06)35cba                    | 35°09'24" 111°44'01"                         | 1972         |            | 13.1          | 363             | 360        | 208          | 127     | 29,600                   | 28,700    | 81.5         | 79.1         |              | .08    |               |            | CS               | N.24°W.                    |
| 66        | WM-3 <sup>1</sup>            | (A-21-06)35bcc                    | 35°09'35" 111°44'10"                         | 1979         | 403        | 81.4          | 385             | 300        | 168          | 150     | 14,500                   | 20,000    | 37.7         | 51.9         |              |        |               | 4.95       | CS               | N.24°W.                    |
| 67        | Mtn Dell-1                   | (A-21-07)32bbc1                   | 35°09'46" 111°40'53"                         | 1976         | 206        | 200.0         | 215             | 1,050      | .004         | .03     |                          |           |              |              |              |        |               | 1.03       | CS, SG           | N.73°W.                    |
| 70        | NPS Walnut Canyon            | (A-21-08)26dab                    | 35°10'25" 111°30'37"                         | 1970         | 36.0       | 252.5         | 444             | 514        | .70          | .91     | <sup>7</sup> 204         |           | .46          |              |              |        |               | .14        | SG               |                            |
| 71        | Flag Ranch                   | (A-21-06)25bcd                    | 35°10'25" 111°42'52"                         | 1990         | 86.0       | 287.0         | 626             | 590        | 1.00         |         |                          |           |              |              |              |        |               | .30        | SG               | N.70°W.; N.63°W.           |
| 72        | Purl                         | (A-21-07)25bbd                    | 35°10'43" 111°36'37"                         | 1990         | 8.00       | 0             | 155             | 160        |              |         | 74 504                   |           |              |              |              |        |               |            | CS, SH, SG       | <br>NI 500334              |
| 73<br>77  | CV/WC                        | (A-21-07)20abd<br>(A-21-09)23cba  | 35°10'45 111°37'05<br>35°11'15" 111°24'55"   | 1975         | 7.00       | 30.1          | 522<br>69       | 274        | 4.84         | .98     | 4,504                    |           | 13.99        |              |              | .098   |               | 3.30       | SG               | N.59 <sup>-</sup> W.       |
| 79        | Saskan Ranch                 | (A-21-06)24bcb                    | 35°11'27" 111°43'03"                         | 1997         | 17.0       | 53.0          | 287             | 140        | 1.10         | .10     | 7444                     |           | 1.55         |              |              |        |               | .32        | SH. SG           |                            |
| 80        | Roirdan                      | (A-21-07)20bdb                    | 35°11'30" 111°40'40"                         | 1962         | 30.0       |               | 400             | 395        |              |         |                          |           |              |              |              |        |               |            | SG               |                            |
| 82        | Hidden Hollow                | (A-21-07)19aca                    | 35°11'30" 111°41'16"                         | 1977         | 10.0       |               | 231             | 231        |              |         |                          |           |              |              |              |        |               |            | SG               |                            |
| 84        | Henden                       | (A-21-06)23aad                    | 35°11'35" 111°43'10"                         | 1994         | 15.0       | 0             | 110             | 120        | 1.50         |         |                          |           |              |              |              |        |               |            | CS, SG           |                            |
| 85        | Foxglenn-1                   | (A-21-07)24aad                    | 35°11'37" 111°35'48"                         | 1997         | 450        | 168.0         | 691             | 1,135      | 3.05         | 3.45    | 2,536                    | 2,343     | 3.67         | 3.99         |              |        |               | 2.68       | SG               | N.8°W.; N.42°W.            |
| 88        |                              | (A-21-09)14acc                    | 35°12'10" 111°24'30"<br>25°12'15" 111°27'40" | 1966         | 7.50       | 8.80          | 512             | 120        | .09          | .02     | <sup>7</sup> 818<br>7142 |           | 1.30         |              |              |        |               | .85        | CS               |                            |
| 09<br>00  | Continental-2                | (A-21-09)17acc<br>(A-21-08)17bca2 | 35°12'13 111 2/40<br>35°12'23" 111°34'28"    | 1972         | 18.0       | 280.0         | 602             | 440        | .99          | 20.0    | <sup>7</sup> 2 231       | 2 246     | .20          | 3 25         |              |        |               | .12        | SG               | <br>N 6°W · N 56°W         |
| 92        | NAD-1                        | (A-21-05)11 cbc                   | 35°12'45" 111°50'30"                         | 1950         | 35.0       | 100.0         | 374             | 147        | 1.20         |         |                          |           |              |              |              |        |               | .35        | SG               | N.35°W.                    |
| 93        | Burns                        | (A-21-06)10daa                    | 35°13'00" 111°44'15"                         | 1988         | 5.00       | 347.0         | 425             | 155        | 1.00         |         |                          |           |              |              |              |        |               | .014       | CS, SG           |                            |
| 94        | BBDP-Cosnino                 | (A-21-09)08bcc                    | 35°13'05" 111°28'10"                         | 1973         | 28.5       | 184.0         | 367             | 208        | .53          |         | <sup>7</sup> 162         |           | .44          |              |              |        |               | .15        | SG               |                            |
| 96        | Wilbur                       | (A-21-09)10bbd                    | 35°13'20" 111°26'00"                         | 1966         | 7.00       |               | 111             | 1,038      |              |         |                          |           |              |              |              |        |               |            | SG               |                            |
