#### Association Analysis

#### Dr. Chris Carlson FHCRC

NIEHS January 31, 2006

#### Analyzing SNP Data

- Study Design
- · SNPs vs Haplotypes
- Regression Analysis
- Population Structure
- Multiple Testing
- Whole Genome Analysis

### Analyzing SNP Data

- Study Design
- · SNPs vs Haplotypes
- · Regression Analysis
- Population Structure
- Multiple Testing
- · Whole Genome Analysis

### Study Design

- Heritability
- · Prior hypotheses
- Target phenotype(s)
- Power
- Ethnicity
- Replication

#### Heritability

- · Is your favorite phenotype genetic?
- Heritability (h<sup>2</sup>) is the proportion of variance attributed to genetic factors
  - $h^2 \sim 100\%$ : ABO Blood type, CF
  - $h^2 > 80\%$ : Height, BMI, Autism
  - h<sup>2</sup> 50-80%: Smoking, Hypertension, Lipids
  - h² 20- 50%: Marriage, Suicide, Religiousness
  - h² ~ 0: ??

# **Prior Hypotheses**

- · There will always be too much data
- There will (almost) always be priors
   Favored SNPs
  - Favored Genes
- Make sure you've stated your priors (if any) explicitly BEFORE you look at the data



#### Data Analysis

- Study Design
- · SNPs vs Haplotypes
- · Regression Analysis
- Population Structure
- Multiple Testing
- Whole Genome Analysis

#### SNPs or Haplotypes

- There is no right answer: explore both
- The only thing that matters is the correlation between the assayed variable and the causal variable
- Sometimes the best assayed variable is a SNP, sometimes a haplotype



















# Exploring Candidate Genes: Regression Analysis

- Given
  - Height as "target" or "dependent" variable
  - Sex as "explanatory" or "independent" variable
- Fit regression model height = β\*sex + ε

#### **Regression Analysis**

- Given
  - Quantitative "target" or "dependent" variable y
  - Quantitative or binary "explanatory" or "independent" variables  $\boldsymbol{x}_{i}$
- · Fit regression model
  - $\mathbf{y} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_i \mathbf{x}_i + \varepsilon$

### **Regression Analysis**

- · Works best for normal y and x
- Fit regression model  $y = \beta_1 x_1 + \beta_2 x_2 + ... + \beta_i x_i + \varepsilon$
- Estimate errors on  $\beta\sp{'s}$
- Use t-statistic to evaluate significance of  $\beta {}^{\prime} s$
- · Use F-statistic to evaluate model overall

# **Regression Analysis**

| Call:<br>lm(formula = data<br>data\$PACKYRS<br>data\$SNP3 + d | \$TARGET ~ (data\$CURR_AGE + data\$CIGNOW +<br>+ data\$SNP1 + data\$SNP2 +<br>ata\$SNP4))                                |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Residuals:                                                    |                                                                                                                          |
| Min 1Q                                                        | Median 3Q Max                                                                                                            |
| -123.425 -25.794                                              | -3.125 23.629 120.046                                                                                                    |
| Coefficients:                                                 |                                                                                                                          |
|                                                               | Estimate Std. Error t value Pr(> t )                                                                                     |
| (Intercept)                                                   | 139.52703 13.80820 10.105 < 2e-16 ***                                                                                    |
| data\$CURR AGE                                                | -0.04844 0.18492 -0.262 0.79345                                                                                          |
| data\$CIGNOW                                                  | -10.11001 4.06797 -2.485 0.01327 *                                                                                       |
| data\$PACKYRS                                                 | 0.01573 0.05456 0.288 0.77320                                                                                            |
| data\$SNP1                                                    | 8.61749 3.31204 2.602 0.00955 **                                                                                         |
| data\$SNP2                                                    | -19.71980 2.84816 -6.924 1.35e-11 ***                                                                                    |
| data\$SNP3                                                    | -9.32590 2.96600 -3.144 0.00176 **                                                                                       |
| data\$SNP4                                                    | -9.58801 3.05650 -3.137 0.00181 **                                                                                       |
|                                                               |                                                                                                                          |
| Signif. codes: 0                                              | `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1                                                                             |
| Residual standard<br>Multiple R-Square<br>F-statistic: 24.6   | error: 36.11 on 503 degrees of freedom<br>d: 0.2551, Adjusted R-squared: 0.2448<br>l on 7 and 503 DF, p-value: < 2.2e-16 |

