LIST OF FIGURES

2.1	Work breakdown structure for the NSLS-II project	2-3
3.1.1	Schematic of a CNT device in which the nanotube structure is obscured	3-1
3.1.2	Scanning electron microscope image of a device	3-2
3.1.3	(Left) A single nanotube illuminated by an x-ray beam; (right) corresponding x-ray diffraction pattern	3-3
3.1.4	X-ray diffraction from (left) chiral nanotube and (right) same but with one Au atom adsorbed to the side at z=0	3-3
3.4.1	Fluorescence image of a continuous flow cell and its intrinsic time resolution	3-9
3.4.2	Self-assembled arrays of tobacco mosaic virus adsorbed onto a lipid film under water and GISAX pattern	3-11
3.5.1	Inelastic x-ray scattering probes the dynamic response of a system, revealing energy transfers	3-12
3.5.2	Mott gap in doped cuprates; systems with the same Neel temperature but different doping	3-15
3.6.1	XRMS diffuse scan from an artificially structured magnetic microstructure	3-17
3.6.2	Electromagnetic absorptions in the nearly ordered superconductor as seen by electron-energy loss spectroscopy	3-18
3.7.1	Coherent modes in the EPU45 beam as a function of photon energy	3-20
3.7.2	Speckle pattern from soft x-ray coherent scattering from sample with short-range orbital order	3-21
3.8.1	Evolution of deposits to the Protein Data Bank 1995–2006	3-23
3.8.2	Model for control of potassium ions through a cell membrane, in response to changes in membrane voltage	3-23
3.9.1	Seismologist's view of the Earth showing slow and fast sound wave velocities, possibly indicating flow patterns	3-25
3.9.2	Schematic summarizing Residual Strain sources, relevance, and means-of-measurement below the surface	3-26
3.9.3	Microbeam Radiation Therapy	3-27
4.1.1	Schematic layout of the NSLS-II accelerators	4-1
4.1.2	Geometry of the NSLS-II light source and beamlines	4-2
4.1.3	Three DBA cells with short (5 m) and long (8m) straight sections	4-2
4.1.4	Lattice functions of half of an NSLS-II storage ring super-period	4-3
4.1.5	3D view of the SR super-period comprised of two DBA cells and two straight sections	4-4
4.1.6	3D view of a standard DBA cell with bilateral symmetry	4-4
4.1.7	Schematic layout of the storage ring and the full-energy booster in the same tunnel	4-6
4.2.1	Dependence of the scattering integral on the maximum scattering parameter X _m	4-11
4.2.2	Dependence of the horizontal beam emittance on the natural emittance, in units of its limit	4-12
4.2.3	Dependence of the beam lifetime in NSLS-II on horizontal emittance for fixed uniform 3% energy acceptance	4-14
4.2.4	Dependence of the loss integral $D(\xi)$ on the parameter ξ	4-15
4.2.5	Dependencies of the beam lifetime on the energy acceptance for norizontal and vertical emittances	4-16
4.2.6	Fit of the beam lifetime dependence to the fourth power of the energy acceptance	4-16
5.2.1	Layout of the 200 MeV linear accelerator	5-4
5.3.1	Layout of the linac-to-booster transfer line.	5-7
5.3.2	Beta and dispersion functions of the linac-to-booster transport line.	5-7
5.4.1	Schematic of the linac diagnostics.	5-10
5.4.2	Diagnostics for the linac-to-booster transport line	5-10
5.5.1	Layout of the booster and the ring periods	5-11
5.5.2	A single period of the booster lattice	5-12
5.5.3	Regular ceil and ceil with quadrupole correctors	5-12
5.5.4 5.5.5	Working point on the tune diagram, including resonances up to the third order.	5-13
0.0.0 5 5 6	bynamic aperture for on-momentum and ±5% deviation tracking, and tune scan used to optimize the DA	D-13
5.5.0	Injedicu ucani sizes	14 - C
5.5.7	Evolution of nonzonial emittance during energy ramp	01-C
562	Cross-section of the honeter dinole magnet	01-0 ۲ 10
5.0.Z	NSI S-II hooster quadrunole magnet with R-field flux lines shown	5_20
564	NSLS II booster ring quadrupole magnet cross-section	5-20 5_91
0.0.4	NOLO-II DOOSTOI HINY Yudulupole maynet ol 030-360tion	J-2 I

5.6.5 5.6.6	Magnetic model of the booster sextupole	5-22 5-23
5.6.7	2D CAD cross-sections of the magnet hanger system for the booster magnets	5-24
5.6.8	Field isolation plate secured against the dipole magnet	5-24
5.6.9	Possible lifting device for booster installation and servicing	5-25
5.6.10	Procedure of booster magnet isolation: transporter delivering a magnet for installation, and lifting for installation	5-26