| 97        | Pugh                         | (A-21-07)09bac                    | 35°13'22" 111°39'37"                         | 1993         | 18.0       | 30.0          | 70              | 1,360      | 2.00         |         |                          |           |              |              |              |        |               | .60        | SG               | N.27°W.                    |
| 98        | Foster                       | (A-21-09)11bbb                    | 35°13'25" 111°25'00"                         | 1990         | 8.00       |               | 263             | 200        |              |         |                          |           |              |              |              |        |               |            | CS, SG           |                            |
| 99<br>101 | BBDP-Flowers                 | (A-21-09)05000                    | 35°13'30' 111°27'15<br>35°14'16" 111°28'50"  | 1975         | 30.0       | 151.0         | 455             | 400        | 2.00         | 03      | 7202                     |           | 51           |              |              |        |               | 20         | SG               |                            |
| 101       | Mitchell                     | (A-22-08)35aac                    | 35°15'10" 111°30'35"                         | 1966         | 25.0       |               | <sup>2</sup> 93 | 1.457      | .21          | .05     |                          |           | .51          |              |              |        |               | .20        | CS. SG           |                            |
| 107       | US Grisp                     | (A-22-09)29baa                    | 35°16'00" 111°27'50"                         | 1959         | 4.00       |               | 64              | -,         |              |         |                          |           |              |              |              |        |               |            | SG               |                            |
| 109       | Cromer School                | (A-22-08)26bbb                    | 35°16'08" 111°31'18"                         | 1986         | 79.0       | 6.0           | 347             | 291        | .08          |         |                          |           |              |              |              |        |               | 13.0       | CS, SG           |                            |
| 110       | BBDP-Marijka                 | (A-22-08)23abb                    | 35°16'56" 111°30'52"                         | 1988         | 178        | 44.0          | 302             | 280        | 1.00         |         | <sup>7</sup> 5,897       |           | 19.5         |              |              |        |               | 4.05       | SG               |                            |
| 111       | BBDP-Sunset                  | (A-22-08)23aab                    | 35°17'00" 111°30'35"                         | 1991         | 40.0       |               | 215             | 70         | .75          |         |                          |           |              |              |              |        |               |            | SG               |                            |
| 112       |                              | (A-22-08)16dad                    | 35°17'20" 111°32'35"                         | 1963         | 12.0       | 15.0          | 120             | 90         | .12          |         |                          |           |              |              |              |        |               | .80        | SG               |                            |
| 114       | NPS Sunset $Ctr-2^{10}$      | (A-23-08)21aad                    | 35°22'05" 111°32'35"                         | 1979         | 21.0       | 2.02          | 256             |            | 3.04         | 3.16    | 4,710<br>710,277         | 4,635     | 18.4         | 18.1         |              | .008   |               | 10.4       | SG               |                            |
| 115       | Rradshaw Fee-1               | (A-10-07)130002<br>(A-18-04)34abb | 34 30 10 111°38'34"<br>34°54'14" 111°55'32"  | 1977<br>1071 | 90.U       | 1.9           | 541<br>77       | 3,113      | 2.10         | .08     | 19,377                   |           | 33.8         |              |              |        |               | 12.2       | SG               |                            |
| 117       | Drye                         | (A-21-11)19hch                    | 35°11'45" 111°16'10"                         | 1957         | 14.0       | 0             | 150             | 216        |              |         |                          |           |              |              |              |        |               |            | CS               |                            |
| 118       | Moody                        | (A-21-10)16bdc                    | 35°12'30" 111°20'15"                         | 1979         | 22.0       | 30.0          | 60              |            |              |         |                          |           |              |              |              |        |               | .73        | CS               |                            |
| 119       | Kuttkuhn                     | (A-22-10)15bdc                    | 35°17'40" 111°19'10"                         | 1973         | 6.00       |               | 128             | 1,170      |              |         |                          |           |              |              |              |        |               |            | CS, SG           |                            |
| 120       | Salt Well                    | (A-22-11)19ccc                    | 35°16'25" 111°16'20"                         | 1967         | 10.0       |               | 60              | 310        | .33          |         |                          |           |              |              |              |        |               |            | CS               |                            |
| 121       | NPS Wupatki HQ <sup>10</sup> | (A-25-10)30bdb                    | 35°31'10" 111°22'20"                         | 1972         | 50.0       | 45.0          | 123             | 96         | 1.0          |         | 1,269                    |           | 10.3         |              |              |        |               | 1.10       | SG               |                            |
| 122       | NPS-Citadel <sup>10</sup>    | (A-25-09)06ccd                    | 35°34'10" 111°28'45"                         | 1967         | 17.6       | 5.05          | 205             | 8.0        | 3.02         | .07     | 841                      |           | 28.5         | 6.2          |              |        |               | 3.48       | SG               |                            |

<sup>1</sup>Harshbarger and Associates and John Carollo Engineers (1972). <sup>4</sup>Manera Incorporated (1987). <sup>5</sup>Estimated. <sup>8</sup>No stable discharge. <sup>9</sup>Montgomery Watson (1996).



# WATER-LEVEL AND HYDROGEOLOGIC DATA FOR WELLS NEAR FLAGSTAFF, ARIZONA

# HYDROGEOLOGY OF THE REGIONAL AQUIFER NEAR FLAGSTAFF, ARIZONA

### By Donald J. Bills, Margot Truini, Marilyn E. Flynn, Herbert A. Pierce, Rufus D. Catchings, and Michael J. Rymer 2000