| Coding Genotypes |          |          |           |  |
|------------------|----------|----------|-----------|--|
| Genotype         | Dominant | Additive | Recessive |  |
| AA               | 1        | 2        | 1         |  |
| AG               | 1        | 1        | 0         |  |
| GG               | 0        | 0        | 0         |  |
|                  |          |          |           |  |

- Genotype can be re-coded in any number of ways for regression analysis
- Additive ~ codominant

#### **Fitting Models** Information Criteria · Given two models $y = \beta_1 x_1 + \varepsilon$ - Measure of model fit penalized for the number $\mathbf{y} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \varepsilon$ of parameters in model Which model is • AIC (most common) better? - Akaike's Info Criterion More parameters • BIC (more stringent) will always yield a - Bayesian Info Criterion better fit

#### **Tool References**

- Haplo.stats (haplotype regression)
   Lake et al, Hum Hered. 2003;55(1):56-65.
- PHASE (case/control haplotype)
   Stephens et al, Am J Hum Genet. 2005 Mar;76(3):449-62
- Haplo.view (case/control SNP analysis)
   Barrett et al, Bioinformatics. 2005 Jan 15;21(2):263-5.
- SNPHAP (haplotype regression?)
   Sham et al Behav Genet. 2004 Mar;34(2):207-14.

# Analyzing SNP Data

- Study Design
- SNPs vs Haplotypes
- Regression Analysis
- Population Structure
- Multiple Testing
- Whole Genome Analysis

# **Population Stratification**

- Many diseases have different frequencies in ancestral groups
  - E.g. MS is more frequent in Europeans
- In admixed or stratified populations, markers correlated with ancestry may show spurious associations
  - E.g. Duffy and MS in African Americans

# **Population Stratification**

- Admixture
  - Individuals with ancestry from multiple populations
  - E.g. Hispanic or African American
- Stratification
  - Subpopulations with distinct allele frequencies
- E.g. Brazil, CaliforniaSTRUCTURE software
  - Pritchard et al, Genetics v155 p945









### Pop Structure Summary

- For known admixture, use AIMs to estimate ancestry
- For diseases with substantial differences in risk by ethnicity, use admixture mapping
- Detecting cryptic population structure requires hundreds to thousands of genomic controls

### Analyzing SNP Data

- Study Design
- · SNPs vs Haplotypes
- Regression Analysis
- Population Structure
- Multiple Testing
- Whole Genome Analysis

# Multiple Testing

| Study target | Technology | Samples | Studies |
|--------------|------------|---------|---------|
| Gene         | TaqMan     | 100's   | 2       |
| 10 SNPs      |            |         |         |
| Pathway      | Illumina   | 1000's  | 2       |
| 1500 SNPs    | SNPlex     |         |         |
| Genome       | Affy       | ??      | ??      |
| 500k SNPs    | Illumina   |         |         |

### Multiple Testing

- Practical guidelines
  - Write down your priors
  - Bonferroni
  - FDR
  - Staged Study Design
  - Other approaches Neural Nets

#### Bonferroni

- · P-values of stats assume a single test
- For multiple tests, adjust significance by multiplying P-value by number of tests

   Given 10 tests and unadjusted p = 0.02
  - p = 10 \* 0.02 = 0.2
- Over conservative

#### Step-Down Bonferroni

- · Given N SNPs to analyze
- · Order SNPs using prior info
  - Evaluate the most interesting hypotheses first
- For first SNP, do not correct p-value
- For second SNP, adjust for 2 tests
- Etc.