5.6.11	Dipole power supply current and voltage waveforms for 3.0 GeV operation	5-26
5.6.12	Dipole power supply block diagram	5-27
5.6.13	Q1 and Q2 quadrupole power supply block diagram	5-29
5.6.14	SF and SD sextupole power supply block diagram	5-30
5.7.1	Schematic layout of vacuum chambers in a 26 m booster half-cell	5-33
5.7.2	Calculated stress of the thin-walled bending chamber under vacuum load	5-35
5.7.3	Pressure distribution in a standard booster naif-cell section from thermal and photon-stimulated desorption	5-30
5.8.1	Ine tive-cell PETRA cavity	5-38
5.8.2	RF separatrix for 1 MV RF field, with and without radiation loss	5-39
5.9.1	Beam trajectory at the booster extraction	5-40
5.10.1	Beam trajectories through the Dooster-to-storage ring transport line	5-41
5.10.2	Twiss parameters along the B–SR transfer line	5-43
5.10.3	Beam sizes along the B-SR transfer line	5-43
6.1.1	Lattice functions for one-half of a DBA period	6-3
6.1.2	Fractional reduction of the emittance and increase in energy spread with wiggler radiated energy.	6-4
6.1.3	Emittance reduction for NSLS-II as DWs are installed and operated at 1.8 I peak field	6-5
6.1.4	Layout for half of a long ID straight section, with reflection symmetry on left side	6-6
6.1.5	Layout for half of a short ID straight section, with reflection symmetry on left side	6-6
6.1.6	Layout for the dispersion section, including the two dipole magnets	6-7
6.1.7	Driving terms for zeroing linear chromaticity with sextupoles.	6-9
6.1.8	Driving terms for second-order chromaticity $\partial \beta_{x,y} / \partial \delta \times \eta_x$	6-10
6.1.9	Driving terms for second-order chromaticity $\beta_{x,y} \partial \eta_x / \partial \delta$	6-10
6.1.10	Normalized DA vs. tune per super-period	6-12
6.1.11	DA for the optimized tune and sextupoles at the center of the long straight section	6-12
6.1.12	Residual nonlinear chromaticity for the optimized tune and sextupoles	6-13
6.1.13	Horizontal tune vs. transverse amplitude at the long straight section	6-13
6.1.14	Vertical tune vs. transverse amplitude at the long straight section	6-14
6.1.15	Frequency map vs. transverse amplitudes at the long straight section	6-16
6.1.16	DA sensitivity vs. the tractional gradient errors in the quadrupoles	6-17
6.1.17	DA sensitivity to transverse alignment errors of the sextupoles	6-18
6.1.18	Normalized phase advance for one super-period	6-20
6.1.19	Corrected nonzontal (Iem) and vertical (right) RMS COD (over 1,000 seeds) for one super-period	6-21
6.1.20	DA for lattice with transverse misalignment errors	6-21
6.1.21	Driving term for linear coupling, for one super-period	6-23
6.1.22	Corrected vertical dispersion for the quadrupole and dipole roll tolerances	6-23
6.1.23	Corrected vertical dispersion with a residual 5 mm dispersion wave for vertical beamsize control	6-24
0.1.24	DA for a realistic lattice (10 seeds) with engineering tolerances and corrections.	
6.1.25	Average, RINS nonzontal momentum aperture for a realistic lattice (10 seeds) with engineering tolerances, etc	
0.1.20	Average, KIVIS vertical momentum aperture for a "realistic" lattice (10 seeds) with engineering tolerances, etc	
0.1.2/	Longitudinal phase-space, including the radiation loss from damping wigglers	0-27
0.1.20	Corrected beta functions of the lattice with three DWs installed	0-2ŏ
0.1.29	DA for the letting with transverse alignment errors for three goods and a single ID	0-29
0.1.30	DA for the lattice with transverse alignment errors for three seeds and a single ID	0-30
0.1.31	DA for the fattice with transverse alignment errors and multiple IDs, one type at a time for DWs, CPMUs, SCUs	
0.2.1	A unive particle <i>u</i> leading a test particle <i>i</i> through a vacuum structure	0-34
0.2.2	Longitudinal distributions as determined from the Haissinski equations	
0.2.3	Scaling function as determined by Olde and Yokoya and by tracking using ELEGANT	
0.Z.4	bunch length and energy spread for broadband resonator.	6-41

6.2.5	Threshold single-bunch current v. chromaticity	6-42
6.2.6	CESR-B cavity geometry input to C-Fish	6-43
6.2.7	3D model of CESR-B cavity assembly in GdfidL	6-44
6.2.8	Geometry of CPMU (top), short-range transverse wake potential, low-frequency behavior of the CPMU impedance	6-48
6.2.9	Tapered elliptical vacuum chamber for superconducting small-gap undulator	6-49
6.2.10	Horizontal emittance vs. total SR loss	6-51
6.2.11	Touschek lifetime vs. horizontal emittance	6-53
6.2.12	Momentum acceptance for minimum vertical apertures and voltages	6-54
6.2.13	An unstretched bunch plotted with a stretched bunch in a uniform fill with HHC detuning	6-56
6.2.14	Bunch profiles	6-56
6.2.15	Cavity field detunings	6-57
6.2.16	Bunch profiles and lengths expected by operating two cells at ~1.0 MV total field with all wigglers	6-57
6.3.1	Open- and closed-loop RMS orbit motion and RMS corrector strengths in the feedback loop	6-60
6.3.2	Closed-loop orbit deviation normalized by beamsize	6-61
6.3.3	Floor vibration measurements near beamline X5 at NSLS	6-62
6.3.4	Simulated long-term ground motion and electron beam motion within half a year, with and without feedback	6-63
6.3.5	Power density spectrum of beam motion	6-64
7.1.1	RMS expected closed-orbit amplification factors for random alignment errors in the quadrupoles of the lattice	7-2
7.1.2	DA with 100 µm quadrupole alignment tolerances corrected with ideal BBA BPMs	7-3
7.1.3	DA with 100 µm quadrupole alignment tolerances corrected with 30 µm BBA tolerances for BPMs	7-3
7.1.4	Girder amplification factors for one period of the storage ring.	7-5
7.1.5	DA for 10 seeds (lattices) with 100 µm RMS girder alignment tolerances corrected using BPMs	7-6
7.1.6	Ring dipole flux model	7-9
7.1.7	Storage ring dipole cross-sections, aligned on the centerlines	7-10
7.1.8	The 63 mm aperture dipole design concept with an IR beam extraction vacuum chamber	7-11
7.1.9	Quadrupole magnet analytical model	7-12
7.1.10	Conceptual design for NSLS-II storage ring quadrupole magnet cross-section with water-cooled coll	7-12
7.1.11	Sextupole magnet analytical model	/-15
7.1.12	Conceptual design of the storage ring sextupole magnet cross-section	/-16
7.1.13	Dipole power supply block diagram	7-19
7.1.14	Unipolar current-regulated switch-mode design power supply	7-21
7.1.10	Single magnet power supply lack layout	1-21
1.Z.I 700	Tolrance level for herizontal and vertical wave emplitude violding a 5 pm emittence dilution	1-29
1.Z.Z 7.0.2	NSLS II girders in one cell of the storage ring	וט-ז רכ ד
7.2.3 7.2.1	Concentual design of the NSLS II storage ring girder	_ر_ر_ر 22 ح
7.2.4 7.2.5	Vibrating wire alignment system mounted on the girder (left): special brackets with wire movers, locators, etc.	7-33 7-34