#### Staged Study Design

- Given 500,000 SNPs
- Bonferroni corrected significance threshold
  - p = 0.05 / 500000 = 10<sup>-7</sup>
- Significance in a single study is difficult to achieve

# Staged Study Design

- Study I: Genotype 500k SNPs in 1000 cases/controls
   Expect 5,000 false positives at p < 0.01</li>
- Study II: Genotype best 5000 hits from stage I in additional 1000 cases/controls

   Expect 50 false positives at p < 0.01</li>
- Study 3: Genotype best 50 hits in a third set of 1000 cases/controls
  - Expect 0.5 false positives at p < 0.01</li>





#### FDR Example

- Assume 10 tests
- 5 with uncorrected p = 0.05
- No single significant result
- More than 5% below 5%
- At least one of the five is probably real, but we can't say which

# **Multiple Testing Summary**

- Bonferroni can be useful, but overly conservative
- · FDR can be more helpful
- Staged study designs don't improve power, but can be economically advantageous

# Analyzing SNP Data

- Study Design
- · SNPs vs Haplotypes
- · Regression Analysis
- · Population Structure
- Multiple Testing
- Whole Genome Analysis

# **SNP** Selection

- cSNPs (~20-25k common genome wide)
- tagSNPs
  - 500k random ≈ 300k selected
  - Probably adequate in European
  - Possibly adequate in Asian
  - More needed for African (~750k)
  - Possibly adequate in South Asian,
  - Hispanic









#### Limiting the Interaction Space

- · Not all epistatic interactions make sense
  - Physical interactions (lock and key)
  - Physical interactions (subunit stoichiometry)
  - Pathway interactions
  - Regulatory interactions

# Whole Genome Summary

- Low Hanging Fruit exist (e.g. AMD)
- Tier studies for economic purposes

   Make sure N is large enough to be powered if all samples were 500k genotyped
- Interactions may be interesting
  - Explore sparingly for hypothesis testing
  - Explore comprehensively for hypothesis generation

### Conclusions

- · Pay attention to study design
  - Sample size
  - Estimated power
  - Multiple Testing
- Analyze SNPs (and haplotypes)
- · Keep population structure in mind
- Explore epistasis and environmental interactions after main effects

### Limiting the Interaction Space

- Not all epistatic interactions make sense
   Physical interactions (lock and key)
  - Physical interactions (subunit
  - stoichiometry)
  - Pathway interactions
  - Regulatory interactions

















Epistasis III: Sufficient AA AC/CC OR 1.822 GG 1 2 GT/TT 1.822 2 2 Simple model: two dominant loci, two-fold relative risk (PR) to single carriers at either locus two-fold relative risk

Simple model: two dominant loci, two-fold relative risk (RR) to single carriers at either locus, two-fold risk to double carriers. Risk allele frequency 0.05 at both loci.

| срю  | 510 |       |    | GIUGIV |
|------|-----|-------|----|--------|
|      |     |       |    |        |
|      |     |       | AA | AC/CC  |
|      |     | OR    |    | 1.733  |
| GG   |     |       | 1  | 2      |
| GT/T | т   | 1.733 | 2  | 1      |

loci.









Epistasis III: SufficientAAAC/CCOR1.325GG1GT/TT1.32522

Simple model: two dominant loci, two-fold relative risk (RR) to single carriers at either locus, two-fold risk to double carriers. Risk allele frequency 0.3 at both loci.

# **Epistasis IV: Exclusive**

|       |       | AA | AC/CC |
|-------|-------|----|-------|
|       | OR    |    | 0.987 |
| GG    |       | 1  | 2     |
| GT/TT | 0.987 | 2  | 1     |

Simple model: two dominant loci, two-fold relative risk (RR) to single carriers at either locus, no risk to double carriers. Risk allele frequency 0.3 at both loci.

#### Main Effects Analysis

- In the vast majority of epistatic models, main effects exist, and point in the right direction
- Epistatic interaction is potentially more important for common alleles
- Limit epistatic exploration to common SNPs with main effects?