7.2.5	Comparison of PDS of vertical around motions at various locations (NSLS ALS ESPE and Spring 8)	7 36
7.2.0	1D oscillator and transmissibility plot	7-30 7_37
728	Mode shanes of the NSI S-II girder_magnet assembly	7_38
731	Layout of the five vacuum chambers in a typical synchrotron cell with two photon exit ports, plus 3D models	7_41
732	Storage ring vacuum chamber and magnet cross-sections at dipole, guadrupole, and sextupole interfaces	7-41 7-42
733	Storage ring vacuum chambers at dinole, multipole, and sextupole interfaces	7-43
7.3.4	ANSYS analysis of the deflection and stress of the multipole chamber	7-44
735	Two types of RE-shielded hellows	7-47
736	Comparisons of PSD vields with photon dosages for copper and aluminum	7-48
7.3.7	Pressure distribution inside the electron beam channel in one storage ring super-period	7-50
7.3.8	Pressure distribution inside the electron beam channel in one 52 m super-period with and without a DW	7-50
7.4.1	Typical layout of a hard or soft x-ray beamline front end.	
7.4.2	Front-end schematic representation of front ends and exit ports	
7.4.3	Conceptual design of the NSLS-II photon shutter	
7.4.4	Steady-state temperature distribution from 2S finite element analysis simulation of the photon shutter	7-63
7.4.5	Absorber geometry for a nanoprobe beamline front end	7-64
7.5.1	RF separatrix for 3.3 MV RF field with and without 816 keV/turn radiation losses	7-68
7.5.2	The CESR-B bare cavity assembly	7-71

7.5.3	Layout of two 500 MHz cavities plus one 1500 MHz Landau cavity in a single straight	7-71
7.5.4	Installation of two KEK-B SCRF cavities in an 8 m straight	1-12
1.5.5	Layout of an RF straight section with two 500 MHz cavities and their klystron transmitters, 1500 MHz cavity	1-14
7.5.6	Example of a master oscillator	/-/b
1.5.1	Basic cryogenic system flow diagram	7-81
7.5.8	Cold box, simplified flow diagram	7-91
7.6.1	Arrangement of the injection straight section	7-93
7.6.2	Horizontal phase space of the injected beam for the first five terms	
7.6.3	Beam is injected at an initial displacement of ~17.5 mm (septum location)	7-96
7.6.4	injected beam envelope, physical aperture at ID half-gap of 2.5 mm	/-9/
1.1.1	Sectional view of APS scraper assembly, round blades closed	7-99
1.1.2	Sectional view of APS scraper assembly, blades partially opened	7-99
1.1.3	Conceptual layout of NSOS-II scraper	
1.1.4	Horizontal power density profiles of damping wiggler and CPMU	/-100
1.1.5	Vertical power density profile for damping wiggler and CPMU	/-100
1.1.6	Clipping of BM and DW x-ray fans by crotch and wiggler absorbers in Chamber 2	/-101
1.1.1	Crotch absorber	/-101
7.7.8	Damping wiggler absorber, snowing Glidcop block, cooling channels, bellows, flanges; temp. contours (ANSYS FE).	7-102
7.8.9	Counter-flow and flange absorbers for the storage ring vacuum chambers	/-102
7.8.1	Design of the flag used for the diagnostic of the electron beam injected into the storage ring	/-105
7.8.2	RF fingers (with detail), providing smoothness in the vacuum chamber	/-105
7.8.3	Bergoz In-Flange Fast Current Transformer	/-106
7.8.4		7-106
7.8.5	Bergoz New parametric Current Transformer	7-106
7.8.6	NSLS-II cell with BPM locations	/-10/
1.ŏ.1	Four-button, two-plane pickup electrodes mounted on the vacuum champer	/-10/
7.0.0	Design of the BPM button for the storage ring	7-108
7.8.9	Layout of the tune measurement system	7-109
7.0.10	System for the observation of beam stability	/-109
7.0.11	Conceptual layout of the transverse recuback system	7-110
7.0.12	Layout of emittance monitor utilizing a two-silt interferometer	/-
7.0.13	View of the 0.5960 strack sensors	7 442
7.0.14		7 442
7.0.15	APS photon beam position monitor	7 111
7.0.10	Position-sensitive diddes by Hamamatsu	7 114
1.0.11	Deam loss meniter by Derest	7 115
1.0.10	Beam loss monitor by Bergoz	/-115
8.3.1	Brightness vs. photon energy for various devices at NSLS-II	8-6
8.3.2	Flux output of various devices at NSLS-II vs. photon energy	8-7
8.3.3	Total output power of the NSLS-II undulators as a function of the undulator parameter, K	8-8
8.3.4	Angular power density vs. undulator parameter, K, for the NSLS-II undulators	8-9
8.3.5	Photon beam source size in the horizontal and vertical directions for various NSLS-II devices	8-10
8.3.6	The angular divergence of the photon beam at NSLS-II devices	8-11
8.3.7	Vertical angular divergence for the 14 mm SCU device vs. photon energy for different values of the energy spread	8-12
8.3.8	On-axis brightness of the U19 undulator at 7350 eV photon energy as a function of undulator length	8-13
8.3.9	Possible candidate devices that optimize the brightness of undulators around 9 keV	8-14
8.3.10	Source flux of the various harmonics of candidate CPMUs in a photon energy region	8-15
8.4.1	Second dipole magnet in the NSLS-II DBA 30 lattice	8-16
8.4.2	NSLS-II Infrared Dipole radiation extraction	8-17
8.4.3	Extraction optical performance for a toroidal first mirror optic	8-17
8.4.4	Calculated NSLS-II brightness for the mid-infrared spectral range.	8-19
8.4.5	Calculated NSLS-II brightness for the very far-infrared spectral range	8-19
8.4.6	SRW analysis for 55 mrad horizontal and	8-20

9.1.1 9.4.1 9.4.2	NSLS-II software architecture EPICS model Example EPICS OIC	9-2 9-7 9-7
9.4.3	Distributed development structure	9-0 0 0
9.4.4	Listibuled development structure	0 16
9.5.1	Block diagram of the Event System and East Timing	0-10 0-20
9.5.2	Diock uldgram of the Event System and Last Timing	0.27
9.5.5	Network broadcast structure for one cell	
9.5.4	Activities requiring information distribution in experiment hall	9-23 0_32
002	Sector networks make important process variables available to the facility via a PV gateway	0_33
5.5.Z		
10 1 1	APS central monument	10-3
10.1.1	The APS coordinate system and primary control network	10-3 10-4
10.1.2	The APS secondary control network	10-4
10.1.0	Sketch of a possible network design	10-6
10.1.1	Laser Tracker 1.5 inch sphere mount	10-6
10.1.0	Non-aluminum process water system (deionized)	10-11
10.2.1	Control scheme: split ranging	10-12
10.2.2	Aluminum process system (independent)	10-13
11 1 1	Experimental floor showing a number of beamlines	11-2
11.1.1	Possible uses of insertion devices by beamline type at NSI S-II	
11.2.1	Possible use of bending magnet beamlines	11-5
11.3.1	Photo of a "hockey nuck" silicon crystal unside down	
11.3.1	Profiles of crystal subjected to the NSLS-II undulator power load: thermal profile for unfiltered beam, slope error	11-8 9
11.3.3	Model of diamond wafer aton water-cooled conner support	11-11
11.3.4	Calculated thermal distortion profile in diamond wafer	11-12
11.3.5	Calculated temperature distribution in diamond wafer assuming a 10X heat transfer coefficient	11-13
11.3.6	Focusing mirror system to be installed in current NSLS beamline X25	11-13
11.4.1	Conceptual layout of a nanoprobe beamline showing both scanning mode and full-field capacity	11-17
11.4.2	Direct mode: the coherent portion of the incident beam is selected by an aperture close to the x-ray source.	11-19
11.4.3	Modification of the direct mode concept	11-21
11.4.4	Mirror mode. A horizontal mirror system, works with an aperture as a spatial filter	11-21
11.4.5	Waveguide mode: final nm size focus results from two-stage demagnification of the primary source	11-22
11.4.6	Full-field transmission mode, space illuminated by condenser optics.	11-24
11.4.7	Energy bandwidth required to obtain a given resolution for three focal lengths; various photon wavelength	11-26
11.4.8	Overall layout of a hard x-ray nanoprobe beamline	11-28
11.4.9	Contour plot of the nodal displacement along the x-ray beam direction	11-30
11.4.10	Basic geometry of the double-crystal monochromator	11-31
11.4.11	Band pass boundaries and available band pass values for various reflections of the DCM	11-31, 32
11.4.12	Geometry of the first aperture	11-33
11.4.13	Movable mask, beam entrance face and points of maximum construction	11-33, 35
11.5.1	Three inelastic x-ray scattering end stations shown on a single beamline	11-35
11.5.2	Comparison of various devices at NSLS-II and elsewhere, measured in photons/sec/meV	11-36
11.5.3	Schematic of the angular-dispersive backscattering CDW monochromator and backscattering CDW analyzer	11-38
11.5.4	Schematic of an in-line angular dispersive CDDW monochromator; plot of dynamical theory calculations	11-39
11.5.5	Schematic of the angular-dispersive CDW backscattering segmented analyzer with the PSD; theory calculations .	11-41
11.5.6	Optical scheme of the IXS spectrometer with angular-dispersive CDDW and CDW	11-42
11.5.7	Possible design of the IXS spectrometer according to the optical scheme of Figure 11.5.6	11-42
11.5.8	Quartz offers a potential route to high-energy resolutions at medium photon energies	11-44
11.5.9	Medium-energy resolution, constant bandpass monochromator	11-45
11.5.10	Possible design for 50 meV IXS end station.	11-46
11.5.11	Conceptual layout for an IXS beamline at NSLS-II	11-47
11.5.12	Rowland Circle geometry and improved resolution due to strip detector.	11-48
11.6.1	Schematic layout of a slit-based optical configuration of a CXS beamline	11-51

11.6.2	Proposed floor layout for the coherent scattering beamline	11-53	3
11.6.3	Conceptual layout of coherent scattering beamline	11-54	4
11.7.1	Flux emitted in the central cone by a 4 m undulator with a 4.2 cm period, operating in linear mode	11-64	4
11.7.2	Sketch of the proposed soft x-ray resonant scattering and RIXS beamline	11-65	5
11.7.3	Reflections of possible coatings for a polarized light as a function of the photon energy	11-66	6
11.7.4	Ultra high resolution grating contributions to the resolving power due to source, exit slit, RMS slope errors, etc	11-67	7
11.7.5	High resolution (1200 l/m) grating contributions to resolving power due to source, exit slit, RMS slope errors, etc	11-67	7
11.7.6	High resolution (300 l/m) grating contributions to resolving power due to source, exit slit, RMS slope errors, etc	11-68	8
11.7.7	Absolute efficiencies of the three Au-coated, blazed, VLS gratings	11-69	9
11.7.8	Reflectivities of the Au coated plane mirror for each of three gratings: 3600 l/mm, 1200 l/mm, 300 l/mm	11-69	9
11.7.9	Flux and resolving power expected for the three gratings.	11-7(C
11.7.10	Spot pattern at M1 for 200 eV photon energy in the soft x-ray resonant scattering and RIXS beamline	11-7	1
11.7.11	Spot pattern at M2 when tuned to 200 eV photon energy in the soft x-ray resonant scattering and RIXS beamline	11-7 [,]	1
11.7.12	Spot pattern at the HR grating for 200 eV photon energy in the soft x-ray resonant scattering and RIXS beamline	11-7	1
11.7.13	Spot pattern at M3 for 200 eV photon energy in the soft x-ray resonant scattering and RIXS beamline	11-7	1
11.7.14	Spot pattern at M4 for 200 eV photon energy in the soft x-ray resonant scattering and RIXS beamline	11-72	2
11.7.15	Spot pattern at the exit slit plane for 200 and 200.006 eV photon energies using the HR grating	11-72	2
11.7.16	Spot pattern at the exit slit plane for 1000 and 1000.01 eV photon energies using the UHR grating	11-72	2
11.7.17	Spot pattern at the sample position at 200 eV photon energy	11-73	3
11.7.18	Spot divergence at the sample position at 200 eV photon energy	11-73	3
11.7.19	Illumination of the near and far M1 mirrors at 200 3V photon energy	11-74	4
11.7.20	Illumination of the plane mirror (M2) with the two beams at 200 eV. for the HR grating	11-74	4
11.7.21	Illumination of the HR grating by the two beams at 200 eV photon energy	11-74	4
11.7.22	Illumination of the slit by the two beams at 200 eV photon energy.	11-74	4
11.7.23	Illumination of the M3 mirrors by the two beams at 200 eV	11-75	5
11.7.24	Illumination of MR by the two beams at 200 eV	11-75	5
11.7.25	Sample illumination with the far beam at 200 eV photon energy	11-75	5
11.7.26	Sample illumination with the near beam at 200 eV photon energy for the HR grating	11-75	5
11.7.27	Power density absorbed by the M1 mirror	11-76	6
11.7.28	Proposed layout for a Soft X-Ray Resonant Scattering and RIXS Beamline	11-77	7
11.7.29	Schematic representation of a proposed XRMS in-vacuum diffractometer	11-82	2
11.7.30	Schematic representation of RIXS spectrometer	11-83	3
11.8.1	Preliminary layout of soft x-ray beamline for soft x-ray coherent scattering, imaging, and spectroscopy	11-89	9
11.8.2	Flux emitted in the central cone by a 4 m ID linear device with a 4.2 cm period, as a function of photon energy	11-92	2
11.8.3	Sketch of a possible soft x-ray microscopy, coherent imaging/scattering, and magnetic spectroscopy	11-93	3
11.8.4	Reflectivities of possible coatings for s polarized light as a function of the photon energy	11-94	4
11.8.5	Flux expected at the sample position (top) and corresponding resolving power of a BL with a 10 µm exit slit (etc.)	11-95	5
11.8.6	Spot pattern at M1 for 200 eV	11-96	6
11.8.7	Illumination of near and far M1 mirrors at 200 eV for the coherent imaging, scattering, and spectroscopy beamline	11-97	7
11.8.8	Sample illumination with the far beam (left) and near beam (right) at 200 eV for the (etc.)	11-98	8
11.9.1	Model for control of passage of potassium ions through a channel in the cell membrane	11-103	3
11.9.2	Conceptual layout of undulator-based crystallography beamline	11-108	8
11.11.1	Conceptual layout of high magnetic field beamline	. 11-117	7
11.12.1	Lavout of the SCU beamlines	11-119	9
11.12.2	(Top) Mechanism of the sagittal focusing with asymmetric Laue crystals: (bottom) monochromator	11-12	1
11.13.1	Conceptual layout of x-ray imaging facility showing a remote end station with three optical enclosures	11-123	3
11.14.1	Conceptual layout of the SAXS beamline	11-127	7
11.14.2	Characteristics of the 3 m CPMU	11-128	8
11.14.3	Width of the resolution for the SAXS and USAXS configurations	11-129	9
11.15.1	Schematic of the proposed photoemission beamline	11-13	3
11.16.1	Conceptual view of canted damping wiggler beamlines	. 11-136	6
11.16.2	Conceptual layout of hutches associated with canting damping widgler beamlines	11-136	6
11.16.3	Conceptual view of a generalized bending magnet beamline	. 11-13	7
11.18.1	Schematic Infrared Beamline	11-15	1
11.18.2	Multiple Microprobe End Stations	11-15	1

12.2.1	Soft x-ray optics approaching their theoretical limit	12-2
1222	Schematics of a full-field and a scanning microscope	12-3
12.2.2	Schematic of lons aperture numerical aperture ontics transverse resolution and longitudinal resolution	12_4
12.2.0	Schemate of ferio aperture, numerical aperture, optics introverse resolution, and originalina resolution.	40 E
12.2.4	Theoretical resolution limit for graving incidence single house reflective entities	12-5
12.2.3	Theoretical resolution limit for grazing incidence single-bounce reliective optics	12-0
12.2.6	Challenges faced by a reflective optical system relative to a transmission system	12-7
12.2.7	Schematic of a Fresnel zone plate, with an order-sorting aperture to isolate the first-diffraction-order focus	12-7
12.2.8	Diameter required of Fresnel zone plates to achieve a given Rayleigh resolution	12-8
12.2.9	Diffraction efficiency of thin binary transmission zone plates as a function of material thickness and photon energy	12-9
12.2.10	Sputter-spliced zone plates and multilayer Laue lenses	12-10
12.2.11	Adjusting the tilt of individual zones in an MLL to meet the Bragg condition	12-10
12.2.12	Schematic diagram of a waveguide in an optical system for achieving a 1 nm focal spot	12-11
12.2.13	Phase space area of scanned imaging, for restricting the product $a\Phi$ to be less than λ	12-13
12 2 14	Restricting the size-angle product p of the illumination to $\sim 1\lambda$ or less (spatially coherent illumination)	12-13
12 2 15	Reduced flux into the focal spot to coherently illuminate an optic	12-14
12.2.10	Effect of vaning the electron beam emitting on the fraction of light delivered for a phote energy of 12.4 keV	10 15
12.2.10	Lifect of varying the electron beam emittance on the naction of light delivered for a photo energy of 12.4 kev	10 16
12.2.17	munimation priase space requirements for full-field material paties with various control the functions	10 10
12.2.10	Point spread function for both circular and crossed cylindrical optics with various central stop functions	12-10
12.2.19	Results of simulations of a crossed linear lens arrangement in the limit of small NA (0.05)	12-18
12.2.20	Sharp central component for NA=0.1	12-18
12.2.21	Types of MLL arrangements: flat, tilted, wedged, and curved	12-19
12.2.22	Possible alignment scheme for pairs of half-linear-focusing MLLs	12-20
12.2.23	Local diffraction efficiency of zones at various radii for a Mo/Si MLL operating at 10 keV	12-21
12.2.24	Calculated efficiency and Rayleigh-like resolution for MLLs of various zone widths for flat, tilted, and wedge zones	12-22
12.2.25	Zone plate characteristics: width of central feature, tails, and size of obstructed region	12-24
12.2.26	Diagnostics to evaluate zone placement accuracy in MLLs	12-25
12.2.27	Kinoform structure etched into silicon with deep reactive ion etching	12-26
12 2 28	Solid refractive structure (left) profile of long kinoform (middle) and short kinoform lens	12-27
12.2.20	Absorption across the anerture for a refractive lens (left) and kinoform lens (right)	12_27
12.2.29	Connection between the kineform and the zero plote	10.00
12.2.30	Combine summary of the case for kineform	12-20
12.2.31	Graphic summary of the case for kinolomi.	10.04
12.2.32	Using compound lenses to exceed the chical angle limit.	12-31
12.2.33	Experimental vehication of exceeding Θ_c with an array of knotorm lenses	12-32
12.2.34	Use of linear, ID kinotorms (top), two successive ID kinotorms (middle), and results from two crossed lenses	12-33
12.2.35	I wo of the current limitations in Si etching technology: depth, and scalloping	12-33
12.3.1	Multidimensional scanning stage system for a typical scanning hard x-ray nanoprobe	12-37
12.3.2	Model for the nanoprobe prototype at Argonne	12-40
12.3.3	Schematic of the self-aligning multiple-reflection optical design	12-40
12.3.4	Closed-loop controlled differential displacement steps test with high-resolution weak-link stages	12-41
12.3.5	Active vibration control test with high-resolution weak-link stages	12-42
12.3.6	Closed-loop control scheme test for a 1D setup	12-42
12.3.7	Conceptual schematic of an interferometer to precisely measure x-ray scattering factors	12-44
12.4.1	Energy bandpass for the Bragg reflections in Si and sapphire as a function of the photon energy	12-46
1242	Monochromatization through angular dispersion	12-47
1243	Arrangement of monochromator and analyzer crystals used in initial experiments at 31D at APS	12-48
12.1.0	Monolithic Si crystal used as the collimator and wavelength selector at APS	12-48
12.4.4	SignO) enoted used as the dispersive lements in experiments at AS	12-10
12.4.0	The effect of realing the analyzer dispersive elements in experiments at AFS	12-40
12.4.0	Current version of the Long Trace Drofler in the Onticel Materian U charactery at DNI	12-49
12.0.1	Current version of the Long Trace Promer in the Optical Metrology Laboratory at BNL	12-52
12.5.2	improved requency response of the optical nead used in the Canon lithography optics measurement system	12-54
12.6.1	Layout of a 64-channel ASIC for high-rate counting with multiple energy discrimination	12-59
12.7.1	Phase error created by the mechanical deflection of aluminum magnet platens, due to magnetic force	12-64
12.7.2	Phase error created by linear gap taper	12-64
12.7.3	On-axis brightness of the 7th, 9th, and 11th harmonics of three undulators relative to an ideal	12-67
12.7.4	MGU magnet arrays	12-68
12.7.5	Gap dependence for the seven-period model for minimum and maximum gaps	12-69
	· · · · · · · · · · · · · · · · · · ·	

12.7.6	Gap dependence of the first integrals simulated for U19	12-70
12.7.7	Conceptual design of U19	12-71
12.7.8	Hall probe mapper mounted on the flange cover	12-72
12.7.9	Mapper position with respect to the magnet arrays	12-72
12.7.10	Magnet arrays of EPU45	12-75
12.7.11	Field, angle, and trajectory plots for the 11-period model of EPU45 in helical mode	12-76
12.7.12	Field, angle, and trajectory plots for the 11-period model of EPU45 in linear mode	12-77
12.7.13	Fields vs. phase	. 12-77
12.7.14	Fields vs. gap in helical mode	. 12-78
12.7.15	Fields vs. horizontal position at the origin in helical mode	
12.7.16	Magnet arrays of HiSOR EPU50.	. 12-79
12.7.17	Cross-section of a magnet array	. 12-79
12.7.18	Field profile vs. horizontal position in helical mode	12-80
12.7.19	Magnetic arrays of U100	12-83
12.7.20	End view of U100	12-83
12.7.21	Field, angle, and trajectory plots for the five-period model of U100	12-84
12 7 22	First field integral dependence on the gap	12-85
13.1.1	Architectural rendering of NSLS-II	13-2
13 1 2	NSI S-II Complex lavout – 1 st floor plan base scope	13-3
13 1 3	NSI S-II Complex – 1 st floor plan with optional conference center and "warm shelled" OBS 2_3 and 4	13-4
13.2.1	Proposed site locations on the RNL campus with possible long beamlines	13-6
13.2.2	NSI S-II site nlan	13-10
13.3.1	Site with existing conditions, including limit of tree clearing and the Bldg 603 Electrical Substation	13-18
13.4.1	CLOB 1st floor plan	13-41
13.4.2	CLOB 2 nd floor plan	13-42
13.4.3	CLOB 3 rd floor plan	13-43
13 4 4	I OB 1st floor plan	13-45
1345	Typical laboratory layout	13-47
1346	Service building first and second floors	13-48
13.4.7	Linac area	13-50
1348	RF area	13-51
1349	Cross-section of Ring Building between LOBs and MERs	13-53
13 4 10	Cross-section of Ring Building in vicinity of an LOB and MER	13-54
13 4 11	Cross-section of Ring Building through center of CLOB and MER	13-55
13 4 12	Cross-section of Ring Building through side of CLOB	13-56
13 4 13	Cross-section of Ring Building in vicinity of RE Building	13-57
13 4 14	Cross-section of Ring Building in vicinity of Linac Building, showing bridge to electrical gallery on tunnel mezzanine	13-58
13.5.1	Cross-section of Experimental Hall and storage ring tunnel HVAC supply and return ducts	13-72
13.5.2	HVAC units servicing accelerator tunnel. located in lower level of MER	13-73
13 5 3	Floor plan layout of one-half of HVAC supply and return ducts for Experimental Hall from AHI I in one MER	13_74
13 5 4	HVAC units servicing Experimental Hall located in upper level of MER	13-75
13 5 5	Chilled water utility plan	13_79
1356	Steam utility nlan	13-81
13 5 7	Potable water utility plan	13-84
13.5.8	Electrical site utilities plan	13-90
.0.0.0		10 00
15.3.1	Simulated EGS4 geometry of the NSLS-II safety shutters	15-13
15.3.2	Contact dose rates at the downstream surface of the shutters/stops	15-14
15.3.3	EGS4 and STAC8 geometry for bremsstrahlung and synchrotron radiation scattering calculations	15-14
15.3.4	Scattered bremsstrahlung dose rates for the NSLS-II beamlines	15-16